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ABSTRACT: 
 
Recent years have seen the investigation and 3D documentation of architectural heritage becoming more accessible. The digitalization 
process could be more efficient when artificial intelligence is used in processing point cloud models. This article investigates the use 
of machine learning classification algorithms and a Multi-Level Multi-Resolution (MLMR) methodology to classify two point cloud 
projects in China, Nanchan Ssu, and Fokuang Ssu. Performances of multiple algorithms and solutions are compared, proving the 
applicability of MLMR on the point clouds. The practices pointed out the significance of corresponding features to classification rules 
and a sound logic in designing a systematic label tree with hierarchical semantic meanings. 
 

1. INTRODUCTION 

1.1 Point cloud and classification in cultural heritage 

Nowadays, laser scanner and photogrammetric techniques are 
more than consolidated and are the two most used survey 
methodologies in the architectural and environmental worlds. 
The products of such survey activities are primarily 3D point 
clouds containing all the geometric information of the surveyed 
objects.  
A Point cloud is a collection of elementary geometrical 
primitives representing the shape, size, position and orientation 
of objects in space. It is a set of points where each is represented 
by three coordinates in a cartesian coordinate system (x, y, z); it 
may combine colours, reflectance, intensity, normals and other 
information depending on the instrument used. Simple and 
powerful as they are, point clouds suit best the documentation 
works in the architectural field, especially when it comes to 
Cultural Heritage (CH). They are capable of collecting and 
representing large and complicate objects with high geometric 
accuracy. 
To use the geometric information, it is usually necessary to 
perform a 3D modelling post-processing. This mostly consists in 
manual and time-consuming operations. Furthermore, these 
operations reduce the metric quality of the data as the 
simplification is not always dictated by the purpose as by the 
limitation of the software and it is subjective depending on the 
technical skills and from the personal interpretation of the 
operators. A solution to minimize time and costs of these 
modelling processes, is that of using the point clouds directly 
inside the production process. Recent research activities have 
been focusing on developing strategies that allow using these 
point models as real triangular meshes. The first step would be 
that of assigning semantic meaning to each point through their 
classification into predetermined classes.  
Recent advancements in Artificial Intelligence (AI) (Machine 
Learning (ML) and Deep Learning (DL) methods) provide a 
solution to manage point cloud dataset in a more rational and 
semi-automatic way. Algorithms were developed to classify the 
datasets, distributing semantic meaning to each segment. Indeed, 
the labour on defining each item one by one can be largely saved. 
Actual applications of different techniques have varying 

performances that depends on the scenes analysed. The whole 
process requires improvements and greater generalization. Their 
potential has already been proofed in many other fields such as 
in natural language processing and image classification 
(Computer Vision), like AlexNet (Krizhevsky et al., 2012) and 
ResNet (He et al., 2016). 
While the production of 3D point cloud has become increasingly 
convenient, when results would become precise and reliable, AI 
is expected to play an important role dealing with trillions of 
points (samples) collected from a complicated real scene.  
 
1.2 Aim and content 

The work performs and evaluates the automatic classification 
method based on the Multi-Level Multi-Resolution (MLMR) 
approach combined with ML algorithms.  
The choice is to focalize the attention on Chinese Cultural 
Heritage, especially on wooden structures. Such structures are 
exposed with a high level of complexity, credited with value in 
different aesthetic pursuits. The geometrical attributes (diameter, 
surface roughness, etc) of most architectural elements vary from 
geographical surroundings and dynasties and are dissimilar from 
the counterpart of European ones. Two ancient wooden structures 
have been selected to test the validity of the approach: the great 
hall of Nanchan Ssu (China), the East Great Hall of Fokuang Ssu 
(China). They have different scale but close location and similar 
architectural styles. The comparison can be helpful on discussing 
relevant topics of classification. 
 

