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ABSTRACT:  

Airborne LiDAR technology has become an essential tool in archaeology during the last two decades since it allows archaeologists to 

measure and map items or structures that would otherwise be hidden under vegetation. In order to detect and characterise the archaeological 

evidence, it is a common practice to extract accurate digital terrain models (DTM) by filtering out the vegetation from Airborne Laser 

Scanning (ALS) datasets. Although previous approaches have performed well in ALS filtration, they are still subject to several variables 

(flight height, forest cover, type of sensors utilised, etc.) and are frequently integrated into expensive commercial software or customised 

for specific locations. This study presents a workflow for treating ALS archaeological datasets using machine learning algorithms for both 

filtering the vegetation and detecting hidden structures. The workflow is applied to two different archaeological environments (in terms of 

structures, vegetation, landscape, point density), and results demonstrate that the pipeline is rapid and accurate, and the prediction model is 

transferable.  

 

 

1. INTRODUCTION 

The use of Airborne Laser Scanning (ALS) and Light Detection 

And Ranging (LiDAR) technologies is nowadays a well-

established practice for identifying and mapping archaeological 

evidence (Chen et al., 2017; Opitz, 2016; Zhang et al., 2018). 

The ability to filter the returning signal created by the hit 

vegetation makes it an essential instrument in areas with dense 

forest or shrub cover. At the same time, the rising of new point 

cloud classification methods to identify structures on the ground 

or separate surface and terrain data is offering various advantages 

to archaeologists to see through the foliage (Chen et al., 2017; 

Historic England, 2018; Štular and Lozić, 2020; Štular et al., 

2021). Numerous studies in the field use Digital Terrain Models 

(DTMs) to identify anomalies of archaeological interest at the 

topographical and geomorphological levels (Barbour et al., 2019; 

Thompson, 2020). However, the generation of an accurate DTM 

from LiDAR data relies on many factors, such as flight heigh, 

forest cover and density, used pulse, season conditions, terrain 

slope, etc. (Hyyppä et al., 2004). Consequently, the creation of a 

DTM becomes a complex procedure that requires numerous 

assumptions and decisions during the project planning, data 

acquisition and subsequent analytic workflow (Doneus et al., 

2020).  

 

1.2 Aim of the work 

The most requested output from a LiDAR survey in an 

archaeological context under vegetation is to map both 

archaeological elements above ground and anomalies of 

potential historical interest at ground level (i.e., shallow walls 

covered by vegetation). The task is challenging for different 

reasons: 

• dataset dimensions, generally spanning hectares and 

billions of points; 

• the possible presence of steep slopes; 

• the amount and type of vegetation that covers the 

archaeological areas; 

• the possible types of archaeological structures present under 

the vegetation.  

This work aims to outline an optimal, fast and transferable 

pipeline that works in different archaeological environments to 

distinguish vegetated and non-vegetated areas in LiDAR 

datasets. 

 

1.3 Datasets 

This study considers two different archaeological sites surveyed 

with UAV-based LiDAR sensor (RIEGL miniVUX-2 / 

miniVUX-3). The two sites are particularly complex in terms of 

extension, forest cover and terrain roughness:  

• San Martino ai Campi archaeological area (Riva del Garda, 

Trento, Italy) – Dataset_1: it is a complex, multiperiod 

settlement of military and religious activities dated from the 

late Iron Age to the Middle Ages (Bellosi et al., 2013). The 

alpine area is characterised by steep slopes, rocky walls, and 

dense forest cover, primarily of tall trees, located on high 

land. All these factors make automatic archaeological 

evidence recognition extremely challenging. The available 

LiDAR data occupies an area of ca 4 ha and features about 

500pt/sqm density. 

• Roselle archaeological area (Grosseto, Italy) – Dataset_2: the 

Etruscan and Roman city of Rusellae has been relatively well 

explored archaeologically, with a site history that spans the 

eighth/ninth centuries BC to the early twelfth century AD, 

with well-defined phases of foundation, elaboration, and 
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decline (Nicosia et Poggesi, 1998; Campana, 2017). Unlike 

the archaeological area of San Martino, Roselle is set in a 

more Mediterranean and hilly context, characterised by the 

presence of tall vegetation but also dense shrubbery, a 

characteristic that makes challenging the extraction of a free-

of-noise DTM. The available LiDAR data occupies an area 

of ca 800 ha and features approximately a 300 pt/sqm 

density. 

