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ABSTRACT:

The extraction of reliable and repeatable interest points among images is a fundamental step for automatic image orientation

(Structure-From-Motion). Despite recent progresses, open issues in challenging conditions - such as wide baselines and strong

light variations - are still present. Over the years, traditional hand-crafted methods have been paired by learning-based approaches,

progressively updating the state-of-the-art according to recent benchmarks. Notwithstanding these advancements, learning-based

methods are often not suitable for real photogrammetric surveys due to their lack of rotation invariance, a fundamental requirement

for these specific applications. This paper proposes a novel hybrid image matching pipeline which employs both hand-crafted

and deep-based components, to extract reliable rotational invariant keypoints optimized for wide-baseline scenarios. The proposed

hybrid pipeline was compared with other hand-crafted and learning-based state-of-the-art approaches on some photogrammetric

datasets using metric ground-truth data. Results show that the proposed hybrid matching pipeline has high accuracy and appeared

to be the only method among the evaluated ones able to register images in the most challenging wide-baseline scenarios.

Figure 1. A typical large image network featuring convergent and rotated images as well as scale changes to survey the ancient

arches at Saranta Kolones (Cyprus). The recovered camera network was obtained with the automated image orientation procedure

presented in this paper, which combines hand-crafted and learning-based image matching methods and outperforms state-of-the-art

solutions considering metrics in object space.

1. INTRODUCTION

Photogrammetry has become a valuable, powerful, automated

and cheap alternative to active sensors for the generation of

textured 3D models (Remondino et al., 2017). The typical

photogrammetric workflow consists of the identification of im-

age correspondences via sparse image matching, the estima-

tion of unknown camera parameters and 3D object coordin-

ates with a Bundle Adjustment (BA) method (normally called

Structure-from-Motion - SfM), and dense image matching (or

Multi-View Stereo - MVS) for the generation of dense point

clouds. Sparse image matching, traditionally based on hand-

crafted keypoint detectors and descriptors (Lowe, 2004; Bay et

al., 2008; Alcantarilla et al., 2013), are based on a priori know-

ledge inspired by professional knowledge and intuitive exper-

ience (Yao et al., 2021). More recently, encouraged by deep-

learning advancements, novel deep-based solutions have been

proposed aiming to overcome the limitations of current hand-

crafted methods in case of wide-baseline images or strong il-

lumination changes (Verdie et al., 2015; Yao et al., 2021; Jin

et al., 2020). While the first attempts in this research direction

focused on the different steps of the image matching pipeline

separately, more recent solutions provide end-to-end deep net-

works that jointly optimize the whole pipeline steps: LIFT (Yi

et al., 2016), LF-Net (Ono et al., 2018), SuperPoint (DeTone

et al., 2018), R2D2 (Revaud et al., 2019), D2-Net (Dusmanu et

al., 2019), ASLFeat (Luo et al., 2020), etc. This last design

choice increases both the keypoint repeatability and reliabil-

ity and, consequently, the image matching success rate, prov-

ing beneficial for the final pose estimation accuracy. Neverthe-

less, current end-to-end deep architectures can be not suitable

for general-purpose photogrammetric applications due to their

limitation in handling large image rotations (Remondino et al.,

2021). This specific design choice is made to maximize the

discriminative ability of the matching process in more common

general-user application scenarios with all images roughly up-
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right (Pautrat et al., 2020).

In the analysis and evaluation of different image matching

pipelines for SfM applications, both Schönberger et al. (2017)

and Jin et al. (2020) highlighted the importance of performing

the evaluation on real scenarios with challenging conditions, in-

cluding uncalibrated cameras, unordered images acquired with

different sensors, strong light variations and viewpoint changes.

Commonly adopted evaluation criteria rely on SfM output stat-

istics, such as the mean reprojection error and the mean track

length (Schönberger et al., 2017), or pseudo ground-truth (Jin

et al., 2020) obtained from a superset of the input images

employed for the evaluation. Nevertheless, Remondino et al.