2. STATE OF THE ART 

Segmentation refers to the action of grouping points in subsets 
(commonly called segments) characterized by sharing one or 
more characteristics (geometric, radiometric, …). As 
summarized by Grilli et al. (2017), segmentation methods could 
be grouped into: edge-based, region growing, model fitting, 
hybrid method and AI (ML and DL) applications. 
AI methods either rely on a set of provided training examples 
with manually annotated labels to learn to perform the 
classification tasks (supervised learning), or, seeks to build 
models that automatically understand how the data are organized 
(unsupervised learning). These methods are generally robust 
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against noise and occlusions, but require a large amount of 
training data and high computing power to run the algorithm. 
Classification means to assign points to specific classes. These 
classes as prediction results are not linearly continuous and are 
indicated with semantic labels previously defined. The methods, 
using specific algorithms, can be sorted into supervised and 
unsupervised approach. 
In a supervised ML approach, including support vector machines 
(SVM) (Oses et al., 2014), naive bayes (Mathias et al., 2011) and 
random forest (RF) (Ho, 1995, Breiman et al., 2001), semantic 
categories are learned from a dataset of manually annotated data. 
The trained model is then used to spread the semantic 
classification to the entire dataset. Normally, it is not mandatory 
to provide a large amount of annotated data to train the model. 
More traditional methods, instead, typically relies on a range of 
hand-crafted shape descriptors, as feature vectors, from which to 
learn the classification pattern. As summarized by Griffiths and 
Boehm (2019) these descriptors include: local surface patches, 
spin images, intrinsic shape signatures, heat kernel signatures. 
Wang et al. (2015) discussed multi-scale and hierarchical feature 
extraction methods. While, Grilli et al. (2019) discussed which 
are the most relevant geometric covariance features to be used 
during the application of the algorithm. 
Unsupervised approaches differ from supervised learning 
approaches, since features themselves are learned as part of the 
training process. Big data in recent years has made these 
methodologies, especially DL, accessible and popular. Among 
many others, convolutional neural networks (CNN), constitute 
the most representative approach in DL. Developed for 2D image 
analysis, it has proved really effective in different fields, e.g., 
object detection and model matching in street view scenario 
(Coenen et al., 2019). The progress made with 2D images acts as 
a foundation upon which to develop many 3D learning 
algorithms. Liu et al. (2019), in their survey on DL applications, 
summarized the main models for feature learning with raw point 
cloud as input. They were generally divided into point-based and 
tree-based approaches. The first directly takes the raw point cloud 
as the input for training the DL net. The second, firstly employs 
a k-dimensional tree (Kd-tree) structure to transform the point 
cloud in a regular representation and then feeds them into DL 
models. 
 
2.1 Classification in CH  

When confronting with a specific point cloud model in CH it is 
mandatory to meet the specific needs that particular heritage 
poses. Different classification techniques perform very 
differently towards singular unique objects with varying mass, 
material, coloristic appearance, surface variation etc. 
A 2.5D approach utilizes features and labels from 2D images, 
projecting them onto 3D models to perform the classification. 
Grilli et al. (2018) in their work presented a classification 
approach that works with 2D data as input ("texture-based" 
approach). Optimized models, orthoimages ad UV maps were 
created for the test cases under study. Firstly, they performed the 
classification on orthoimages or the UV maps, and then they 
projected the 2D classification results onto the 3D objects.  
Murtiyoso et al. (2020) proposed an algorithmic approach 
packaged into a toolbox created inside the MATLAB 
environment hosting all the codes and functions under one 
project: HERitAge by point CLoud procESsing for Matlab 
(M_HERACLES). The general workflow performs segmentation 
from the scale of a historical neighbourhood up to that of the 
architectural element. Firstly, the toolbox performs the 
segmentation from the scale level of a neighbourhood to that of 
individual buildings using GIS shapefile data to assist the process. 
Afterwards, it performs the segmentation from a building’s scale 

