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ABSTRACT: 

 

The paper presents an innovative approach that can assist survey methods by applying AI algorithms to improve the accuracy of 

point clouds generated from UAV images. Firstly, the work individually analyses several photogrammetric accuracy parameters, 

including reprojection error, angle of intersection between homologous points, number of cameras for single Tie Point calculation, 

verifying that a single parameter is not sufficient to filter noise from a photogrammetric point cloud. Therefore, some of the 

calculated parameters were analysed with the Self-Organizing Map (SOM) and a K-means, to check the impact of the precision 

parameters for reducing the noise associated with the definition of the 3D model. In the case study, in both machine learning 

clustering algorithms used, it was observed that the parameter that most influences noise in photogrammetric point clouds is the 

angle of intersection. 

 

1. INTRODUCTION 

In the past ten years, the application of photogrammetry in 

digital 3D recording has grown greatly. In fact, due to the 

development of computer vision technology and new computing 

technology, photogrammetry technology has accelerated the 

processing time and realized automation, which was once a 

well-known weakness (Falkingham, 2012). 

With the use of automatic Structure of Motion technology 

(SfM), the overall situation has gradually changed from the 

widespread use of scientific applications of 3D measurement 

using laser scanner technology to the use of photogrammetry. 

Nowadays, photogrammetry technology has gained greater 

"robustness", possibly overcoming distance-based sensors in 

many applications. Recently, the technological development of 

Unmanned Aerial Vehicles (UAV) has become easier to pilot 

and more reliable, which indirectly promotes the growth of 

photogrammetric applications, especially in medium and large 

applications. 

In the literature, UAV systems used for photogrammetric 

purposes are usually applied for three-dimensional surveys of 

complex structures in the Cultural Heritage field. Compared 

with TLS - Terrestrial Laser Scanning (De Blasiis et al., 2020), 

the main factors in favour of using drones for acquisition are: 

lower instrument costs, faster field data collection, and first of 

all, better ratios 3D model necessary for correct analysis of 

colour results and archaeological identification (Rinaudo et al., 

2012; Barba et al., 2019).  

Especially in the field of Cultural Heritage (CH), the 

applications of photogrammetry for different purposes are 

numerous (Themistocleous et al., 2015). Due to the speed of 

acquisition and the transportability of the vehicle, the 

technology is indeed very versatile, allowing these instruments 

to be used in different applications (Fernández‐Hernandez et al., 

2015). In the literature, it is possible find applications for 

structural monitoring of historical buildings (Arias et al., 2005), 

used to generate 3D models for volume calculations and then to 

generate metric maps for presentation purposes for mining 

estimation (Bendea et al., 2007), also used to draw the 

degradation of the exterior walls of historical buildings 

(Brunetaud et al., 2012; Themistocleous, 2017). 

A well-known problem in photogrammetry projects is indeed 

the georeferencing stage, especially the choice of instruments 

and the way they are employed to obtain maximum accuracy on 

the model. In fact, after knowing the definition of graphical 

error, the maximum representation ratio is inversely 

proportional to the metric error calculated on the model. The 

low accuracy of the model may invalidate the high resolution of 

the data, thereby invalidating the graphic scale of the product 

(i.e., plan, section, elevation). It should be emphasized that 

according to the final purpose of photogrammetry, the accuracy 

required for data collection and processing is different; if you 

want to generate 3D models for augmented reality (AR), or 

perform simple Web visualization (represented in non-scientific 

applications), the estimation of model accuracy can be omitted. 

In the CH domain (the purpose of which is to protect and/or 

monitor archaeological heritage or architectural restorations), 

the accuracy of the metric system must be evaluated to avoid 

“incorrect” documentation from the metric perspective. 

The accuracy of the model is subject to certain photogrammetric 

boundaries. One of the factors that affect the output accuracy 

the most is the angle formed between the homologous rays in 

different cameras. Generally, the larger the angle (within a 

certain interval), the higher the achievable accuracy, Kraus 

research shows that there is a direct proportional relationship 

between the Base/Height ratio and accuracy (Kraus, 2011). 