 

2. RELATED WORKS 

The processing and interpretation of aerial point clouds for 

archaeological research resulted in various methodologies 

tailored to the reference context, aiming to assess the 

archaeological potential of an area and map its elements (Doneus 

and Briese, 2011; Fernandez-Diaz et al., 2014; Doneus et al., 

2020). Most studies rely on visualisation techniques (VTs) such 

as hillshade or slope, generated from DTMs, to improve the 

interpretation of the archaeological areas (Grammer et al., 2017; 

Thompson, 2020). It is essential to specify that in the 

archaeological context, when a DTM is used to identify 

archaeological structures, then standing stones, walls, roads, 

canals, earthworks, and similar should overcome any filtering 

and be reflected in the final DTM (Doneus et al., 2020). Although 

a large body of algorithms has been proposed for ALS filtering 

(Pfeifer et al., 2014; Chen et al., 2017), the DTM generation for 

archaeological purposes itself is, most of the time, an “unspoken” 

topic. Indeed, in most articles, this process is carried out using 

licensed software and a series of manual filtering operations. 

However, as Doneus et al. (2020) pointed out, ground point 

filtering within commercial software is a black-box, and the risk 

of removing archaeological information is significant. 

Different researchers have already focused on archaeological 

evidence detection at a raster/2D level (Figure 1), adopting 

machine learning (Freeland et al., 2016; Guyot et al., 2018; 

Niculiță, 2020; Rom et al., 2020) and deep learning (Albrecht et 

al., 2019; Trier et al., 2021) strategies, whereas only a few studies 

aimed at automatic filtering/segmenting point clouds (Hu and 

Yuan, 2016; Geveart et al., 2018; Bulatov et al., 2021).  

 

Figure 1. A typical pipeline for processing ALS datasets. 

The filtered 2.5D DTM is used with visualisation techniques 

(VTs) and machine learning (ML) methods to detect 

archaeological evidence. 

 

Contrary to previous works, this paper proposes a pipeline 

(Figure 2) based on artificial intelligence (AI) algorithms for 

both filtering out the vegetation and detecting the archaeological 

structures directly processing LiDAR point clouds. 

Generalisation and transferability capabilities are also evaluated. 

Following this state-of-the-art section, the article describes the 

proposed approach for processing archaeological ALS datasets 

(Section 3), reporting the experiments and outcomes for two 

separate datasets (Section 4). Finally, a discussion is given 

summarising the acquired knowledge (Section 5). 

 

3. METHODOLOGY 

The developed pipeline for processing and interpreting 

archaeological ALS datasets (Figure 2) can be summarised in 

three main steps:  

1. multi-level multi-resolution (MLMR) point cloud semantic 

segmentation (Section 3.1); 

2. bare-ground DTM generation; 

3. VTs for anomaly detection (Section 3.2). 

 

 
Figure 2. The proposed MLMR pipeline for processing an 

archaeological ALS dataset and extract hidden man-made 

structures under vegetation.  

 

3.1 MLMR semantic segmentation 

The 3D dataset is firstly classified using a multi-level multi-

resolution (MLMR) procedure (Teruggi et al., 2020), involving 

the generation of semantic segmentation models at two different 

levels of geometric resolution. The first level aims at filtering out 

the vegetation from the rest of the datasets. The second level 

focuses on the identification of the archaeological structures, and 

it is typically performed at a higher resolution. The predictive 

models are developed for both levels by training a Random 

Forest (RF) algorithm (Breinman, 2001) with reduced manually 

annotated portions of the datasets, including known elements and 

the most discriminative features. The predictive models are then 

validated on a manually classified portion of the dataset 

(validation set), using standard machine learning metrics and 

finally used to extend the classification to the whole dataset 

(Figure 3). In both levels, three main groups of features are used: 

LiDAR features, geometric features and heigh-based features. 

The geometric features selected for the task are, in particular, 

linearity, planarity, sphericity, surface variation, and verticality 

extracted in a multi-scale approach (Weinmann et al., 2015). For 

the purpose of the classification, the introduction of accurate 

heigh-based features is fundamental to recognise and correctly 

classify structures above and at ground level.
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Figure 3. Training, validation and test sets for Dataset_1 (San Martino ai Campi archaeological area). 

 

Among these features, the heigh-above and heigh-below are 

particularly effective in distinguishing between structure and 

ground classes. In addition, it is beneficial the calculation of the 

absolute distance between the point cloud and a mesh (C2M), 

representing an approximation of the bare ground. The last one 

is generated using the Cloth Simulation Filter (CSF) plugin 

(Zhang et al., 2016) within the CloudCompare software. The 

CSF algorithm is chosen as it allows the selection of different 

rigidness parameters according to the slope degrees. 

Between the first (L1) and the second (L2) level of the 

classification procedure, the vegetation class is furtherly checked 

to verify the presence of possible “lost” structures and to correct 

the point cloud classification accordingly. Geometric features 

such as linearity and surface variation are calculated to 

accomplish this task. 

After the second classification level is accomplished, a DTM is 

generated using the class ground, interpolating the minimum 

values on the z-axis. The DTM resolution can vary according to 

the aims of the subsequent research.  