level to that of architectural elements like pillars and beams, 
utilizing several Euclidean geometry-based rules and a slicing 
approach to identify clusters. 
AI approaches that directly work on the 3D CH point model 
started to appear only in recent years.  Grilli et al. (2019) 
presented a ML approach that works directly on point clouds. 
Based on the use of the RF algorithm the classification process 
consists in providing a set of manually labelled samples together 
with computed geometric covariance features to train the model. 
Afterwards, the classification is spread to the whole dataset. 
Starting from the approach presented by Grilli et al., Teruggi et 
al. (2020) proposed a MLMR approach tested on two large scale 
datasets: the Pomposa Abbey and Milan Cathedral, both in Italy. 
The full resolution dataset is subsampled and big macro-elements 
are classified training a specific RF classifier on a low resolution 
version of the point model. The result is then back interpolated 
on a higher resolution point cloud so that elements requiring high 
geometric accuracy can be subdivided. The process iterates up to 
the classification of single high detail architectural elements 
using the full resolution dataset (initial resolution). In this 
approach, each steps require to train a specific RF model, but, 
small amount of labelled data is required and the speed of training 
and classification proved effective. It hierarchically splits the 
data in sub-classes while the geometric details increase. 
Comparing to the Non-hierarchical classification, this method 
proved to be computationally economic, and allowed to achieve 
higher accuracy.  
Pierdicca et al. (2020) presented a deep learning method, 
dynamic graph convolutional neural network (DGCNN), that for 
the first time supports features like normal and HSV colours 
coupled with the x, y, z coordinates of the points. The approach 
proved to be effective and has been applied to ArCH 
(Architectural Cultural Heritage) dataset. Limitations lie in the 
fact that the number of classes must be set a priori and must be 
uniform among all models in the used dataset for training. Up to 
today there doesn’t exist an adequate size dataset of labelled 
example. 
 

3. CASE STUDIES  

The Nanchan Ssu (NCS) and the Fokuang Ssu (FKS), together 
with other temples and monasteries in Wutai Monti in the Middle 
of China, constitute a UNESCO site which have been inserted in 
the World Heritage List in 2009. They date back to the late VIII, 
mid-VIII century. Both of the cases were surveyed with TLS 
(Trimble TX8) and UAV (DJI Phantom 4 Pro, DJI FC6310) by 
the members of the Archaeology Centre for Architecture, 
Settlement and Landscape (ACASL), Tianjin University, China. 
 
3.1 The great hall of  Nanchan Ssu 

NCS (Figure 1) is located in Lijiazhuang, south-east of Wutai in 
Shanxi Province. The great hall built in the Tang dynasty on a 
1.2m high platform among the complex, is known as the earliest 
existing wooden structure in China. The earliest recording 
written under the west beam of the central bay proves that hall 
was reconstructed in 782 AD. 
It is a one floor building, 9.2 m in high, with a rectangular 
(10.5x11.7 m) shaped floor plan divided in 9 bays marked by 
three rows. An altar of 0.7 m was built in the central bay, above 
which originally stood 17 painted statues (of which 14 statues 
remains today). The roof is supported by 10 wooden pillars, 
sealed with brick walls in which two wooden window and a door 
have been opened. During the intervention in the 80s, two 
additional poles were placed inside to support the beams. 
The temple was surveyed in 2017. The dataset of the great hall 
consists of a point cloud project produced from 78 scans stations 
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(13 inside the building). The entire dataset contains 1026.4 
million points, was subsampled to an average and uniform 
resolution of 5mm (Table 1). 
 

 
Figure 1. The front façade of the great hall of NCS. 

 
3.2 The east great hall of Fokuang Ssu 

FKS (Figure 2) is located in the east-north of Wutai County, 
Shanxi province, 6 kilometers to the Doucun town, under the 
mountain of Fokuang (the west foot of south part of Wutai 
mount). From the inscription of the stone column in front of the 
great hall, the founding of the east great hall dates back to 857 
AD. 
 

 
Figure 2. The front façade of the east great hall of FKS. 