(2021) showed that the above evaluation criteria generally dis-

agree with accurate metric ground-truth data provided by to-

pographic surveys in terms of Ground Control Points/Check

Points (GCPs/CPs). More recently, the SimLocMatch chal-

lenge of IMW2021 employed synthetic rendered scenes in or-

der to have available ground-truth data known by construction.

In any case, this last solution is not completely satisfactory

as synthetic scenes are generally unable to fully simulate real

world scenarios.

1.1 Aim of the paper

In order to take advantage of the recent deep-solutions while

maintaining the rotation invariance property, in this work we

build upon the recent hybrid image matching pipeline by Bel-

lavia and Mishkin (2021) - which resulted among the best in

the recent Image Matching Workshop (IMW2021) contest1 -

and present a complete Hybrid Pipeline (HP) suitable for pho-

togrammetric applications (see Fig. 1 as an example). The

pipeline is based on the classic detect-then-describe approach

and integrates both hand-crafted and deep-based state-of-the-

art methods. Moreover, a novel module, named Keypoint Fil-

tering by Coverage (KFC), is designed, added and evaluated in

order to improve the final BA accuracy. The proposed method

is detailed in Sec. 2, while its performance is tested and com-

pared in Sec. 3 using several state-of-the-art feature extract-

ors, both hand-crafted and learning-based. All the evaluations

are performed downstreaming the SfM pipeline and the BA

of COLMAP (Schönberger and Frahm, 2016). Unlike recent

comparative evaluations (Jin et al., 2020), our evaluation uses

a set of well distributed Check Points (CPs) in order to provide

reliable quantitative measures in object space (Remondino et

al., 2021).

2. THE PROPOSED HYBRID PIPELINE (HP)

The proposed image matching Hybrid Pipeline (HP) is com-

posed of the following modules: HarrisZ+ (Bellavia and

Mishkin, 2021) for the keypoint extraction; OriNet and Af-

fNet (Mishkin et al., 2018) for patch normalization; Hard-

Net8 (Pultar, 2020) as keypoint descriptor; blob matching and

Delaunay Triangulation Matching (DTM - Bellavia (2021))

for descriptor matching and local spatial filtering; Degener-

ate SAmple Consensus (DegenSAC - Chum et al. (2005)) for

model-based final correspondence assignment and outlier re-

jection; the Keypoint Filtering by Coverage (KFC) module to

exclude image pairs from the BA according to their keypoint

coverage. With the exception of OriNet, AffNet and HardNet8,

which are deep-based, the other steps are hand-crafted. At the

moment, HP is implemented in Matlab with the exception of

the deep-based components and DegenSAC which are available

1 https://www.cs.ubc.ca/research/

image-matching-challenge/current/

through the Kornia library (Riba et al., 2020). The code is freely

available2.

HarrisZ+ is an update of the HarrisZ (Bellavia et al., 2011)

corner detector optimized and tuned to take advantage of the

recent progress in the other image matching pipeline steps. The

original HarrisZ makes use of a sort of “attention mask” to en-

hance the input image derivatives in order to both discard non-

relevant image regions as well as to improve the adaptive filter

response to corners. With respect to HarrisZ, HarrisZ+ outputs

more keypoints, better localized and distributed over the image,

improving keypoint repeatability while maintaining a high level

of discriminability.

OriNet and AffNet are two state-of-the-art deep networks re-

spectively employed for patch orientation estimation and affine-

shape adaptation. Together, they perform the patch normal-

ization which is required to prepare the keypoint patch to the

descriptor extraction.

HardNet8 is the latest version of the state-of-the-art learning-

based HardNet descriptor (Mishchuk et al., 2017). HardNet8

introduces several changes in the training process and datasets

as well in the network architecture that make it able to surpass

the original HardNet version.

Blob matching and DTM are employed respectively for select-

ing matches on the basis of the descriptor similarity and local

spatial information. The former extends the Nearest Neighbor

Ratio (NNR - Lowe (2004)) selection to be symmetric and to

include many-to-many matches, while the latter introduces an

iterative correspondence pruning according to the local keypo-

int neighborhoods, also avoiding to set user-based threshold in

NNR.

