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ABSTRACT: 

3D point clouds are robust representations of real-world objects and usually contain information about the shape, size, position and 

radiometry of the scene. However, unstructured point clouds do not directly exploit the full potential of such information and thus, 

further analysis is commonly required. Especially when dealing with cultural heritage objects which are, typically, described by 

complex 3D geometries, semantic segmentation is a fundamental step for the automatic identification of shapes, erosions, etc. This 

paper focuses on the efficient extraction of semantic classes that would support the generation of geometric primitives such as planes, 

spheres, cylinders, etc. Our semantic segmentation approach relies on supervised learning using a Random Forest algorithm, while the 

geometric shapes are identified and extracted with the RANSAC model fitting algorithm. In this way the parametric modelling 

procedure in a HBIM environment is easily enabled. Our experiments show the efficient label transferability of our 3D semantic 

segmentation approach across different Doric Greek temples, with qualitatively and quantitatively evaluations. 

 

 

1. INTRODUCTION 

Data acquisition techniques such as photogrammetry and laser 

scanning commonly generate 3D point clouds to describe the 

surface of a real-world object or a scene. Such representations are 

mathematically expressed by matrices of unorganised points; the 

rows of these matrices correspond to the total number of points 

contained in the 3D cloud and the columns contain point-level 

information such as coordinates, normal direction, colour, 

intensity etc. This kind of data can be sufficient for general 3D 

recording purposes, yet it does not provide any semantically 

meaningful attribute of the scene as such. Higher-level semantic 

information is indeed crucial towards scene understanding and 

analysis and, hence, semantic segmentation has become a 

powerful tool for 2D (Marmanis et al., 2016; Chen et al., 2018; 

Kirillov et al., 2019) as well as 3D (Blaha et al., 2016; Armenti 

et al., 2017; Stathopoulou et al., 2021) data analysis. Particularly 

in the field of cultural heritage, semantic segmentation has found 

applicability towards the identification and grouping of points 

with similar attributes with respect to their geometry, colour, 

material etc. (Grilli and Remondino, 2020; Croce et al., 2021). In 

various mapping and cultural heritage applications, this 

semantically enhanced data is further associated with external 

metadata, i.e. additional specific information regarding the scene, 

contributing towards a more holistic data representation (Carboni 

et al., 2016). Moreover, in the cultural heritage domain, the use 

of Historic Building Information Modelling (HBIM) has become 

a research topic of great interest as it is able to model the state of 

complex historic structures throughout their life cycle by 

deconstructing and analysing their different components and 

details, and several studies have worked towards this scope 

(Barazzetti, 2016; Murtiyoso and Grussenmayer, 2019; Yang et 

al., 2020a). As a result, HBIM could act as a multi-dimensional 

tool and process essential for the management, preservation, 

restoration and dissemination of cultural heritage.  

 

1.1. Aim of the paper 

 

This paper introduces an integrated pipeline which, starting from 

a point cloud generated by passive or active sensors, delivers 

primitive models that will enable and facilitate an automated 

modelling procedure in HBIM. Point groups with similar 

attributes are first automatically segmented using supervised 

machine learning methods. Subsequently, geometric primitives 

are fitted on each semantic group, using the RANSAC model 

fitting algorithm (Figure 1). The extracted primitive shape 

information can be used as guidance in an HBIM environment 

for parametric shape generation in order to reduce manual labour 

in the scan-to-BIM pipeline and create parametric objects from 

point clouds (Murphy et al., 2013; Macher et al., 2017; Capone 

and Lanzara, 2019). Our work focuses on ancient Greek temples 

of Doric order. For this reason, the temple of Hephaestus in the 

ancient Agora of Athens is selected as a case study. Our 

segmentation step follows Grilli et al. (2019), since that work 

proved to be effective in a similar case study, the temple of 

Neptune in Paestum, Italy, also known as the 2nd temple of Hera. 

Compared to previous works, we aim to evaluate the 

transferability and generalisation of a 3D semantic segmentation 

method to similar architectures, yet exhibiting different details 

and characteristics, while being independent from the acquisition 

method. 

 

2. RELATED WORKS 

3D Semantic segmentation. Semantic segmentation in the 3D 

space can be defined as the process of assigning a semantically 

meaningful label to each point. Semantic segmentation can 

separate, group, highlight and extract clusters of points with 

similar attributes and consequently objects across a point cloud.  