 

3.2 Visualisation techniques (VTs) for anomaly detection 

According to the study’s needs, the obtained DTM is imported 

into a GIS environment to benefit from different VTs and 

highlight several features. For example, the use of shade or slope 

functions aid in the detection of previously unclassified 

structures or anomalies which appear only at the micro-relief 

level. Moreover, it is also possible to adopt automated solutions 

based on convolutional neural networks (CNN) for object 

detections (Kazimi et al., 2018; Verschoof‐van der Vaart and 

Lambers, 2021). The network’s output would be a probability 

map for ground-level anomalies, helpful for the archaeologists 

because it allows them to go on-site and verify the presence of 

archaeological evidence starting from pre-acquired knowledge.  

 

4. EXPERIMENTS AND RESULTS 

4.1 San Martino ai Campi - Dataset_1 

The pipeline above described was firstly tested on Dataset_1, i.e. 

an archaeological area located in an alpine context. This area is 

distinguished by the presence of mainly narrow (from 0.4m to 

1m wide) and linear archaeological constructions, with the 

notable exception of the church’s apse and the buttress walls 

(circular and more than 1m wide). Many of these elements stand 

tall above the ground level, but a significant number, especially 

in the south-eastern area, are preserved only for a few 

centimetres above the ground surface. Therefore, within the first 

classification level (L1), at 0.5m resolution, geometric features 

were calculated at large radii in order to differentiate the 

vegetation from the rest of the dataset. At the second level (L2) 

instead, features at smaller radii were used to discriminate more 

precisely between ground and structure classes, working at a 

higher resolution (0.2m). The MLMR steps are summarised in 

Figure 4. The detection of shallow man-made structures 

remained a complex task to achieve, and the presence of many 

rocks at ground level (Figure 5c) added a layer of complexity to 

the procedure. Therefore, the accuracy results achieved for the 

class structure are lower if compared to ground and vegetation 

(Table 1). 

 

 L1 (OA = 98.42%) L2 (OA = 93.72%) 

(%) Non-veg. Veg. Ground Structure 

Prec. 96.38 98.91 95.04 83.97 

Rec.  95.60 99.11 97.78 69.53 

F1 95.99 99.01 96.39 76.07 

Table 1. Overall Accuracy (OA), Precision, Recall and 

F1-score metrics achieved for Dataset_1 at the first (L1) 

and second (L2) levels of semantic segmentation. 
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Figure 4. Supervised segmentation approach using a Random Forest (RF) algorithm at two different level of resolution (L1, L2): 

Dataset_1 (San Martino ai Campi archaeological area).  

 

Figure 5. Final semantic segmentation results for Dataset_1 (San Martino ai Campi archaeological area). 

However, through an on-field verification, the classification 

results prove to be successful in highlighting portions of 

structures which were hidden under the vegetation (Figure 5b).  

From the final ground class, a DTM at 0.2m resolution was 

extracted. The subsequent application of different VTs has 

finally highlighted the presence of a high-plain region with an 

almost regular rectangular shape in the northeast area (Figure 6). 

The detection of linear landforms in this area could possibly hint 

towards the existence of buried structures. The semantic 

segmentation results furtherly confirm this observation. Indeed, 

as shown in Figure 6, in the highlighted red area, the algorithm 

has actually identified some structures (see purple patches).   

 

4.2 Roselle Archaeological Area - Dataset_2 

Dataset_2 depicts a different vegetated area with several 

archaeological structures, especially near the Roman forum. 

Most of these structures are narrow walls (0.7m to 1m wide), 

high or low above ground level, except for the city walls and 

Roman Amphitheatre, which have a more significant structure 

(the Roman cavea reach 6/7m in width). Instead, the remaining 

land is thickly vegetated, with only a few archaeological relics 

visible above ground. However, it is well known that the area is 

characterised by numerous Etruscan burial mounds (Campana, 

2017). In this case, from a structural point of view, burial mounds 

can be divided into two categories: excavated and not excavated. 

The latter generally have a circular wall, without a cover and with 

an opening (the access corridor), showing a concavity in the data 

(Figure 8), whereas unexcavated mounds have the typical convex 

shape (Figure 9). 

The two models (L1, L2) trained on Dataset_1 were directly 

applied to Dataset_2 to evaluate how knowledge from a different 

archaeological location could be directly used to predict heritage 

evidences in other datasets (Figure 7). The generalisation 

produced fairly good quality results (Table 2), even if the 

discrimination of the low-vegetation from the ground proved to 

be a challenging task. Despite the high accuracy achieved at the 

first level of segmentation (L1), a portion of low-vegetation that 

erroneously remained in the class non-vegetation resulted in 

some false positive structure recognition at L2.
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Figure 6. VTs to facilitate the study of the DTM for Dataset_1: (a) shaded DTM; (b) height map with previously segmented structures, 

now divided into categories of interest. 