 
The east great hall was built on a 1.2 m high platform. A single 
level construction 15.4 m high, with a rectangular (34x17.66 m) 
floor plan divided in 21 bays marked by three rows. The 0.9 m 
high altar was carved from the stone mountain body under the 
five central bays, above which stands 35 painted tall statues that 
reach from 1.95 to 5.3m in height. In the surrounding bays it is 
possible to find other 296 statues. The roof is supported by 32 
wood pillars, sealed with brick wall with 4 wooden windows and 
5 doors. In recent intervention, two additional poles were added 
to support the rear corners of the roof. The elements of the 
‘Dougong’ (bracket sets) that hold up the roof have a cross 
section measuring 0.21 x 0.3 m, stretching the roof out from the 
main body of the hall of about 4 meters.  
It is one of the earliest architectures above ground that remains, 
of great value to the Chinese nation and the East Asian cultural 
zone of architecture.  
The temple was surveyed several times from 2015 to 2020. The 
dataset of the east great hall is obtained from a point cloud project 
of 2372.1 million points, resulted from 179 scans, among which 
51 are interior scans. Due to the fact that the data acquisition, the 
terrestrial laser scan (TLS), is highly limited inside this project, 
especially within the roof structure, the used dataset is 

subsampled into a mean 30 mm resolution one, containing 24.3 
million points (Table 1). 
 
 

Scene Classes 
Points 
(mil) 

Mean 
Resol. 
(mm) 

Subsampled 
(mm) 

NCS 5 1026.4 15 15-60 

FKS 16 2372.1 30 30-120 

Table 1. Summary of 3d data acquisition and process. 
 

4. METHODOLOGY 

The projects under documentation features very large dimensions. 
They are rich in details and have a high variety of architectural 
elements. The complexity and uniqueness of the two buildings 
(NCS and FKS) make the unsupervised classification approach, 
especially the DL one, not applicable. It would be difficult and 
time consuming to prepare enough representative samples on 
which the model is trained. Additionally, the condition is the 
same in the non-hierarchical ML classification approach; the 
processing of such huge datasets requires large computational 
resources both to extract the necessary geometric feature for 
training and to predict on the whole dataset. Furthermore, a non-
hierarchical classification with large number of semantic classes 
would easily results into low accuracy. 
In this work a MLMR approach, as presented by Teruggi et al. 
(2020), is applied to deal with two Chinese CH architectures. The 
result was compared with that of non-hierarchical approach. In 
the meantime, machine learning algorithm decision tree (DT) and 
RF were tested. 
In a MLMR approach, a set of multi-layered semantic classes 
organized into a tree-like cornice is designed firstly. Each class 
that defines macro-architectonic elements will be subdivided into 
classes that can better describe every portion of such objects. In 
this way the classification work is distributed to different levels, 
where corresponding and relatively lower resolution diminishes 
the burden on extraction of geometric features and training. The 
classification results will be back interpolated to the same portion 
of point cloud at higher resolution that depends on the amount of 
geometric detail of such level. The segments allow to classify and 
interpolate the whole dataset iteratively, until specific portions 
reach full-resolution. Comparing to other common classification 
solutions, MLMR approach resulted to be more accurate and 
computationally efficient for big scale huge datasets. 
A DT, as a ML classifier algorithm, is a tree-like model of 
decisions and possible consequences. It iteratively divides and 
conquers multi-class classification tasks. It calculates the 
Entropy or Gini impurity, which represents the probability of 
wrong classification from feature, of all features to obtain 
information gain at each step. The model risks of overfitting by 
growing deep with more features, which proper pruning can 
avoid in a certain degree. RF is an ensemble learning method. It 
constructs a multitude of decision trees as base learners; the RF 
model combines the decision of all trees. RF model surpasses DT 
model on overfitting. For each joint of every individual tree, 
decision isn’t made from the feature with best information gain, 
but from the best one of a randomly chosen subset of m features, 
m is usually much less than the amount of all the features. In 
addition, it takes a bootstrap sampling strategy to generate 
sampling trainsets and use them for training the base learners. 
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4.1 The great hall of Nanchan Ssu 

 
Figure 3. Classes of the point cloud for NCS project. 

