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ABSTRACT:

Vegetation management is important to the power transmission and distribution networks. The encompassed towering tree is always
the key factor of the high impedance faults(HIFs).LiDAR is an efficient way to detect trees with 3D point cloud. The classical tree
detection algorithm can handle the tree with high and distinct trunk,but limited to the tree with messy trunks. While the deep-
learning based detection algorithms are also suffered from the terrain noise points. In this paper, we propose an efficient LIDAR
reconstruction system which can efficiently reconstruct the point cloud of surrounding vegetation without the ground plane noise.
We also use different weight strategies to improve the localization accuracy. We have conducted our system on the real power
network environment and the height detection result shows that our algorithm has a better accuracy and robustness compared with

the classical methods.

1. INTRODUCTION

The surrounded vegetation is the implicit insecurity factor of
the power transmission and distribution network. As the Figure
1 shows, the high impedance faults(HIFs) caused by the unlim-
ited growing tree disables the power transmission line, which
leads a huge cost to the society. To detect the height of surroun-
ded vegetation has become a interesting topic to many research-
ers.

As Figure.1, the classical tree detection algorithms can only ad-
apt to the tree which has a tall and thin trunk. It can’t identify
either the clustering vegetation or the bushed-like trees.There
are also many researchers try to use the deep-learning meth-
ods(Ali et al., 2018, Qi et al., 2017, Milioto et al., 2019) to
solve this problem.However, the training data collected from
the current reconstruction system always influenced by the ter-
rain. The shape of the ground plane under the tree always drive
the detection system into failure.

In this paper, we use a typical deep learning algorithm(Qi et
al., 2017) to figure out the object trees in power transmission
sites.In addition, we propose a LiDAR reconstruction system,
which can effectively reconstruct the power transmission site
environment. The main contributions of this paper are as fol-
lows:

e Apply the concentric-zone model to extract the ground
plane which can alleviate the sparse problem of point
cloud especially in far areas.

e Develop a LiDAR reconstruction system with accurate
localization and consistent map.
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(b) The classical way to detect the tree

(a) The high impedance faults (c) The tree with high and thin trunk  (d)The tree with messy trunk

Figure 1. The figure(a) shows the HIF caused by the towering
tree. The figure(b) shows classical pipeline of tree detection, the
high and think trunk showed in figure(c) is more suitable for the

clustering algorithm and the messy trunk in figure(d) always
brought to the failure detection.

(a) Map With Ground Plane ('b) Map Without Ground Plane
Figure 2. The impacts of ground plane. The left reconstruction
result shows the messy ground plane points make it’s hard to
split out the tree information, while the right is easy to split out
the tree structure without the ground plane.
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Figure 3. Pipeline of the reconstruction system. The whole system consist of four module: The feature extraction module, which uses
the curvature to classify lidar points to point features and surf features. The ground plane extraction module which uses the
concentric-zone model to filter out most messy ground plane information to build a clean reconstruction result. The lidar odometry
estimation uses prior extracted features to estimate the lidar odometry. The reconstruction module uses the sensing data to build the
global map. The reconstruction result is more suitable for vegetation’s height management.

e We evaluated the system in the both dataset and real power
transmission environment. The results show that the sys-
tem can build a clean surrounded vegetation environment
and improve the height detection ability.

The rest of this paper are organized as follows. In Sect II,
we discuss the related paper. In Sect.IIl., we show the whole
pipeline of our system. The experimental results are illustrated
in Sect.IV. The conclusion is presented in Sect. V.

2. RELATED WORK
2.1 Tree Detection

The vegetation’s height management is important in the elec-
tric industry. In traditional way, the workers use the GPS re-
ceiver, lidar ranger and total station to measure the tree height
and location(Jelavic et al., 2021). The work is complex and
has a low efficiency. For automatic detection, the research-
ers(Himmelsbach et al., 2010) usually remove the ground plane
information and use different clusters to filter out the tree’s
height. However, this method is limited to the real power site
environment due to the fact that too many bushes or the cluster-
ing vegetation, more and more researcher try to use the deep-
learning method to analysis the reconstruction results.