Although semantic segmentation algorithms of 2D images have 

been proven to be robust enough in recent years, with high-

performance scores using machine and deep learning algorithms 

(Plath et al., 2009; Long et al., 2015; Chen et al., 2017), the 

respective algorithms for 3D data are still an open challenge. 

Segmentation of 3D data indeed requires complex mathematical 

operations and huge computational power, while the available 

training data is not as extended as their 2D equivalents. 

Acknowledging this open issue, the community has conducted 

extensive research on this topic in the last years using simple 

statistical or machine learning algorithms. Earlier works studied 
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Figure 1. The proposed pipeline integrates 3D semantic segmentation and primitive shape extraction with model fitting to facilitate the 

inclusion of 3D surveying data into HBIM solutions. 

 

airborne LiDAR data for road extraction (Boyko and 

Funkhouser, 2011), forest mapping (Dalponte et al., 2012) or 

urban mapping applications (Rottensteiner and Briese, 

2002). The features’, or descriptors’, design is a step of utmost 

importance in semantic segmentation and research has been 

focused on the optimal design and combination of them along 

with the optimal neighbourhood definition (Weinmann et al., 

2013; Hackel et al., 2016; Weinmann et al., 2017). With the 

seminal work of (Qi et al., 2017a; Qi et al., 2017b), deep neural 

networks also started to be used for the semantic segmentation in 

3D. For airborne data, segmentation based on deep learning has 

several successful implementations (Yousefhussien et al., 2018; 

Huang et al., 2020; Özdemir et al., 2021). However, in the field 

of cultural heritage, the number of such applications is limited, 

mainly due to the complexity of the scenarios and the few 

available data (Fiorucci et al., 2020). Thus, most works focused 

on segmentation based on simple geometric features (Murtiyoso 

and Grussenmeyer, 2019) or supervised machine learning 

methods (Grilli et al., 2019; Grilli and Remondino 2020). Some 

first attempts at using deep learning algorithms for cultural 

heritage scenes have also been recently employed (Matrone et al., 

2020; Pierdicca et al., 2020). 

 

Geometric model fitting. Geometric primitive extraction can be 

defined as the process of grouping points that belong to the same 

primitive shape. Geometric primitives refer to the simplest 

shapes appearing in the 3D space such as planes, cubes, spheres, 

cylinders, cones, tori etc. and are primarily easy to understand 

and parameterise. Based on these ubiquitous primitives, complex 

man-made objects can be explained, decomposed and simplified, 

facilitating the identification of an object’s form in an abstract 

way. Simple plane primitives can be detected in point clouds 

using 3D connected components analysis based on topology 

(Verma et al., 2006) or region-growing methods (Huber et al., 

2011). The Hough transform (Hough 1962) is another, more 

complex method that enables the detection of both planes and 

higher-order shapes in 3D point clouds (Vosselman et al., 2004; 

Tarsha-Kurdi et al., 2007; Bosché et al., 2015). A particularly 

popular method due to its robustness to outliers is the Random 

SAmple Consensus (RANSAC) by (Fischler and Bolles, 1981) 

used for aerial (Tarsha-Kurdi et al., 2007; Xu et al., 2016), 

terrestrial (Yang et al., 2020b), as well as indoor data to facilitate 

the Scan-to-BIM process (Jung et al., 2014; Thomson and 

Boehm, 2015; Hong et al., 2015). However, complex curved 

surfaces may need more elaborated parametrisation approaches 

such as NURBS curve fitting (Barazzetti, 2016). Croce et al. 

(2021) propose an HBIM-oriented semi-automatic procedure 

combining semantic segmentation and primitive extraction. 

Similarly to this work, we employ semantic segmentation, 

focusing on transferability across case studies. Moreover, in 

order to reduce manual labour, we implement an automatic 

geometric primitive extraction module and integrate it in the 

pipeline, aiming to facilitate parametric shape generation in 

HBIM. 

 

3. METHODOLOGY 

In this paper, we propose an operational pipeline that delivers 

geometric primitives from a raw, unstructured 3D point cloud 

(Section 3.1), enabling thus, HBIM modelling. To this end, we 

consider two interlinked steps that involve the enrichment of the 

raw 3D point clouds with semantic information (Section 3.2), and 

the subsequent extraction of modelling parameters to create 

geometric primitives (Section 3.3).  