Evaluating the accuracy of a georeferenced 3D model can be 

done in several ways. A basic method is to analyse the residues 

of the bundle adjustment by computing the Root Mean Squared 

Error (RMSE) of the residues on the GCPs or by using the 

coordinates measured on the ground independently of the points 

with which to compare the coordinates measured on the 

photogrammetric model (Check Point) (Sanz-Ablanedo et al., 

2018). 

In order to evaluate the accuracy of the final model, we will 

propose an outlier detection method that does not consider a 

single parameter related to accuracy, but simultaneously all 

calculated parameters, by applying separately two clustering 

machine learning algorithms - Self Organizing Map (SOM) and 

K-means, to reach a compromise model between the data of 

points available and the noise reduction associated with the 3D 

definition. 
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2. BACKGROUND AND QUALITY FEATURE  

The evaluation of the quality of the photogrammetric design 

within SfM methods can be done using several features, derived 

both in the acquisition phase (i.e., number of images 

contributing to the 3D reconstruction of a Tie Point or the angle 

of intersection of homologous rays) and in the image processing 

phase (i.e., reprojection error) (Farella et al., 2020).  

In this work the analysed features are reported below. First of 

all, a single parameter analysis was carried out in order to 

highlight that a filtering approach on a single feature is not able 

to clean the point cloud from noise.  

 

2.1 Reprojection Error 

A geometric error corresponding to the image distance between 

the projected point and the measured point (James et al., 2017) 

is the reprojection error. It is used to measure how accurately a 

3D point estimate recreates the true projection of the point. 

In order to calculate the 3D coordinates of the Tie Point, the 

internal and external direction parameters of the camera and the 

image coordinates of the point are used. Once its coordinates 

are calculated, the 3D point will be reprojected on all the images 

where it appears. The reprojection error is the difference 

between the image-point and the reprojected point on a single 

image. This error is also called RMS image residual. 

Theoretically, reprojection error is obtained as follows: 
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where  fu, fv = focal lengths in the u and v directions 

 uc, vc = principal point offset 

 tc = position of the camera centre in the object space 

 Rc =  rotation from the camera 

 K = matrix of internal parameters 

 P = vector projected space coordinate pi 

 KPc = represents the projection matrix 

  

Each extracted Tie Point is assigned a reprojection error value εi 

that is the module of the sum of the reprojection errors 

computed for the number of cameras that observe the i-th Tie 

Point. The frequency distribution of the reprojection errors that 

better fit the data was analysed using MATLAB (i.e., the 

Statistics toolbox). The distribution was used to exclude 

external values which are considered outliers at a selected 

experimental threshold. The algorithm implemented in the 

Python environment has been used to remove the binding point 

corresponding to the threshold that identifies it as TP. 

 

2.2 Angle between homologous points  

In this article, by estimating the angle between the two 

projection lines (called the “intersection angle”), the 

Base/Height ratio is analysed. The photogrammetry software we 

use does not give the value of this angle in the output, so we 

implemented an algorithm in the Python environment. 

In order to extract and calculate the parameters of interest, two 

libraries are used: NumPy (Oliphant, 2007), which is used to 

add support for large multi-dimensional arrays and matrices, 

and a large collection of advanced mathematical functions for 

operations on these arrays; Pandas (McKinney, 2010) is a BSD-

licensed open source library that provides high-performance, 

easy-to-use data structures. Projection Centre (O) and Tie Point 

(k) are the input parameters used to calculate the angle of 

intersection. Given the k-th Tie Point seen from two images i 

and j, the direction vectors ui and vj are given by the relations: 
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where the subscript Oi indicates the projection centre of the i-th 

frame and Oj of the j-th frame, E, N, h are the cartographic 

coordinates. The relation gives the intersection angle α: 
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The intersection angle calculation was made using all the image 

pairs that see the i-th Tie Point, calculating the intersection 

angle for each pair and finally calculating the average 

intersection angle between the n frames that see the point, 

removing the extreme values. Finally, with each Tie Point 

extracted, the method associates the average angular value 

obtained. The whole process is implemented in Python. 