 
Considering the monitoring needs and the original point cloud 
resolution and quality, the classification of the great hall of 
Nanchan Ssu is subdivided into three different levels (Figure 3). 
The first level refers to the basic framework of the hall, dividing 
the whole dataset into: roof, support, statue and ground. To 
recognize these categories, the classification is performed on a 60 
mm resolution version of the entire dataset. The second level 
deepens these categories. The roof part is divided into tile set and 
truss. Support category comprises pillars, windows and wall 
subsets. The ground is divided into altar, platform, steps and earth. 
At this level, all elements are processed from a 30mm resolution 
subsampled point cloud. The third level classification is 
performed to classify the truss into longitudinal, transversal and 
diagonal elements. The ML RF classifier used needs covariance 
geometric features to distinguish among elements. Functions in 
software CloudCompare are used to compute such features. 
Those in use in this project contains roughness, anisotropy, 
planarity, linearity, surface variation, sphericity, verticality, Z 
coordinates, and normals in X and Y directions. 
The visualization of geometric features reflects correlations with 
different elements. Vertical elements are distinguished from the 
horizontal ones (verticality) , cylindrical from the planar ones 
(sphericity)  and surfaces composed of different patterns can be 
distinguished by roughness. 

 
Figure 4. Classification result at level 1 of NCS. 

 
 Roof Wall Statue Ground WGT. 

Average 
PREC. 1.0 0.97 0.77 0.99 0.97 

RECALL 1.0 0.78 0.97 0.99 0.96 

F1 1.0 0.86 0.86 0.99 0.96 

Table 2. Classification metrics at level 1 for NCS. 

The first level of classification consists of 428,963 points, of 
which 78,655 have been manually annotated to be used as train 
set and 77,663 as evaluation set. The training of the model 
produced good results with weighted average of F1 score up to 
0.96 (Table 2). Spreading the classification to the whole dataset, 
up to approximately 22% of points under the supports category 
were mis-classified as statues.  
From Figure 4 it can be seen that around the corner of the wall, 
where pillars are partly exposed, similar anisotropy of the statue 
can be attributed lowering classification accuracy. Possibly 
because the algorithm generated a feature importance of 
anisotropy (at radius of 30 mm) up to 0.072, ranking only below 
that of the Z coordinates. 
 

 
Figure 5. Classification result at level 2 in NCS. 

 
Second level of classification on roof, wall and ground achieved 
satisfying results (Figure 5), with F1 score up to 0.99, 0.93, 0.99 
respectively. When classifying the ground and the wall, mistakes 
can be seen mainly on labels attributed with fewer points, 
primarily when the trainset cannot provide enough points with 
representative geometric features. 
 

 
 

Figure 6. Results for level 3 classification on the truss of the great 
hall of NCS.  Normals in x direction (left) and classification 
labels (right). 
 
In classification level 3, the most critical point lies in the 
similarity on geometric features of points on the wooden 
elements of truss. This resulted in errors when attributing label to 
each point. Classification experiments showed that, connections 
between elements could not be correctly classified when the 
model for training is provided only the geometric covariance 
features at various radii. It is impossible to distinguish among 
points from similar and interweaving architectural elements. 
In terms of component orientation, points may be assigned with 
different categories. It is necessary to enrich the geometric 
features array with normals computed in x and y directions with 
a radius of 60 mm (Figure 6). Scores upon the evaluation set 
achieved weighted average F1 score of 0.87 and generalized well 
on the whole dataset. 
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4.2 The east great hall of Fokuang Ssu 

 
Figure 7. Classes of the point cloud for FKS project. 

 
Considering the monitoring needs and the original point cloud 
resolution and quality, the classification of the great hall is 
subdivided into three different levels (Figure 7). 
The first level refers to the basic framework of the hall, dividing 
the whole dataset into: roof, support, ceremonial object and 
ground. To recognize these categories, the classification is 
performed at a 100 mm resolution. 
The second level is aimed to deepen the categories. Especially 
for the roof part, which is divided into tile set, truss, ceiling. 
Under the category of supports are comprised wall, thin wall, 
pillar, opening and fence. The ceremonial objects are divided into 
statue and stele. In this level, all elements are processed at a 
60mm resolution. 
The geometric features in use in this project contains roughness, 
anisotropy, planarity, linearity, surface variation, sphericity, 
verticality, Z coordinates. these covariance features show 
satisfying correlations with different elements. 
 