 

3.1 Datasets 

The employed 3D point clouds refer to ancient Greek temples of 

the Doric order (Figure 2): the temple of Neptune in Paestum, 

Italy (Temple 1) and the temple of Hephaestus in Athens, Greece 

(Temple 2). These complex and large structures can be 

decomposed according to their different architectural 

components, each of which has its own specific semantic 

property and geometry. The two temples were surveyed with 

different techniques, namely photogrammetry for Temple 1 (ca 

0.01 m average point spacing) and laser scanning for Temple 2 

(ca 0.03 m average point spacing). Both Doric temples have 

similar structural and architectural elements. However, the 

temple of Neptune (Temple 1) is approximately twice the size of 

the temple of Hephaestus (Temple 2). In addition, the material 

used for their construction is different, i.e., limestone for Temple 

1 and marble for Temple 2, thus leading to varying decay states, 

which eventually affects the form of the architectural elements. 

Only in the temple of Hephaestus, the cella is preserved with its 

walls still standing. The eastern wall has been slightly altered, as 

a result of a later intervention, and is covered by the original roof. 

It is the best-preserved Doric temple in the world. 

 

3.2 Point cloud segmentation using machine mearning 

The segmentation methodology is based on Grilli et al. (2019), 

where supervised machine learning techniques were applied to 

infer per-point labels on the point cloud of the temple of Neptune 

in Paestum. Following Weinmann et al. (2015), the supervised 

semantic segmentation of point clouds consists of: (1) class 

determination, (2) data annotation/labelling, (3) point 

neighbourhood selection, (4) feature extraction, (5) algorithm 

training and (6) label inference and evaluation.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVI-2/W1-2022 
9th Intl. Workshop 3D-ARCH “3D Virtual Reconstruction and Visualization of Complex Architectures”, 2–4 March 2022, Mantua, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVI-2-W1-2022-291-2022 | © Author(s) 2022. CC BY 4.0 License.

 
292



 

 

Figure 2. The two ancient Greek temples, both of the Doric order. The temple of Neptune in Paestum, Italy (Temple 1) is almost twice 

the size of the temple of Hephaestus in Athens, Greece (Temple 2). The two 3D point clouds were derived with different acquisition 

methods and present, to some extent, diverse characteristics in their element structure, fine details, material and state of erosion. As the 

internal wall and roof of Temple 2 are not present in Temple 1, they were excluded from the processing presented in the paper. 

 

For the specific case study of Temple 2, the selected classes 

follow Grilli et al. (2019) and are based on the various 

architectural components of an ancient Greek temple: floor, 

crepidoma, column, echinus, abacus, architrave, frieze, cornice 

and tympanum. Only the classes that are common to both temples 

have been considered for consistency. Thus, the internal wall and 

the roof of Temple 2 were excluded from the segmentation 

procedure. Subsequently, Temple 2 point cloud is manually 

annotated, and these labels y are used as ground truth (GT) 

information for our evaluation. A fundamental step for the 

method is the appropriate definition of the neighbourhood for 

each point using a search radius (Hackel et al., 2016). Indeed, as 

proven in Grilli et al. (2019), the radius scale is proportional to 

the column's dimensions. Therefore, the covariance features, 

derived from the covariance matrix of the 3D point coordinates 

in a given neighbourhood are calculated and extracted in a radius 

equal to either the radius or the diameter of the column. These 

covariance features are expressed as combinations of the 

eigenvalues and eigenvectors of the covariance matrix for each 

point and include planarity, surface variation, sphericity, 

omnivariance, anisotropy, linearity as formulated in Hackel et al., 

(2016). Other extracted geometric features that are proven to be 

useful in such methods include normal based features, such as 

verticality, and height-based features, such as the Z coordinate. 

Feature extraction is performed on the entire point cloud and 

defines a feature matrix 𝑋. The geometric features extracted on 

Temple 2 are visualized in Figure 3. 

The 3D semantic segmentation was based on supervised machine 

learning techniques, namely the Random Forest classifier (RF), 

as implemented in the scikit-learn library (Pedregosa et al. 2011). 

RF is based on a large number of decision trees and has been 

proven to work efficiently in similar tasks, including 

generalization (Grilli and Remondino, 2020). The dataset is 

subsequently divided into a training and a test set: the training set 

consisting of both the labels 𝑦𝑡𝑟𝑎𝑖𝑛 and their respective features 

𝑋𝑡𝑟𝑎𝑖𝑛  are used to train the algorithm. The test set, including 

exclusively the pre-calculated features 𝑋𝑡𝑒𝑠𝑡, is used for label 

inference, based on the prediction model of the RF algorithm. In 

this way, each point of the test set is assigned to a class label, 

resulting in a semantically enriched point cloud �̂� (Figure 1). The 

evaluation of the method is performed by comparing the 

prediction model with the manually annotated (GT) model 𝑦𝑡𝑒𝑠𝑡. 