 

2.3 Image redundancy 

This parameter is the number of photogrammetric shots 

implemented within the SfM process, for the reconstruction of 

the i-th TP in 3D space. With the same other parameters of 

photogrammetric accuracy, it is assumed that as the image 

redundancy increases, the metric quality of the TP point cloud 

improves. 
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where  TPijn
 = camera for the reconstruction of the i-th TP. 

 

2.4 Projection Accuracy  

This parameter is the point placement from local neighbour 

points. The accuracy of Tie Point projections depends on the 

scale at which they were located. Metashape uses information 

about scale to weight Tie Point reprojection errors. Key point 

size is the Sigma of the Gaussian blur at the pyramid level of 

scales at which the key point was found (Mirko et al., 2019). 

 

3. CASE STUDY 

The case study considered developing this work is the temple of 

Neptune (Figure 1), surveyed with aerial photogrammetry by 

UAV in 2017: the complex spatial articulation of the 

geometries, make it a suitable stage for the type of qualitative 

analysis carried out. The photogrammetric survey was carried 

out exclusively by drone. A mixed type of photogrammetric 

acquisition was chosen: the nadiral images were acquired 

through the generation of a flight plan designed in the DJI 

Ground Station environment, while for the oblique images - 

necessary for the 3D reconstruction of the entire Temple and for 

the restitution of the orthophotos of the elevations - a manual 

piloting mode was adopted.  
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Figure 1. Photogrammetric survey phase. 

 

For both phases, the acquisition was performed in automatic 

timelapse (2 sec interval). The UAV used is a hexacopter 

assembled with a 3-axis gimbal and the installation of a Sony 

Alpha 6500 camera (sensor size 23.5 x 15.6 mm, 6000 x 4000 

pixels, pixel size 3.92 µm, focal length 16 mm). During the 

flight operations, access to the Temple and the area nearby - 

security buffer - was closed to the public for a period of 2 hours. 

The nadiral flight was from North-East to South-West, with a 

height from the take-off plane of 35 m, which resulted in a 

ground cover of 51.4 x 34.1 m. In total - from the flight plane 

only - 185 nadiral images were acquired. The manual flight for 

the oblique images was planned by carrying out two strips for 

each side of the Temple: the first was carried out with the 

camera at 45° - with an average flight altitude of 17.5 m from 

the take-off point - so that each photogrammetric shot would 

take a percentage of the frame of the upper part of the Temple, 

so as to overlap with the nadiral images, as much as the external 

part of the columns; the other strip at a lower altitude - an 

average of 13.5 m from the take-off plane - has instead planned 

a horizontal optical axis of the camera, to guarantee an overlap 

of the photogrammetric shot with the images acquired in the 

first strip of between 60 and 80%. Finally, a set of images were 

acquired at a higher altitude - between 45 and 55 m - to 

facilitate the matching process in the processing phase. A total 

of 908 images were processed for the generation of the 3D 

model (185 nadiral images obtained from the flight plan and 

723 oblique images obtained in manual mode). 

The images were processed in Agisoft Metashape (version 1.7.1 

build 11797). The workflow implemented is as follows: in the 

Align Photos phase, the parameters were set: Accuracy = High, 

Key point limit = 60.000, Tie Point limit = no limit, obtaining a 

Sparse Cloud of 2.626.415 points (Figure 2). In the creation of 

the Dense Cloud the parameters used were: Quality = High, 

Depth filtering = Disable, returning a Dense Cloud of 

56.150.877 points. In the Build Mesh the parameters set are 

Surface Type = Arbitrary, Source Data = Dense Cloud, Face 

Count = Medium, generating a polygonal model with 5.230.012 

triangles. Finally, in Build Texture the parameters set are: 

Mapping Mode = Generic, Blending Mode = Mosaic, Texture 

size = 4096 x1 (enabling Enable hole fitting). A GNSS network 

consisting of 11 Ground Control Points (GCPs), staggered 

altimetrically, was designed to support the georeferencing and 

accuracy assessment of the generated model. The GCPs were 

materialized on the ground using photogrammetric targets and 

topographic pegs. The reference system adopted is 

UTM/ETRF00 with orthometric heights. The precision achieved 

in planimetry is on average subcentimetric while in altimetry it 

is about 2.5 cm.  

 

Figure 2. Photogrammetric Point cloud and section analysed (in 

red). 