DegenSAC is an extension of the Random SAmple Consensus

(RANSAC - Fischler and Bolles (1981)) which applies model-

constraint match filtering according to epipolar geometry. With

respect to RANSAC, DegenSAC better handles the presence

of dominant planes which leads to configurations close to the

degenerate ones.

KFC is designed to exclude from the BA correspondences be-

longing to image pairs where their keypoint patches covers less

than 35%, unless their removal breaks the image connection

graph. KFC arises from the observation that it is reasonably

expected that a pipeline more robust to perspective distortions,

due to convergent images, is also able to retain matches less ac-

curate in terms of keypoint localization, hence decreasing the fi-

nal BA accuracy. Similar ideas have been already used in the lit-

erature, such as the keypoint convex hull area at the base of the

hierarchical BA approach of Toldo et al. (2015). More in detail,

given the n DegenSAC keypoint correspondences (kiz, kjz)
with z = 1, · · · , n between the images Ii and Ij , an overlap

mask Mij for Ii is computed by marking the 31× 31 px square

blocks centered at each kiz on Ii and likewise a mask Mji for Ij
is computed. The square 31× 31 patch is chosen as an approx-

imation of the 35×35 circular descriptor patch at the minimum

scale associated with the HarrisZ+ keypoint. The image overlap

graph G = (I, E) is defined so that each image Ii represents

a node and there is an edge Eij = min(Mij ,Mji)/s between

nodes Ii and Ij , where s is image size in px, only if Mij 6= 0
and i 6= j. The Minimum Spanning Tree (MST) of the comple-

mentary graph G′ = (I, E′) with edges E′

ij = max(E) − Eij

is then computed and edges in MST (G′) are removed to get

a further graph G′′. The final image pairs involved in the BA

are only those corresponding to the nodes linked by edges in

{Eij > tov}∪MST (G′)∪MST (G′′), with the image overlap

threshold tov experimentally set to 35%.

2 https://sites.google.com/view/fbellavia/research
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3. DATA AND EVALUATION

3.1 Dataset

The proposed pipeline was evaluated on two datasets repres-

enting typical conditions of photogrammetric surveys, in terms

of scene and acquisition network. These datasets feature com-

mon and challenging acquisition setup in order to analyze a

broad spectrum of photogrammetric applications (Nocerino et

al., 2014; Remondino et al., 2017, 2021). All datasets have

CPs for accuracy analyses in object space. To be noted that

the derived Ground Sampling Distance (GSD) is reported with

respect to the current working dimensions of the images, which

are downscaled as discussed in Sec. 3.2.

Ventimiglia Theatre dataset. This dataset consists of three

sub-datasets acquired with a Nikon D3X (24 MP, full frame

sensor, 50 mm focal length) of the Ventimiglia Theatre (Italy)

on an Unmanned Aerial Vehicle (UAV): the first one (Ven-

timiglia Theatre Nadiral - blue cameras in Fig. 2) contains only

nadiral acquisitions arranged in two parallel strips, a typical

situation in professional photogrammetric surveys with a weak

image network; the second sub-dataset (Ventimiglia Theatre

Nadiral+Oblique) adds to the previous set two overlooking ob-

lique strips (red cameras in Fig. 2), i.e. a network designed

to improve self-calibration, with the aim of testing the key-

point detector capability and evaluate matching performances

on strong converging images; the third sub-dataset (Ventimiglia

Theatre Oblique) consists of two oblique convergent cross-

strips (the blue and red cameras in Fig. 3), a particularly chal-

lenging situation due to the significant viewpoint changes. The

average GSD in all Ventimiglia images is 11 mm, while 9 CPs

are available for the accuracy analyses.

Paestum Wall dataset. This dataset depicts part of the old de-

fensive walls of the archaeological site of Paestum (Italy), for a

length of about 80 m. Besides a first sub-dataset (Paestum Wall

Normal) of normal images arranged in two strips (blue cam-

eras in Fig. 4), the complete dataset (Paestum Wall Full) adds

convergent images (red cameras in Fig. 4). A third sub-dataset

(Paestum Wall Oblique) contains only a sub-set of oblique im-

ages from the complete dataset with low overlap (see Fig. 5).