The comparison result is visualised with the confusion matrix, 

which analyses the amount of correct and false predictions. 

Furthermore, based on the confusion matrix, the overall 

accuracy, precision, recall and F1-score metrics are calculated 

(Hackel et al. 2016; Weinmann, 2015). The overall accuracy 

measures the overall ability of the model to correctly assign a 

label to all points; the precision represents the performance of the 

model in relation to false positives, while the recall is in relation 

to the false negatives; the F1-score measures the performance of 

the model by taking into account both precision and recall values. 

In this work, emphasis is also given to learning transferability as 

an attempt to examine a more general and objective approach 

reducing the bias that exists when knowledge (training) and 

application (testing) data derive from the exact same point cloud. 

In this regard, a second experiment was designed, where Temple 

1 serves as training set and Temple 2 as test set.  

 

 
Figure 3: Feature extraction on the entire dataset (𝑋𝑡𝑟𝑎𝑖𝑛 ,  𝑋𝑡𝑒𝑠𝑡 ) 

for the temple of Hephaestus (Temple 2). Please note that internal 

wall and roof were excluded from the processing as these two 

classes are not available in Temple 1. 

 

3.3 Extraction of fitting parameters for geometric primitives 

Primitive model fitting refers to the task of assigning a geometric 

primitive to describe a group of points. In our approach, the 

RANSAC algorithm is used due to its robustness to outliers and 

ease of implementation. RANSAC, being a stochastic method, is 

used to estimate the model parameters given a certain data set in 

an iterative way. The underlying principle is to fit various 

potential random hypotheses and iteratively find the model that 

best describes the given dataset, i.e. reach a level of agreement 

with most of the data samples, also known as consensus. In more 

detail, the algorithm first finds a minimum set of samples that are 

sufficient to describe the model. Afterward, it counts the 

percentage of the dataset adequately represented by this model 

and finally keeps the hypothesis that best fits the dataset. For 

every successful fitting, the model parameters are known as well 

as the number of inliers and outliers. The inliers correspond to 
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the subset of points that support the model, while the outliers to 

the subset of points that does not. 

In our approach, after assigning a label to every point (Section 

3.2), each semantic class defines a subset of 3D points with 

common geometric attributes. These subsets may contain one or 

more instances of the same class: e.g. the label “columns” 

contains several independent instances, whereas the class “floor” 

represents only one instance. Each class is analysed separately 

and it is considered as one or a collection of primitives with an a-

priori defined geometry as a plane, cylinder, tori etc. The 

correspondence between primitive geometries and semantic 

classes is summarised in Table 1.  

 

class primitive 

     crepidoma (1) plane 

     floor (2) plane 

     column (3) cylinder / cone 

     echinus (4) torus / sphere 

     abacus (5) plane 

     architrave (6) plane 

     frieze (7) plane 

     cornice (8) plane 

     tympanum (9) plane 

Table 1. The used class labels and the respective primitive shapes 

chosen for their representation. 

 

For the geometric primitive fitting, we follow the Efficient 

RANSAC of Schnabel et al. (2007), as implemented in the open-

source CGAL library (CGAL, 2022): starting from the 

segmented point cloud and some basic primitives (Table 1), 

fitting parameters can be automatically computed (Figure 4). 

 

 
 

Figure 4. Process to derive the fitting parameters and create 

geometric primitives using CGAL library.  

 

Efficient RANSAC depends on a set of parameters, namely the 

minimum number of points required for a primitive 𝑁𝑚𝑖𝑛 , the 

maximum distance of the points to the primitive 𝜀, the sampling 

resolution meaning the distance between neighbouring points 𝑐 

the maximum normal deviation 𝛿𝑛, and the probability 𝑝 that no 

better candidate was overlooked during sampling. Parameters 𝜀 

and 𝑐 play a significant role to shape detection as slightly 

different settings may significantly change the results. In order 

to efficiently detect the primitives, these parameters should be 

tuned according to the specific scenario. Additional parameters 

that correspond exclusively to primitives like the sphere and the 

cylinder could include their minimum and maximum radius. In 

our approach, we use an adaptive strategy, based on the average 

spacing of our 3D data. In particular, according to a general rule 

of thumb, 𝜀 is set approximately equal to the average spacing 

and 𝑐 defined as  𝑐 = 5 ∗ 𝜀. This adaptive parameter setting 

allows for a more automatic primitive shape extraction.  