 
Figure 8.  Classification result at level 1 for the east great hall in 
FKS. 
 

 Roof Support Ceremonial Ground WGT. 
Average 

PREC. 0.99 0.96 0.85 0.98 0.97 

RECALL 1.0 0.84 0.91 0.96 0.97 

F1 0.99 0.90 0.88 0.97 0.97 

Table 3. Classification metrics at level 1 for FKS. 
 
Classification level one consists of 624,049 points, with 51,028 
points manually annotated as trainset. The training model tested 
on an evaluation set of 57,868 points has a satisfactory result. 
Nonetheless, since the ground truth roof category contains 
400,946 points, taking up 2/3 of the dataset, the classification 
model turns to give Z coordinates or verticality a high weight, 
considering points under other categories 5.8 m above ground as 

tolerable noise. It resulted into much mis-classification with the 
tall nimbus of the statue of Buddha (Figure 8). The problem is 
solved by adjusting the trainsets with more points that cover the 
nimbus. The result is then satisfying with F1 score up to 0.97 
(Table 3). 

  
Figure 9. Classification result at level 2 on roof for FKS. 

 
 Tile set Upper Truss Ceiling Lower Truss WGT. Average 

PREC. 0.94 0.92 0.92 0.87 0.92 

RECALL 0.92 0.82 0.96 0.93 0.92 

F1 0.93 0.87 0.94 0.90 0.92 

Table 4. Classification metrics at level 2 for FKS. 
 
Classification level two (Figure 9) on the roof achieved 0.92 on 
F1 score (Table 4), the result shows clearly how the roof structure 
is composed: the whole edifice is covered with tile-sets, below 
which the wooden ceiling visually separated the truss. 
Classification  level three is aimed at classifying this last element. 
Some different sets of classes were tested to see if they improve 
the results (Figure 10), without adding normals in the X and Y 
direction as a feature to the dataset. The first trial classified 
elements from transversal, longitudinal, inclined ones and joints. 
It achieved 78% of precision on the evaluation set but, when 
spread to the whole dataset, the prediction didn’t work well on 
defining elements across the bracket sets. The second, firstly 
separated upper truss from the lower one, classification result 
reaches 76% and 82% of precision, for the upper and lower truss. 
The upper part of the truss achieved better results at a global 
scene. Joints still get a high recall score.  
It should be noted that classification rules should be coherent 
with the preparation of the feature and that the category should 
have a well thought structure. Therefore, when classifying only 
longitudinal, transversal, diagonal elements, with normals in X 
and Y direction computed, the result is visually clearer. It 
managed to classify the elements in X and Y direction, avoiding 
the confusion of prediction following a constructional way. Even 
so, the result still has a lot of confusion on classifying thin purlins 
around the border of the truss and points around the junctions of 
wooden elements; many of the longitudinal purlins were assigned 
to the category of transversal elements. With dataset of higher 
resolution and quality, better classification could be performed to 
define these elements. 
The classification performed on the supports at 30 mm resolution 
datasets achieved F1 score of 0.86. Pillars (including those partly 
laid in the wall), walls, slab, ceiling, windows and doors are 
distinguished. Some horizontal reinforce rods behind the door 
slabs was mis-classified sharing the approximate surface of the 
wall. 
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Figure 10.  FKS truss classification tests in the 3rd MLMR classification level.

 
5. DISCUSSION 

There are ways to mathematically evaluate the performance of 
the classification model. In most cases the accuracy gives the 
direct judgement of the model. Additionally, the confusion 
matrix, Precision, Recall, F1 score and Intersection over Union 
can be calculated. In every project, a manually annotated 
evaluation set collected from similar location to the train set is 
provided to evaluate the performance of the model. The visual 
presentation of the labels is most intuitive. In any case, it 
indicates mis-classified positions, where points usually share 
similar geometric feature values with the related mistaken labels. 
Observing the visual presentation helps in improving trainsets 
and choosing features. 
 