 

The GCPs were included for the estimation of the internal 

orientation parameters in Agisoft Metashape using a self-

calibrating bundle adjustment. These estimated parameters 

were then used to orient the images and kept constant 

throughout SfM processing. 

 

 

4. MACHINE LEARNING CLUSTER  

Unsupervised learning, also known as unsupervised machine 

learning (Friedman et al., 2001), analyses and clusters 

unlabelled information using machine learning techniques. 

Without the need for human interaction, these algorithms 

uncover hidden patterns or data groupings.  

Unsupervised learning models are utilized for three 

fundamental tasks: clustering (Madhulatha, 2012; Farella et 

al., 2019), association, and dimensionality reduction. 

Clustering is the most significant unsupervised learning 

problem, and it deals with discovering a structure in a 

collection of unlabelled data. 

 

 

4.1 SOM  

As an artificial neural network, the self-organizing map 

(SOM) (Kohonen, 2001) is commonly used for display and 

analysis of high-dimensional data.  

SOM is utilized not just for visualization, but also for data 

clustering. As multi-dimensional scaling, SOM may be 

integrated with dimensionality reduction approaches 

(Kurasova and Molytė, 2011).  

In the iterative algorithm each node’s weights are initialized. 

At random, a vector is selected from the training data set. To 

determine which weights are most similar to the input vector, 

every node is examined.  

The winning node is generally referred to as the Best 

Matching Unit (BMU). The BMU neighbourhood is then 

calculated. The number of neighbours reduces over time. The 

winning weight is rewarded by being more like the vector in 

the sample.  

The neighbours become more like the vector of the sample, 

too. The closest a node is to the BMU, the less it knows, the 

more its weights are altered and the farther distant the 

neighbour is from the BMU.  
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Figure 3. Dendrogram, clusters for the data = 6. 

 

The whole process is implemented in MATLAB, using the 

Neural Network Clustering App. The choice of the number of 

clusters to be brought into the accuracy analysis is made by 

the graphical representation of the dendrogram (Figure 3). A 

dendrogram is a diagram representing a tree that shows the 

hierarchical relationship between object and used to visualise 

the similarity in the clustering process. In clustering 

techniques, the dendrogram is used to provide a graphic 

representation. 

 

4.2 K-means 

K-means is a technique that divides a dataset into a set of 

groups based on the number of clusters supplied by the user 

(Lloyd, 1982). The program examines the data to identify data 

points that are organically similar and assigns each point to a 

cluster of points with similar features. The data can then be 

labelled into different classes based on the features of each 

cluster. The algorithm converges when there is no further 

change in assignment of instances to clusters. The whole 

process is implemented using Scikit-learn (Pedregosa et al., 

2011), a free machine learning library for Python. 

Finding the optimal number of clusters is an important part of 

this algorithm. A commonly used method for finding optimal 

K value is Elbow Method (Bholowalia and Kumar, 2014). 

 

 

Figure 4. Elbow method, clusters for the data = 4. 

 

In the Elbow method (Figure 4), the idea is to vary the number 

of clusters (K) from 1 to 15 for example. The WCSS (Within-

Cluster Sum of Square) is calculated for each K value. The 

sum of squared distances between each point in a cluster and 

its centroid is WCSS. 

 

 

(6) 

 

where  C = cluster centroids  

 d = data point in each cluster 

 

The WCSS value will begin to decrease as the number of 

clusters increase. When examining the graph, we can see that it 

shifts rapidly at one point, forming an elbow. At this point, the 

graph begins to move almost parallel to the X-axis. The optimal 

value of K, or the optimal number of clusters, corresponds to 

this point. Thus, for our data, we conclude that the optimal 

number of clusters for the data is 4. 

 

5. RESULT FEATURE ANALYSIS 

In the first step we considered the parameters individually to see 

how the filtering procedures influenced the accuracy value. The 

first parameter considered is the error projection. For the 

purposes of the analysis, a standard section was identified, 2.5 

m wide, visible in the Figure 2 in red. 