2.2 Ground Plane Extraction

The key process of ground plane extraction is to use the
cluster patch to filter out the plane parameters. (Cheng et al.,
2020, Chen et al., 2014) uses RANSAC to filter out the time-
consuming plane parameters. Some researchers try to use the
height of the vehicle as prior information to estimate the ground
plane like(Shan and Englot, 2018, Bogoslavskyi and Stachniss,
2016). However, due to the mechanical structure of the lidar
sensor, point clouds on the ground plane are not equal in the
near place or the far area. In this work, following (Lim et al.,

2021)’s advice, we use the concentric model to filter out the
ground plane noise, which is more suitable in the UAV plat-
form.

2.3 Lidar-SLAM

With the development of the ranging sensor, the lidar
slam algorithms become an widely-studied topic in the re-
search area(Zhang and Singh, 2014, Zhang and Singh, 2017,
Deschaud, 2018, Zhou et al., 2021). The most important work
in the whole topic is the LOAM(Zhang and Singh, 2014, Zhang
and Singh, 2017), which uses the curvature features to estimate
the odometry of each scan frame. There is a series of works
developed from this system(Shan and Englot, 2018, Zhou et al.,
2021). The LeGo-LOAM(Shan and Englot, 2018) is one of the
famous work which removes the ground plane in the feature
extraction module to speed the whole process. However, the
ground plane is the important factor to the z-axis constraint. In
this work, we use a more efficient way to filter out the ground
plane noise. The reconstruction result is more clean and valu-
able to the tree detection algorithm.

3. METHOD

The overview of the whole system is depicted in Fig.2. The
whole system is splitted into four key modules: the feature ex-
traction module, the ground plane filter module, the odometry
pose-solver module and the reconstruction module. The main
constraint used in this paper is the point-to-line and the point-to-
plane constraints.After reconstruction, we use a deep-learning
method to figure out the height of tree. The details of each mod-
ule are described as follows:

3.1 The Feature Extraction Module

With the consideration of performance and efficiency, we adopt
the feature extraction module from the LOAM algorithm(Zhang
and Singh, 2014, Zhang and Singh, 2017). Using the simple but
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Figure 4. The extracted features. Point features are colored in
red and surf features are colored in yellow.

effective smoothness calculation, we divide each scan into point
features and surf features. The former usually represents the
sharp area in the surrounding environment such as the corner of
the wall, while the latter usually represents the flat area in the
environment such as the flat plane. However, due to the ground
plane issue, there are a lot of surf features represent the same
plane, so we use the voxel filter to down sample surf features,
which can speed up the whole system. The result of the extrac-
ted features is shown in Fig 4. Point features are colored in red
and surf features are colored in yellow.

3.2 Ground Plane Extraction

The problem of ground plane extraction is depicted in Fig.5.
The terrain is usually not flat, resulting the different number
size in different regions. Due to the ranging pattern of the lidar
sensors, there are usually less points on the far area and more
points on the near place. Inspired by the work of (Lim et al.,
2021), we use the concentric zone-based circle model to split
the ground plane regions.

Specially, we convert the point into the polar grid representa-
tion. The polar range r is the distance of the point and the ¢
is the rotation angle of the points. According to the concentric
model, the point clouds are divided into multiple zones. We use
P,, to represent the m-th zone of the whole points and N,, to
denote the number of zones. Morever, the P, is divided into
different bins, as follows:
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where, the di, = /22 +y? and the 0, = arctan2(yx, zx).
The Ad,, is the boundary of each zone:

Am = dmaz - dmzn (2)

where the d,qz and d,qn represents the maximum or the min-
imum of each zone respectively. After splitting each region,
we use the Principal Component Analysis (PCA) to figure out
the ground plane parameters, which is more faster and has an
acceptance accuracy.