In order to rapidly improve the L2 results, some small but 

significant portions of Dataset_2 were therefore included in the 

training set. The combined training (T1+2) resulted in an almost 

10% improvement in the F1-scores for the ground class, as 

shown in Table 2. 

 

 

T1 T(1+2) 

L1 

(OA = 94.87%) 

L2 

(OA = 96.58 %) 

L2 

(OA = 96.58 %) 

(%) Non-veg. Veg. Ground Struct. Ground Struct. 

Prec. 93.97 95.65 97.24 81.77 97.44 87.64 

Rec. 94.92 94.82 99.18 56.71 99.46 65.23 

F1 94.44 95.23 98.2 66.98 98.44 76.44 

Table 2. Results achieved for Dataset_2 at the first (L1) and 

second (L2) levels of segmentation/generalisation. In T1, the 

training set is equal to Dataset_1, while in T(1+2), T1 is integrated 

with some portion of Dataset_2. 

 

As for the previous experiment, the finally extracted ground was 

used to generate a DTM. Because of the presence of some noise 

in the point cloud (low-vegetation remaining), a resolution of 

0.5m was chosen as the best compromise for a clean DTM 

generation. Different VTs were then adopted for enhancing the 

most useful terrain characteristics to identify the previously 

mentioned burial mounds. 

In particular, using the Relief Visualisation Toolbox (RVT) 

(Zakšek et al., 2011; Kokalj and Somrak, 2019) within the QGIS 

environment (QGIS Development Team, 2022), a Simplified 

Local Relief Model (SLRM) was extracted from the DTM. In 

this way, we could enhance the visibility of small-scale surface 

variations. In particular, two separate image outputs were 

produced starting from the SLRM: (i) a shaded image which 

facilitates the visualisation of local relief (Figure 8) and (ii) a 

combination of hillshaded terrain, slope, openness, and sky view 

factor suitable for the detection of “concave evidence” which can 

be interpreted as an excavated burial mound (Figure 9). As future 

work, we aim to start from these image enhancement results to 

train e.g. a RCNN network (Girshick et al., 2014) to extend the 

object detection to the whole area of Roselle.  

 

 
Figure 7. Classification results achieved generalising knowledge acquired in Dataset_1 (San Martino ai Campi archaeological area) to 

Dataset_2 (Roselle archaeological area). 
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Figure 8. On the left, the 3D point cloud of a typical concave (excavated) mound. On the right, the raster DTM, visualised with an 

hillshaded filter to enhance the excavated mounds (in yellow brackets). 

 

Figure 9. On the left, the 3D point cloud of a not excavated mound. On the right, the raster DTM, visualised with a combination of 

hillshaded terrain, slope, openness, and sky view factor to highlight the not excavated mounds (in red brackets).  

 

5. CONCLUSIONS 

The use of machine learning algorithms demonstrated significant 

advantages in processing large LiDAR datasets, facilitating the 

otherwise difficult manual identification of hidden heritage 

evidence, saving time in the process execution 

The nature of the investigated territories, densely forested or 

shrub-covered, as well as the presence of significant steep slopes, 

made terrain filtering and automatic recognition tasks of 

considerable complexity. In this context, the proposed pipeline 

was designed in such a way that it could spot for archaeological 

artifacts both above and below ground in multiple steps and 

working entirely on the LiDAR point cloud. Moreover, the 

MLMR approach is designed to facilitate and speed-up the 

computation process (Teruggi et al., 2020): once the features are 

extracted, the time for training and testing is in the range of few 

minutes.  

Applying the pipeline on both datasets allowed to verify the 

ability of the proposed methodology, highlighting both pros and 

critical issues. 

Pros: 

• Fast processing of large datasets through a supervised 

machine learning approach.  

• Accurate vegetation filtering in complex environments. 

• Detection and mapping of above-ground structures directly 

on the 3D point cloud. 

• Generation of high-resolution DTMs for anomalies and 

shallow structures detection. 

• Output easily transferrable to a GIS environment for further 

data processing. 

• Possibility to generalise and transfer the classification 

models to different environments. 

Critical issues: 
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• The presence of low-vegetation “noise” can induce the false 

positive detection of structures. 

• Steep slopes and rocks at ground level can be easily 

misclassified as structures. 

• The geometric features need to be adapted to the context (i.e., 

wide walls need big-scale features). 

The implementation of a CNN for anomaly detection will 

represent the last stage of our proposed pipeline, whose goal is 

to have an accurate, rapid and adaptive solution, based on open-

source tools, for archaeological evidence detection and mapping 

in complex environments. 
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