Using a MATLAB tool (i.e., the Statistics toolbox), the best-

fitting frequency distribution of the reprojection errors was 

studied. The best-fitting distribution was used to remove values 

outside a chosen experimental threshold (90, 95 and 99 

percentile), in which outliers were considered contained. Tie 

Points belonging to this threshold are considered as Tie Point 

outliers and removed automatically with an algorithm 

implemented in Python. Observing Figure 5 it is possible to 

notice that filtering the point cloud by analysing only the error 

projection with a statistical approach does not generate a good 

degree of filtering for the section under examination; in fact, the 

procedure removes some mostly isolated points, but does not 

lead to great advantages in noise reduction. However, most of 

the isolated points have not been filtered out and, in addition, 

3D points that actually belong to the section are also removed. 

 

 

Figure 5. Filtering of reprojection error parameter on values 

above the lower cumulative distribution. 

 

A better result for noise reducing is obtained by filtering the 

point cloud according to the average intersection angle, 

calculated for each Tie Point, and then analysing the acquisition 

geometry. Excluding small average intersection angles resulted 

in much more realistic and less noisy surfaces.  

In addition, pushing the filter too far by setting average angles 

as a threshold compromises the amount of data necessary for 

representation; in fact, setting an average angle of over 18° as a 

threshold removes large quantities of points belonging to the 

columns, making the object of the survey no more 

distinguishable.  
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Figure 6. Filtering of the average angle between homologous 

points for assigned angular values. 

 

 

For the case study in question, a good reduction in noise on 

Tie Points is already evident for angles greater than 10° 

(Figure 6). Another parameter analysed individually is the 

number of images, i.e., the quantity of images that have 

contributed to the reconstruction of the 3D point in the space. 

This value is correlated to the number of images in which a 

point has been measured, therefore, at least in theory it is 

assumed that the greater the number of images, the better the 

quality of the 3D point - always supposing that the angle of 

intersection is satisfactory. From Figure 7 we observe that for 

a minimum number of images in the range [2-4] the amount of 

noise included is high, while for a range of [5-9] cameras, the 

noise of the point cloud tends to decrease. Also, in this case 

for values greater than the 10 cameras for the reconstruction 

of the 3D point, the quantity of points in the section is 

drastically reduced, eliminating not only the noise but also 

portions of columns, damaging the quantity of the data. 

 

 

 

Figure 7. Image count filter: on top for values between [2-4], 

on the bottom for values between [5-9]. 

 

 

Finally, the last parameter analysed individually is the 

projection accuracy. The trend of this parameter's filtering is 

similar to that of the image count: as the filtering threshold 

value increases, the noise decreases, but increasing this value 

above a limit eliminates portions of the columns, damaging 

the quality of the data.  

It can be seen in Figure 8 that the limit parameter for noise 

reduction is an accuracy reprojection equal to 10: increasing 

this value further reduces the noise threshold but at the same 

time also reduces portions of the edited cloud. 

 
Figure 8. Projection Accuracy filter: on top for values between 

[0-5], bottom for values between [5-10]. 
 

 

6. RESULT CLUSTER ANALYSIS 

The clustering algorithms were chosen to consider not only one 

accuracy variable but all measurable parameters at the same 

time. The reprojection error, projection accuracy, number of 

pictures, and average angle were utilized as input data. The 

choice of cluster membership in the High accuracy or Noise 

group was made by checking the average angle values (from 

what was observed in the single feature analysis, the angle value 

is the one that most affects noise). Clusters with larger angles 

were placed in High accuracy, averaged over the number of Tie 

Points belonging to the cluster, and the group called “Noise”, 

which includes the clusters with smaller average angular values. 

It can be noted that the High layer turns out to be the best fitting 

point set for the both cases SOM (Figure 9) and K-means 

(Figure 10). 
 

 

6.1 SOM  

The SOM Layer loaded with an 8x8 network and 100 epochs. 

The graphical dendrogram (Figure 3) is used to determine the 

number of clusters for accuracy analysis. Six categories can be 

recognized when the dendrogram is generated. The average 

values of the various analysed features belonging to the High 

accuracy and Noise groups are shown in Table 1. 

 

 
Figure 9. Cluster analysis and filtering by SOM: on top high 

accuracy cluster, on bottom for noise cluster. 