The normal of ground plane (Near)

The normal of
ground plane (Far)

Far Place
{ with Less points |

Figure 5. The Example of Ground Plane Estimation Proposes.
The number of estimated points on different area are different.

3.3 Odometry Estimation

Different from the classical odometry estimation in the loam
series, we use the uniform motion model to replace the scan-to-
scan estimation method as the initial pose of each scan frame.
Due to the low speed of UAV in power transmission networks,
the uniform motion model is efficient with acceptable accuracy
and we use the scan-to-map data associations as the odometry
constraints to estimate the pose of each lidar scan.

The local map are stored in a KD-Tree data structure. By using
the uniform motion model, the point features are projected into
the map to find the nearest features in the local map. The se-
lected features are employed as line features in the constraints.
On the other hand, the corresponding surf features are usually
calculated by the PCA method to get the plane parameters: the
normal(n) and d. In conclusion, the whole constraint equation
is:
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The J, is the partion of the rotation and the translation.
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Table 1. The Ablation Study Of Lidar Features

Running Distance Feature Type Results
4.4km Point Features 1.2552%
4.4km Surf Features 1.5301%
4.4km Point+Surf Features | 1.2605%

3.4 Reconstruction & Point Analysis

Like the Figure 3 shows, the reconstruction map are constructed
from the global coordinates parojected from the Lidar sensing
points. The key of reconstruction is

PGlobal = TGL . Pungroundplane (8)

The points without ground plane noise is cleaner to show the
tree shape. The reconstruction result of a real power transmis-
sion site is like Figure 10. After we get the reconstruction result,
we could use the deep learning tools to effectively split the tree
and to do the height detection. Here we choose the point-net
algorithm to do the following steps, the results are shown in the
experiment part.

4. EXPERIMENTS

In this section, we will use the experimental results to prove the
proposed system’s efficiency and accuracy. Our system is coded
by C++ and implemented on different unix platforms. For the
open dataset, the system is tested on the macbook pro with an
Intel 6-core 17 processor CPU. For the latter experiments, we
add the ROS interface enabling the system reconstructs the en-
vironment in real-time on our UAV platform. The time consum-
ing of the estimation process is 50ms, which means that our al-
gorithm has the real-time ability. To evaluate the reconstruction
quality, we analyze two quality indexes. The first is the odo-
metry drift and the second is the thickness of the reconstructed
point cloud.

4.1 The Open Dataset

For the odometry part, we evaluate the algorithm on the kitti
dataset, which is one of the most famous auto driving dataset in
the world. We use the evo tools to analysis the trajectory

The Figure 6 and Figure 7 shows the whole trajectory perform-
ance and the drift of three different axis. From the results, we
can see that the estimated odometry is close to the ground truth.
Furthermore, to analysis the influence of different feature types,
we do the ablation study of them. We separately use the point
or surf features to estimate the drift of odometry and compare it
to the ground truth. The result is shown in Figure 6:

Table 1 shows that the point features are better than the surf
features. From deeply study, the poor surf feature results is
mainly suffered from the mismatch correspondences, but the
ground plane is an important factor to estimate the sensor’s
height. With the deep study, we could use different weights
to get better results. From the test, we could see that when
the environment covered with more trees, bushes, the point fea-
ture factors should be increased and vice versa. In this test,
we should change point factor as 0.6317 and the surf factor as
0.3683. After that, the better result is 1.2445% drift.