5.1 Approaches 

DT is simple and readable; the classification decision is 
represented clearly in the only tree generated by training. It can 
achieve results on big datasets but is often relatively inaccurate. 
When the model is expected to be complicated, the number of 
labels and features increase and the performance will no longer 
be satisfying. In the case study of NCS, the DT classifier gains 
94.07% of accuracy when conducted on the level one 
classification task in MLMR approach, but following a non-
hierarchical approach, the DT classifier obtained accuracy of 
66.88% on the evaluation set (Figure 11). RF model has better 
performance in the point-based classification approach, even for 
unbalanced classification datasets (Figure 12).  

 
 

 
 

Figure 11. DT classification results for the great hall of NCS in 
Non-hierarchical approach. 
 
A non-hierarchical classification approach is most direct and 
commonly used, it feeds the model once with the trainset of all 
labels. When applied to the great hall of NCS, it gets 0.9332 
precision. (Figure 12). It took 21 sec. to train the model with 
273,663 points, 7 sec. to predict the dataset of 1,472,351 points. 
The results seem pretty encouraging, with an average F1 score of 
93%. However, it can’t overcome the low score on pillars (Table 
5), as seen in the level 2 MLMR classification. 
 

 
Figure 12. RF non-hierarchical classification results for the NCS (left) and FKS (right).

 Tile set Diag. 
truss 

Long. 
truss 

Transv. 
truss Bell Wall Pillar Pole Statue Open. Altar Platf. Step Earth WGT 

AVG 

PREC. 0.97 0.88 0.94 0.80 1.00 0.97 0.84 0.99 0.85 0.94 0.99 0.97 0.99 1.00 0.94 

REC. 1.00 0.59 0.74 0.93 0.82 0.82 0.41 0.39 0.98 0.98 0.97 1.00 0.72 1.00 0.93 

F1 0.99 0.71 0.83 0.86 0.90 0.89 0.55 0.56 0.91 0.96 0.98 0.98 0.83 1.00 0.93 

Table 5. RF non-hierarchical classification metrics for NCS. 
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 Fence Diag. 
truss 

Long. 
truss 

Transv. 
truss Ceiling Tile set Wall Sculpt. Open. Thin 

wall Cerem. Pillar Ground Statue WGT 
AVG 

PREC. 0.93 0.48 0.62 0.29 0.87 0.92 0.87 0.93 0.79 0.73 0.52 0.76 0.98 0.77 0.79 

REC. 0.90 0.04 0.45 0.52 0.90 0.92 0.88 0.52 0.89 0.52 0.31 0.53 0.98 0.88 0.77 

F1 0.92 0.08 0.52 0.38 0.89 0.92 0.88 0.67 0.84 0.61 0.39 0.63 0.98 0.83 0.77 

Table 6. RF non-hierarchical classification metrics for FKS.

When it is applied to predict detailed and large datasets like the 
east great hall of FKS, the performance is not optimal (Figure 12). 
Many points are not correctly predicted (Table 6). The necessity 
to compute many different features from small to large searching 
radii, resulted into higher complexity of the process. Under the 
same depth of trees, the performance was largely limited.  
The MLMR approach performs the classification tasks at 
different resolutions, in each classification level, points gain a 
label that follows a designed tree-like structure. It avoids the 
heavy demand of representative datasets for deep learning 
training, and it also distributes the classification work to 
subsampled or pre-classified point clouds. As a result, points gain 
labels that indicate layers of semantic meanings. 
In many CH projects, classification work is expected to detect 
objects of various scales. In most scenes, it demands high-
resolution dataset to achieve full detail. The computation cost on 
extracting geometric features would be relatively high when 
performing on a full resolution dataset. In comparison, in a 
MLMR approach, the extraction will be conducted only on part 
of the whole dataset which required further classification; this 
avoid generating much redundant geometric information. For 
example, the computation on tile-sets and rubble won’t be 
necessary in defining the roof and ground, since these parts of 
point cloud are definable at a relatively low resolution where it 
appears geometrically homogeneous. The geometric extraction 
should be conduct at a resolution corresponding to the detecting 
objects, otherwise it will waste computational resource. 
The duration of this approach varies from the complexity of the 
project. The less hierarchy of the classes, the less difference on 
the duration on extracting geometric features; under this situation 
the manual annotation work is usually quick and clear. It will be 
sufficient to use the non-hierarchical approach rather than 
MLMR when dealing with a geometrically simple project of a 
small scale. On the contrary, when applying to a complex of 
layers of categories, the duration of extracting features will much 
increase. In addition, the preparation of training set will be 
troublesome, items under each category has to be manually pick 
out increasing labour cost. 
 