The particular acquisition setup of Peastum Wall sub-datasets

provides a clear insight of the keypoint localization accuracy,

since the error perpendicular to the wall tends to visibly dis-

tort the straight wall profile as there is no loop closure detection

or an adequate camera network to mitigate the errors propag-

ated along the wall. All Paestum images were acquired with the

same Nikon D3X camera and have a GSD between 4-9 mm.

For the metric evaluations, 22 CPs are available.

Worth to note that all sparse point clouds shown in Figs. 2-5 are

obtained using the proposed HP.

3.2 Evaluation setup

The evaluation setup was carefully designed in order to obtain

a fair comparison and the evaluation scripts are freely available

on GitHub3. The proposed HP was compared against state-of-

the-art methods already analyzed and evaluated in Remondino

et al. (2021): SIFT (Lowe, 2004), RootSIFT (Arandjelović and

Zisserman, 2012), SURF (Bay et al., 2008) and AKAZE (Al-

cantarilla et al., 2013) as hand-crafted methods and ASLFeat,

R2D2, Key.Net (Barroso-Laguna et al., 2019) plus HardNet

(KN+HN), LF-Net and SuperPoint among the deep learning

methods. Moreover, Agisoft Metashape4 was also included in

3 https://github.com/3DOM-FBK/COLMAP_scripts
4 https://www.agisoft.com/

Figure 2. The UAV dataset Ventimiglia Theatre Nadiral+Oblique

with 52 nadiral (blue) and 12 oblique (red) images.

Figure 3. The UAV dataset Ventimiglia Theatre Oblique with two

orthogonal image strips (blue, red) with convergent orientation.

Only the proposed HP method could correctly orient all images.

Figure 4. The terrestrial dataset Paestum Wall Full mixing normal

(blue) and convergent (red) images.

Figure 5. The terrestrial dataset Paestum Wall Oblique with only a

strip of wide-baseline oblique images. The sparse model obtained

ignoring two view tracks is highlighted in magenta.

the evaluation, being generally the reference commercial tool

used in close-range applications.

The COLMAP camera model is shared for all the input images

of the same dataset, but the specific camera model used may

change between the different datasets as the best camera model

strongly depends on the camera network configuration. Camera

models with more parameters are reasonably preferable when

a suitable image network is available. In our evaluation, the

employed camera models were RADIAL (same focal length

in the horizontal and vertical directions and two radial distor-

tion coefficients) and OPENCV (two focal length parameters

and two coefficients for both radial and tangential distortions),

with/without applying a Principal Point (PP) refinement within

the final global BA. Moreover, during the triangulation step of

the SfM pipeline, two view tracks (i.e. tie points visible only in

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVI-2/W1-2022 
9th Intl. Workshop 3D-ARCH “3D Virtual Reconstruction and Visualization of Complex Architectures”, 2–4 March 2022, Mantua, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVI-2-W1-2022-73-2022 | © Author(s) 2022. CC BY 4.0 License.

 
75

https://github.com/3DOM-FBK/COLMAP_scripts
https://www.agisoft.com/


two images) were generally ignored (i.e. the minimum Track

Length (mTL) was set to 3) with the exception of the Paestum

Wall Oblique dataset for which otherwise a too sparse point dis-

tribution is obtained (see Fig. 5), leading to worse results in the

BA. For completeness, the preliminary analysis for the selection

of the most appropriate camera model setup for each dataset is

reported in the Appendix.

Images were also downsized to 1500× 1000 px (1/4 of the ori-

ginal input size) due to the computational constraints imposed

by the deep architectures included in the evaluation. Moreover,

to allow a fair comparison and similarly to recent benchmarks

and works (Jin et al. (2020), Remondino et al. (2021)), the

number of extracted keypoints for each image was limited to

8000 whereas the employed NNR thresholds were set to: 0.80

for SIFT, RoofSIFT and ASLFeat; 0.85 for KH+HN; 0.90

for SURF, AKAZE and SuperPoint; 0.95 for R2D2 and LF-

net. Since COLMAP default RootSIFT only imposes a very

soft constraint on the number of keypoints, it was replaced

by the OpenCV implementation. Anyways, no relevant differ-

ences were noted during the experimentation. Finally, with the

exception of our hybrid pipeline which employs DegenSAC,

COLMAP internal RANSAC (with default parameters) was ap-

plied before the BA.