As mentioned above, in terms of the reconstruction quality, we
evaluate the thickness of the reconstruction results. The whole
result is shown below Figure 8:
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Figure 6. The whole trajectory evaluation
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Figure 7. The drift on the different axis

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVI-3-W1-2022-141-2022 | © Author(s) 2022. CC BY 4.0 License. 144



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVI-3/W1-2022
7th Intl. Conference on Ubiquitous Positioning, Indoor Navigation and Location-Based Services (UPINLBS 2022), 18—19 March 2022, Wuhan, China

Az T
S S

j" (017 0.0846) .
. 3
1,
o

A

i
01500774

01901297

-

Y : "nwraneuﬂ“L\E{‘—ju ‘{

N - B v aegy COLIIT o Lo
P LS PR T
NSRS i

L

238031 - =
Lt

ot
o CSYS: RRUIE i

Figure 8. The reconstruction result of kitti dataset. From the
thickness perceptive, the reconstruction of kitti environment has
a bettter result.

From the industry experience, the thickness less than 10 cm
represents that the reconstruction results has a better result. So
we can see that the algorithm can have a great reconstruction
result on the open dataset.

4.2 Experiment on the Power Transmission Site

To evaluate our algorithm on the real power site environment,
we use the equipment(Fig.9) to collect data in the real power
transmission site. The reconstruction result is shown in the
fig.10.

Figure 9. The data collecting equipment

The reconstruction result is shown in Figure 11:

Figure 10. The reconstruction result of the power site without
ground plane information.

Because of the lack of GNSS devices in our equipment, so we
only use the thickness of the point cloud reconstruction to show
the reconstruction quality.

Like Fig.13. shows, the reconstruction result has a better recon-
struction quality. We use the reconstruction result to split out
the training data used for the tree’s height detection. The detec-
tion algorithm we used is PointNet. The Spliting data is shown
below:

Figure 11. The analysis of power site reconstruction from the
thickness perceptive. The reconstruct result is suitable for
vegetation management.

TOP VIEW FRONT VIEW

Figure 12. Wrong Split Results. The Segmented tree has the
messy ground plane.

FRONT VIEW

TOP VIEW

Figure 13. Correct Split Results. The Segmented tree without
messy ground plane is more clean

In order to show the messy ground plane influence. We use the
split data from two reconstruction result and train it to detect
the tree’s height separately. We label the tree name as Figure 14
to make a clear comparison. The detection results with messy
ground plane training data would mis-detect some points on the
ground plane as the tree, while the correct split training data has
a better detection results. The comparison results are shown in
Figure 12 and Figure 13.

With two different reconstruction result as training data, the
whole detection result is shown like the table 2. We use the
detected bounding box to calculate the tree’s height and the
ground truth of the tree’s height is measured by the electronic
total station.The tree 1 to tree 4 are the general formed trees and
the tree 5 to tree 10 are the trees with messy trunks. We split
out the tree 8, which is the tree with messy trunks, to make the
comparison. The height detection from without ground plane
reconstruction is 5.127m and the detection with ground plane
reconstruction is 5.163m.The table 2 shows that the height de-
tection of two reconstructions result is close to each other, it
mainly caused by the different training size and the different
training steps. However, from the result, tree 5 tree 10, our re-
construction result has a better accuracy which proves that our
system is more robustness and accurate.
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Figure 14. The label of each tree. There are about ten tree in the power site, the detection of different reconstruction results are shown
in the table 2 and the figure 16 and 17

Table 2. The Detection Of Tree Height
The Reconstruction Result Tree I | Tree2 | Tree3 | Tree4 | Tree5 | Tree 6 | Tree 7 | Tree 8 | Tree 9 | Tree 10
The Tree Height With Ground Plane 7.506 | 12.295 | 7.1785 | 8.355 | 7.766 | 7.907 | 4.167 | 5.163 | 4724 | 5.808
The Tree Height Without Ground Plane | 7.713 | 9.035 | 7.431 8.973 | 2437 | 8.044 | 4.141 | 5.127 | 4.843 5.505
The Ground Truth Of Tree Height 7.693 | 10.123 | 7.144 | 8.652 | 2.535 | 7.524 | 7.853 | 4.535 | 4.824 | 5437
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