  
6.2 K-means 

With the Scikit-learn library all the data was clustered by K-

Means clustering algorithm. using four as the number of clusters 

obtained after analysis of the elbow graph (Figure 4), 10 the 

number of time that the k-means algorithm will be run with 

different centroid seeds, and 300 as the maximum number of 

iterations of the k-means algorithm for a single run. The average 

values of the various analysed features belonging to the High 

accuracy and Noise groups are shown in Table 2. 
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Figure 10. Cluster analysis and filtering by k-means: on top 

high accuracy cluster, on bottom for noise cluster. 
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 E_Proj Acc_Pr N_Im  Angle °  

Mean 0,59 6,55 6 18,44 

H
ig

h
 a

cc
u

ra
cy

 std 0,69 51,13 8 6,73 

min_value 0,00 0,00 2 1,14 

25% perc 0,29 0,29 3 14,01 

50% perc 0,48 1,06 4 16,97 

75% perc 0,71 3,09 6 21,26 

max_value 28,69 5209,53 184 115,91 

Mean 0,38 1,40 3 3,44 

N
o

is
e 

std 0,44 12,25 2 1,55 

min_value 0,00 0,00 2 0,05 

25% perc 0,14 0,04 2 2,37 

50% perc 0,29 0,21 2 3,56 

75% perc 0,50 0,83 3 4,56 

max_value 15,91 2217,85 51 15,47 

Table 1. SOM clustering: feature parameter analysis. 
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 E_Proj Acc_Pr N_Im  Angle ° 
 

Mean 0,62 7,81 8 29,85 

H
ig

h
 a

cc
u

ra
cy

 std 0,58 55,33 10 14,68 

min_value 0 0 2 1,99 

25% perc 0,33 0,32 2 18,36 

50% perc 0,53 1,33 4 27,27 

75% perc 0,76 4,41 8 36,96 

max_value 30,14 6418,10 129 131,79 

Mean 0,40 1,46 3 2,22 

N
o

is
e 

std 0,48 10,96 2 1,43 

min_value 0 0 2 0,05 

25% perc 0,14 0,04 2 0,96 

50% perc 0,30 0,23 2 1,99 

75% perc 0,51 0,86 3 3,39 

max_value 20,03 1725 62 5,19 

Table 2. K-means clustering: feature parameter analysis. 

7. CONCLUSION 

This work shows that the use of a single parameter in the 

reduction of noise in a Tie Point cloud is not the best approach. 

In fact, all the parameters analysed - error projection, angle 

between homologous points, image count and accuracy 

projection - show that the filtering process only partially 

eliminates the noise, or rather the outliers that do not belong to 

the edited cloud. The parameter that best eliminates outliers 

without affecting the edited cloud is the angle between 

homologous points: the problem with this parameter is that as 

the angle value increases, more outliers are removed, but after a 

threshold value, points belonging to the edited cloud are 

simultaneously eliminated so that the density of the cloud does 

not allow a good description of the object. This parameter 

depends directly on the image acquisition phase, so this value 

can vary considerably: in the case study presented, a value 

above 10° eliminates most of the outliers, without 

compromising the density of the edited cloud. 
The analysis of the various features by SOM and K-means made 

it possible to consider - in the process of filtering the cloud - all 

the parameters analysed individually. In particular, in Table 1 

and Table 2, the mean values and standard deviations obtained 

in the clustering process categorised as High accuracy and 

Noise class. 

With the analysis of -SOM and K-means- the average values 

between the classes of accuracy and noise are not very far from 

each other for the features of Error projection, Image count and 

Accuracy projection, while they vary a lot in the values of 

angular average for the intersection angles. Moreover, analysing 

the standard deviation, the class High accuracy has very high 

values of the features Image count, Accuracy projection (both 

always only positive) and angular value, while for error 

projection also the value of standard deviation between the 

classes of accuracy and noise are very similar.  

Finally, it is analysed that the clouds produced by the SOM and 

K-means analysis for the high accuracy class do not have 

significant deviations in a cloud-to-cloud comparison, even 

though the accuracy class produced by K-means has higher 

average angular values; conversely, from a density point of 

view, the SOM analysis produces an average cloud twice as 

dense as that of K-means. 
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