Results are reported in terms of the Root Mean Square Error

(RMSE), i.e. the difference between ground truth (CPs) and

computed 3D coordinates (CPs are not included in the BA). For

a thorough analysis, results achieved by thresholding the keypo-

int reprojection error of the BA to 4 px (COLMAP default) and

1 px are both included. For completeness, reported BA statist-

ics - as percentages of the SIFT values considered as reference -

include: the number of Registered Images (RI, i.e. oriented im-

ages), the number of computed 3D points in the sparse cloud,

the Mean Track Length (MTL) and the Mean Reprojection Er-

ror (MRE). For Metashape, MRE is replaced by the root mean

square error of the reprojection errors, since this is the only

measurement provided and it gives at least an indicative metric.

3.3 Results

Ventimiglia Theatre dataset. All compared methods for the

orientation of the Ventimiglia Theatre Nadiral dataset reached

similar RMSEs (see Fig. 6(a)) and were able to orient all im-

ages, with the exception of SuperPoint (see the RI value repor-

ted together with other BA statistics in Fig. 6(b); notice that

Metashape root mean square reprojection errors are reported as

gray histogram bars instead of the MRE ones in the figures),

which failed to orient the whole dataset. This is probably due

to the low number of keypoints that normally SuperPoint de-

tects: using only the cross-check to define matches by skipping

the NNR check, also SuperPoint was able to register all the im-

ages but with very high RMSE. It should be remarked that fully

deep pipelines - with the exception of LF-Net - have required

to manually rotate the input images (indicated by the * super-

script in the legend of the figures). R2D2 and HP achieved the

best RMSEs while AKAZE and KN+HN obtain less favorable

results. KFC is effective to improve the results of the proposed

pipeline and limiting the BA reprojection error from 4 px to 1

px is only beneficial for some methods, such as R2D2, KN+HN

and LF-Net. No method was able to reach accuracy better than

the GSD value, highlighting the challenging condition of this

dataset. The MTL, the MRE and the number of 3D points, re-

ported in Fig. 6(b), seem unable to provide alternatives to the

metric ground-truth provided by the RMSEs of the CPs. In par-

ticular, R2D2 can outperform SIFT in terms of RMSE of CPs,

although obtaining a higher MRE.

The inclusion of oblique images, added into the Ventimiglia

Theatre Nadiral+Oblique dataset, improves the BA accuracy

provided that matches can be robustly established. As shown

in Fig. 7(a), the RMSE for most methods can achieve an ac-

curacy close or better than the GSD measurement. However,

it must be noted that both SuperPoint and RootSIFT failed to

register all the images (see the RI value reported in Fig. 7(b)).