To enable the comparison between our method and a commonly 

used semi-automatic method, we also perform experiments 

using the qRansacSD plugin which is the implementation of the 

RANSAC algorithm in CloudCompare (CloudCompare, 2022). 

 

 

4. EXPERIMENTS AND RESULTS 

Two different experiments were designed. In the first experiment 

both training and test data are derived from the exact same 

dataset, i.e. Temple 2 (Experiment A). The segmentation results 

(Figure 5) achieved an overall accuracy of ca. 98% (Table 2). The 

class “tympanum” is observed to have the lowest F1-score, in 

contrast to the class “column”, which reaches the highest one. 

This can be explained due to the fact that the “tympanum” has 

the fewest number of 3D points affecting the neighbourhood 

computation and thus feature extraction. On the contrary, the 

“column” class includes the geometrically most distinctive 

instances. Comparing these results with to those of Grilli et al., 

(2019) for Temple 1, it can be observed that we achieve very 

similar values of overall accuracy, accuracy, recall and F1 score. 

 

 
Figure 5: Experiment A. Both training and test sets are selected 

from Temple 2 (Temple of Hephaestus). GT labels are used for 

evaluation. 

 

In order to reduce the manual labour for the preparation of labels, 

we investigated the transferability and generalisation of the 

method to similar architectures (Experiment B). The trained 

model of Temple 1 was thus used to infer the labels on Temple 

2. The segmentation results (Figure 6) reached an overall 

accuracy of ca. 78% (Table 3). The predominant problems 

mainly concerned the classes “echinus”, “abacus”, “architrave” 

and “tympanum”. Our intuition is that this derives from the fact 

that the two temples have similar, yet not identical 

characteristics. As expected, the best-predicted class is 

“column”.  
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It can be stated that both 3D segmentation results have a 

satisfactory degree of success. As expected, more accurate results 

are generated when both training and test set are derived from the 

same point cloud, rendering this bias in knowledge useful. 

Regarding primitive extraction, the results for Temple 2 are 

shown in Table 4, Figure 7 and 8. Generally, the extracted shapes 

adequately represent the expected simplified geometry. In 

average for all classes, approximately 4% of the points do not fit 

the extracted primitives meaning that only a small number of 

points were excluded from the model as outliers. Such a low 

percentage is expected for noise-free point clouds acquired with 

laser scanning. It is observed that the most accurately extracted 

primitives relate to the classes that are easily differentiated and 

consist of many singular instances (e.g. “column”, “echinus”). 

Indeed, primitive extraction in these cases is equivalent to 

instance segmentation.  On the other hand, noisier classes or 

classes with more complex geometry with fine details and/or 

varying point density are more challenging (i.e. the “crepidoma”, 

the “floor” and the “cornice”) as shown in Figure 8. For these 

particular classes the default RANSAC parameters demonstrated 

good performance. For the classes “abacus”, “architrave”, 

“frieze” and “tympanum” the default values lead either to over-

segmentation or inadequate detection; thus manual parameter 

tuning was required, following the empirical rules described in 

Section 3.2 and considering the particular characteristics of each 

class i.e. minimum points belonging to each shape, average 

spacing and normal deviation. The achieved results in CGAL are 

very similar to the primitives attainable in CloudCompare (Figure 

8), demonstrating a general consistency in the number of detected 

shapes and outlier percentage (Table 4). To be mentioned that 

this was the best achieved results in CloudCompare, after manual 

parameter tuning for each class. 

Once the fitting parameters are retrieved, they can be used to 

automatically model geometric primitives in HBIM environment 

(Figure 9): a cylinder is represented by its center, a direction and 

a radius; a torus by the symmetry axis, a center and the major and 

minor radii; a plane is represented by its normal vector and the 

distance to the origin.  

 

 

Figure 6: Experiment B. The trained model of Temple 1 (Temple 

of Neptune) is used to inference labels on Temple 2 (Temple of 

Hephaestus). GT labels are used for evaluation. 