5.2 Features 

Features are to address the heterogeneity in point clouds. 
Algorithms process the data and set up correlations from labels 
to features with, for instance, information gain. High-quality 
features allow better interpreting the models and enhancing 
algorithm performance concerning both speed and accuracy.  
Features too much closely related to labels might be given a high 
weight that risk overriding other features, causing mistakes. In 
RF model, voting process might consider trees that use features 
with poor relation to certain labels therefore, a casual choice of 
features might decrease the score of the model. It results that 
finding robust and relevant features should be prioritized. 
Coordinates are the most basic identification of a point. In most 
cases, the Z coordinate is of high importance above all others. 
Since all architectures follow the rule by gravity, points located 
on different height build up different elements.  
Geometric covariance features are the most used features, they 
represent inter-point information in a certain radius. The radius 

that represents the local neighbourhood should be carefully 
chosen to avoid excluding detailed geometric information nor 
having a non-numeric result (too small radius). When computing 
geometric features, different sets of features were generated 
under different radii. The combination of many radii helps the 
algorithm to make better decisions.  
Normals can help a lot when the under-defining objects are 
distinguishable with its orientation from the others. When it 
comes to the classification of roof truss in Chinese wooden 
architectures, where geometric features are confusing, it 
contributes to achieve improved results. 
 

6. CONCLUSION AND FUTURE WORKS 

The work presented the hierarchical classification procedure, 
MLMR, on two Chinese CH complexes, the great hall of the 
NanChan Ssu and the east great hall of FoKuang Ssu. MLMR 
classification results have been compared with that of non-
hierarchical classification approaches; DT and RF algorithms are 
tested. Two tested datasets have different scale and complexity 
and from the whole process and results, many conclusions can be 
drawn. 
In the data processing procedure, it’s tested that providing well 
defined and selected feature for the dataset and preparing 
trainsets with representative points largely affects the 
classification result. Regarding the algorithm, the tested DT 
classifier proved to be inadequate in classifying complicated 
datasets with numerous labels. RF classifier overcomes defect of 
DT on overfitting, proved to be robust in various scenes. 
The non-hierarchical approach can achieve acceptable outcome 
when the project is relatively small and simple and has a low-
number of categories subdivisions. But when applied to a more 
complicate project like in FKS, the results will not be optimal and 
require more computational resources to process the whole 
dataset. 
The MLMR classification approach proved its capability on 
different types of architecture, with different materiality and 
scale of the space. Yet, it still meets the problems of classification 
rule and features definition. The labour resource is mainly used 
on dataset and trainset preparation, while the computational 
resource is primarily used on extracting geometric features. In the 
case study of NCS, the classification process didn’t take a 
relatively long time (6.9 minutes for MLMR prediction while 86 
minutes for manual annotation) because of the small scale of the 
dataset. The comparison of MLMR and non-hierarchical 
approach shows that the former one suits complexity and large 
scale, it saves large computational resource and time on feature 
computation, and allow manual adjustment on each level, 
providing a hierarchical semantic label tree for point cloud 
management. 
Improving the quality of the point cloud in terms of attributes and 
density allows for more advanced classification. In the 
classification process, especially in the FKS project, the colour 
information and higher density of the roof truss area will make 
the architectural elements more distinguishable.  
Some aspects may deserve further attention and development: 
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• Test and combine different segmentation algorithms to 
generate better results on all datasets. 

• Applying other algorithms and approaches, such as model-
fitting and deep-learning, to generalize various Chinese 
wooden architecture. 

• Compiling general categories of architectural component 
for Chinese wooden structures. 
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