While for SuperPoint the previous observations hold, for Root-

SIFT it was found that one of the two oblique strips has not

enough matches to be correctly registered. Likely, RootSIFT

would be able to orient all images using a different camera

model than that selected in the preliminary analysis reported

in the Appendix. This underlines the strong dependency of the

final achievable results on the whole pipeline configuration and

will be investigated in future works. KN+HN and HP provide

the best RMSEs, while LF-Net, RD2D and AKAZE reach the

worst. Again, KN+HN, as other fully deep methods with the

exception of LF-Net and SuperPoint, required the manual rota-

tion of the images. No relevant differences are found when in-

cluding KFC in the proposed pipeline, while a BA reprojection

error of 1 px can slightly degrade the model accuracy accord-

ing to the RMSE, with the exception of SURF that can reach

in the worst case the highest error, truncated in Fig. 7(a) to 0.1

m for visualization purposes. Also in this case the BA stat-

istics (shown in Fig. 7(b)) seem unable to correlate with the

derived RMSEs of the CPs. While in terms of RMSE the gen-

eral performance is quite similar among the compared meth-

ods, HP performs significantly better in terms of valid matches,

as suggested by the highest number of valid matches found by

HP in the nadiral-oblique image pair with the larger overlap of

the Ventimiglia Theatre Nadiral+Oblique dataset, reported in

Fig. 8. The corresponding matches found using the proposed

HP and other methods are shown in Fig. 9 for a visual qualitat-

ive evaluation.
Finally, with the Ventimiglia Theatre Oblique dataset, only HP,

even without KFC, was able to register all the input images

while all other compared methods, including both RootSIFT

and Agisoft Metashape, failed in this task, creating a separate

model for each of the two strips (see Fig. 3). This highlighs the

ability of the proposed pipeline to orient images at very differ-

ent viewpoints.

Paestum Wall dataset. For the purpose of matching corres-

pondences, the Paestum Wall Normal dataset (blue images in

Fig. 4) is simpler than the other datasets since the scene is planar

and not exposed to relevant viewpoint changes, but it presents

scale variations given by the two image strips. The RMSE his-

tograms for the chosen camera setup are reported in Fig. 10(a),

with histogram bars for SURF truncated to 0.1 m in the worst

case for visualization purposes. Both RootSIFT and Metashape

are on par with the GSD lower limit, and moving the BA re-

projection error from 4 px to 1 px is in general very beneficial.

Other methods, including HP with or without KFC, get results

close to the GSD upper limit, except for SURF, R2D2, KN+HN

and LFNet which show significantly higher errors. For this par-

ticular dataset, the KFC module does not seem to be strongly

effective. Notice also that, according to Table 3 reported in the

Appendix, the gap between HP and the top methods would be

further reduced with a mTL of 2. BA model statistics generally

employed as pseudo ground-truth, reported in Fig. 11(a), does

not seem to be strongly correlated with the metric ground-truth

provided by the CPs.
The Paestum Wall Full (blue and red images in Fig. 4) en-

riches the camera network of the previous Paestum Wall Nor-

mal dataset with some highly convergent images which intro-

duce perspective distortions of the wall plane but generally help
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Figure 6. Ventimiglia Theatre Nadiral dataset: (a) RMSEs of the CPs and (b) BA statistics as percentages with respect to SIFT values

(OPENCV camera model with no PP post-refinement, mTL=3). The min GSD is reported with respect to the downsampled images.

The * superscript indicates that input images were manually rotated as the considered learning-based method is not invariant to camera

rotation.
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Figure 7. Ventimiglia Theatre Nadiral+Oblique dataset: (a) RMSEs of the CPs and (b) BA statistics as percentages with respect to

SIFT values (RADIAL camera model with PP post-refinement, mTL=3). The min GSD is reported with respect to the downsampled

images. The * superscript indicates that input images were manually rotated as the considered learning-based method is not invariant

to camera rotation.
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Figure 8. Number of valid RANSAC/DegenSAC matches for the

nadiral-oblique image pair with the largest overlap in the Ven-

timiglia Theatre Nadiral+Oblique dataset.

in decreasing the RMSE of the CPs (see Fig. 11(a)). Only for

RootSIFT and Metashape the introduction of the oblique im-

ages causes a slight increase of the RMSE, which is however in

the GSD trusted range. With the exception of SuperPoint and

R2D2, decreasing the BA reprojection error from 4 px to 1 px

still improves the final accuracy. The best results are achieved

by HP, on par with the GSD lower limit. HP without KFC,

SIFT, RootSIFT, ASLFeat, LF-Net and Metashape are also ef-

fective, providing results in the GDS range. As for the previous

case, BA model statistics reported in Fig. 11(b) do not provide

an effective error model measurement.