 

class (1) (2) (3) (4) (5) (6) (7) (8) (9) prec. recall F1 

(1) 445010 15772 1446 0 0 0 0 0 0 0.95 0.96 0.96 

(2) 17902 146777 119 1 0 0 0 0 0 0.90 0.89 0.90 

(3) 4305 162 1181043 2699 0 0 0 0 0 1.00 0.99 0.99 

(4) 0 0 4359 37566 3008 3 0 0 0 0.89 0.84 0.86 

(5) 0 0 0 1710 110763 6063 0 0 0 0.92 0.93 0.93 

(6) 0 0 1 0 6269 461947 6986 0 0 0.92 0.97 0.95 

(7) 0 0 0 0 0 33614 2135445 8668 25 0.98 0.98 0.98 

(8) 0 0 0 0 0 0 27336 1788426 3528 0.99 0.98 0.98 

(9) 0 0 0 0 0 0 0 15369 19947 0.85 0.56 0.68 

             

         Over. accuracy   0.98 
 

Table 2: Confusion matrix for experiment A: training and test sets are selected from Temple 2. 

 

class (1) (2) (3) (4) (5) (6) (7) (8) (9) prec. recall F1 

(1) 522753 8734 45875 0 0 0 0 0 0 0.86 0.91 0.88 

(2) 86826 172204 2740 0 0 0 0 0 0 0.95 0.66 0.78 

(3) 201 0 1344526 344 50174 79155 0 0 0 0.97 0.91 0.94 

(4) 0 0 0 0 2776 52718 0 0 0 0.00 0.00 0.00 

(5) 0 0 0 0 20284 133309 0 0 0 0.24 0.13 0.17 

(6) 0 0 0 0 12267 222177 346753 0 0 0.46 0.38 0.42 

(7) 0 0 0 0 0 144 1812298 939172 147 0.84 0.66 0.74 

(8) 0 0 0 0 0 0 0 2365496 7166 0.71 1.00 0.83 

(9) 0 0 0 0 0 0 0 49709 8255 0.53 0.14 0.22 

             

         Over. accuracy   0.78 
 

Table 3: Confusion matric for experiment B: the trained model of Temple 1 is transferred to Temple 2 to inference labels. 
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Figure 7. Isolated classes or instances corresponding to the identified primitives in CGAL. 

 

 
 

Figure 8. Isolated classes or instances corresponding to the identified primitives in CloudCompare. 

 

 

 CloudCompare CGAL 

class No. prim. inliers No. prim. inliers 
(1) 16 94.77% 7 91.89% 
(2) 1 96.65% 1 99.43% 
(3) 38 98.42% 40 99.92% 
(4) 38 98.01% 38 98.91% 
(5) 191 96.89% 191 96.95% 
(6) 13 97.66% 56 93.44% 
(7) 14 95.54% 20 97.03% 
(8) 13 96.35% 14 92.58% 
(9) 4 96.75% 3 98.22% 

Table 4: Number of detected primitives and percentage of inliers 

using CloudCompare and CGAL. 

 

 
Figure 9: Considered geometric primitives (cylinder, torus and 

plane) and their modelling parameters. 
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5. DISCUSSION AND CONCLUSIONS 

The suggested work for generating HBIM-friendly shapes relies 

on two main pillars: (i) supervised semantic segmentation of 

point clouds and (ii) automatic derivation of fitting parameters to 

create primitive shapes from identified classes or instances. Our 

framework provides an opportunity for understanding, 

interpretation and more complete visualisation of a point cloud, 

regardless of its acquisition method. Semantic segmentation 

refers to the assignment of a meaning to the 3D data 

discriminating the different elements. The detection and 

extraction of geometric primitives from the data discriminates the 

different entities and shapes of these elements. Per-point 

semantic labelling, in particular, can be very demanding and 

time-consuming due to the complexity of the architectural 

structures. However, for a successful segmentation, only a 

representative part of the dataset, approximately 25%, is required 

for the training, limiting the user’s intervention. Respectively, 

only a small number of geometric features, namely 10, is 

required, limiting the computational effort. The label 

transferability between similar case studies has given promising 

results. Indeed, high percentage scores are reached for the 

segmentation of most of the structural elements on the test set for 

Experiment 2. However, the two case studies are not identical 

and thus have different geometric characteristics that negatively 

affect the label inference in the test set.  

Regarding primitive extraction, the most critical step is the 

configuration of the RANSAC parameters. Its parameters cannot 

be easily predetermined and are to be adapted each time 

according to the given data in order to achieve satisfying results. 

Our implementation, based on the CGAL library, seems to give 

promising results allowing for automation in most of the classes. 

The successful derivation of fitting parameters to create shape 

primitives implies the isolation of each class or even instance 

belonging to a common mathematical model. As a result, the 

different elements of the analysed architecture, although 

composed of complex elements and details, are described by 

specific geometric parameters, enabling the modelling procedure 

in an HBIM environment. 
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