The Paestum Wall Oblique dataset (see Fig. 4) is the most chal-

lenging since it features a sparse camera network with quite

convergent images, which required to use a mTL of 2 dur-

ing COLMAP triangulation step to derive a sufficient keypo-

int coverage for the BA. RMSEs and BA statistics are reported

in Figs. 12(a)-12(b), respectively. SURF, AKAZE and Super-

Point failed to register all images (see the RI value in Fig. 12(b))

while HP and ASLFeat achieved the best results in terms of

RMSE, followed by SIFT, RootSIFT, Metashape, SuperPoint,

SURF and HP without KFC. With the exception of R2D2 and

AKAZE, BA with 1 px reprojection error improved the model

accuracy, as well as the use of the KFC module in HP. Also

for this test, BA statistics (see Fig. 12(b)) do not have strong

relations with the accuracy values provided by RMSEs.

4. CONCLUSIONS

This paper analyzes recent image matching algorithms for SfM

applications in photogrammetry, proposing a hybrid pipeline

which combines both hand-crafted and learning-based ap-

proaches. Recent literature, in particular for end-to-end deep

network architectures, tends to assume that the input images

have almost the same orientation, neglecting the problem of ro-

tation invariance, which is - on the contrary - crucial in pho-

togrammetric surveys. Unlike these approaches, the proposed

HP method integrates modern state-of-the-art algorithms, pre-
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(a) (b)

(c) (d)

Figure 9. Ventimiglia Theatre Nadiral+Oblique dataset: matches comparison in a nadiral-oblique image pair with the largest overlap

for (a) the proposed HP, (b) R2D2, (c) SuperPoint and (d) SIFT.
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Figure 10. Paestum Wall Normal dataset: (a) RMSEs of the CPs and (b) BA statistics as percentages with respect to SIFT values

(OPENCV camera model with PP post-refinement, mTL=3). The min e max GSDs are reported with respect to the downsampled

images.
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Figure 11. Paestum Wall Full dataset: (a) RMSEs of the CPs and (b) BA statistics as percentages with respect to SIFT values (OPENCV

camera model with PP post-refinement, mTL=3). The min and max GSDs are reported with respect to the downsampled images.

serving the rotation invariance. This design makes our hybrid

pipeline modular, flexible and capable of exploiting new deep-

learning descriptors which are not natively rotational invariant.

HP also embeds the novel KFC module as final step before the

BA which is generally able to improve the final accuracy by fil-

tering weak connections in the camera network. HP performed

better or on a par with standard SIFT-based pipelines in com-

mon acquisition scenarios, with quite stable results in terms of

RMSE accuracy. The achieved results are in line with Nocerino

et al. (2014), although the processing reported in this paper was

performed on much smaller images due to the computational

limits imposed by deep architectures. Furthermore, HP was the

only method able to handle challenging conditions with strong

perspective distortions found e.g. in the Ventimiglia Theatre Ob-
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Figure 12. Paestum Wall Oblique dataset: (a) RMSEs of the CPs and (b) BA statistics as percentages with respect to SIFT values

(RADIAL camera model with PP post-refinement, mTL=2). The min and max GSDs are reported with respect to the downsampled

images.

lique dataset: HP provided a complete registration of the images

and was able to extract significantly more valid matches on the

highly distorted images (see Figs. 3, 8 and 9).

The provided evaluation analysis also underlines the need of

a careful setup of the full pipeline to evaluate its real per-

formances, not only limited to the image matching part, as in

previous comparisons, but also including the BA. The selec-

tion of the camera model and BA parameters strongly depend

on the camera network and the kind of images, thus affecting

the final model accuracy. As photogrammetry surveys provide

GCPs/CPs, these must be used to find the optimal setup. Fi-

nally, according to aforementioned analysis, common BA stat-

istics such as MRE, MTL and the number of the 3D points of

the final model, are unable to provide a good approximation of

the model accuracy which can be metrically estimated through

GCPs used as CPs.

Future work will involve the extension of the above analysis

with the introduction of further datasets and the inclusion of

more recent image matching approaches. Additionally, an ex-

haustive evaluation of the different BA configuration setup will

be investigated, as well as scalability issues, both in terms of

running times and computational resource requirements.
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APPENDIX

Tables 1-5 show the preliminary analysis for selecting the most

appropriate camera model (RADIAL or OPENCV) on each

dataset according to the image network. Only a meaningful sub-

set of the image matching methods was employed: HP without

KFC, SIFT, Metashape and R2D2 (which often provides worse

results). For all methods the maximum reprojection error in the

BA was set to 4 px (COLMAP default) and 1 px. The column

corresponding to the selected camera setup is highlighted in

bold, while the best setup for each method in blue. It can be

clearly noted that the choice of the camera setup is not trivial

for some datasets.

Camera model RADIAL RADIAL OPENCV OPENCV
PP refinement no yes no yes

mTL 3 3 3 3
HP (no KFC) - 4px BA 0.029 0.036 0.020 0.056
HP (no KFC) - 1px BA 0.031 0.037 0.023 0.032

SIFT - 4px BA 0.022 0.027 0.018 0.064
SIFT - 1px BA 0.024 0.029 0.020 0.043
R2D2 - 4px BA 0.019 0.017 0.021 0.110
R2D2 - 1px BA 0.022 0.025 0.016 0.039

Metashape 0.025 0.030 0.019 0.046

Table 1. RMSEs [m] for different camera setups of the Ven-

timiglia Theatre Nadiral dataset.

Camera model RADIAL RADIAL OPENCV OPENCV
PP refinement no yes no yes

mTL 3 3 3 3
HP (no KFC) - 4px BA 0.009 0.008 0.011 0.009
HP (no KFC) - 1px BA 0.011 0.008 0.011 0.010

SIFT - 4px BA 0.017 0.012 0.013 0.012
SIFT - 1px BA 0.012 0.012 0.013 0.013
R2D2 - 4px BA 0.026 0.014 0.016 0.014
R2D2 - 1px BA 0.027 0.015 0.030 0.028

Metashape 0.016 0.009 0.014 0.019

Table 2. RMSEs [m] for different camera setups of the Ven-

timiglia Theatre Nadiral+Oblique dataset.

Camera model RADIAL RADIAL OPENCV OPENCV OPENCV
PP refinement no yes no yes yes

mTL 3 3 3 3 2
HP (no KFC) - 4px BA 0.058 0.028 0.032 0.017 0.050
HP (no KFC) - 1px BA 0.019 0.018 0.017 0.014 0.006

SIFT - 4px BA 0.013 0.016 0.011 0.007 0.096
SIFT - 1px BA 0.012 0.017 0.045 0.019 0.004
R2D2 - 4px BA 0.372 0.071 0.379 0.091 0.034
R2D2 - 1px BA 0.083 0.079 0.083 0.079 0.101

Metashape 0.014 0.018 0.004 0.003 0.007

Table 3. RMSEs [m] for different camera setups of the Paestum

Wall Normal dataset.

Camera model RADIAL RADIAL OPENCV OPENCV
PP refinement no yes no yes

mTL 3 3 3 3
HP (no KFC) - 4px BA 0.036 0.013 0.011 0.017
HP (no KFC) - 1px BA 0.034 0.015 0.011 0.007

SIFT - 4px BA 0.055 0.016 0.015 0.015
SIFT - 1px BA 0.037 0.016 0.012 0.006
R2D2 - 4px BA 0.028 0.021 0.013 0.017
R2D2 - 1px BA 0.026 0.020 0.019 0.025

Metashape 0.031 0.019 0.009 0.006

Table 4. RMSEs [m] for different camera setups of the Paestum

Wall Full dataset.

Camera model RADIAL RADIAL OPENCV OPENCV
PP refinement no yes no yes

mTL 2 2 2 2
HP (no KFC) - 4px BA 0.013 0.014 0.016 0.057
HP (no KFC) - 1px BA 0.012 0.013 0.072 0.076

SIFT - 4px BA 0.011 0.011 0.034 0.019
SIFT - 1px BA 0.009 0.007 0.007 0.006
R2D2 - 4px BA 0.012 0.010 0.055 0.036
R2D2 - 1px BA 0.060 0.063 0.298 0.295

Metashape 0.0181 0.009 0.009 0.013

Table 5. RMSEs [m] for different camera setups of the Paestum

Wall Oblique dataset.
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