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ABSTRACT: 

 

This paper developed a two-stage solution for underwater gravity matching navigation based on the particle swarm optimization 

algorithm and affine transformation. The first stage established a starting point, and the second stage treated the matching track 

gained through affine transformation as a particle at the same starting point, followed by the application of the particle swarm 

optimization algorithm to obtain the optimal solution. To avoid falling into a local optimal solution, a convergence factor was 

incorporated into the optimization process in addition to the linear decreasing weight. This was followed by the addition of a 

constraint on the velocity and position of the particles, which was then updated in an iterating process. Two simulated navigation 

tracks were employed for experiments. The results revealed that the algorithm was capable of matching actual tracks in real time. 

Additionally, the results were found to be consistent with those obtained from the real-world tracks, with all the locations and gravity 

anomaly deviations falling within a tolerable range. However, when there were too many matching track points, the algorithm 

efficiency declined in terms of calculation time. This entails improving the algorithm through the segmentation technique. 
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1. INTRODUCTION 

By aligning the inertial navigation system with gravity field 

information, it is feasible to significantly reduce error 

accumulation and thereby meet the navigation requirements of 

long-endurance, high-precision, autonomy, and concealment of 

underwater vehicles[Han et al.,2016; Yang et al.,2017;Wang et 

al.,2019]. The matching algorithm is referred to as the core of 

gravity-matching navigation. The fundamental premise is to 

acquire the optimal approximation of the real position through 

certain techniques, such as sequence matching and single-point 

matching. The sequence matching algorithm carries out 

correlation analysis on the entire set of track points and 

performs post-hoc calculations while assuring sufficient 

sampling points. The algorithm often encounters a certain time 

delay. The ICCP[Wang et al.,2013] and TERCOM[Wei et 

al.,2017] algorithms are two examples of such a process. When 

the initial position error is substantial, the ICCP algorithm may 

simply fall into a local optimum, resulting in the matching error 

of the nearest contour point. As a result, additional techniques 

have been applied to enhance the local convergence and real-

time performance of the ICCP algorithm, including the sliding-

window technique to reduce the amount of data required to 

calculate the nearest point[Liu  et al.,2003], the chaotic 

optimization algorithm[Yuan et al.,2010], the triangle constraint 

model[Yang  et al.,2014], the backpropagation neural 

network[Huang et al.,2011], and the constrained contour[Liu et 

al.,2011]. The TERCOM algorithm considers only the 

translation and ignores the rotation and scale changes induced 

by linear error, angle accumulation error, and random error of 

the inertial navigation system. Thus, the precision and reliability 

of the matching navigation results were reduced. There are 

numerous techniques available for enhancing its performance, 

including Kalman filters[Wei et al.,2017],ICCP 

algorithms[Wang et al.,2011], and particle filters[Han et 

al.,2016]. The single-point matching algorithm overcomes the 

time delay problem of the sequence matching algorithm; typical 

versions include the SITAN algorithm, and particle filters. The 

SITAN algorithm requires prior knowledge of physical 

parameters such as the state transition matrix, stationary white 

noise matrix, and weight matrix of the underwater vehicle. To 

obtain a range of slopes in various directions, it is required to 

perform random linear fitting on the local geophysical field in 

order to circumvent the limitations of the equation, which can 

only cope with linear changes. In cases where the linear error is 

large, the filter diverges[Wei et al.,2017]. In contrast to the 

SITAN algorithm, the particle filter algorithm generates random 

samples from the empirical conditional distribution of the state 

vector and adjusts the position and weight of the particles based 

on the observed information. Hence, it is applicable to 

addressing situations that are nonlinear in nature. Upon 

reaching a sufficient number of particles, the corrected 

conditional distribution converges to the real conditional 

distribution of the state vector[Wang et al.,2016]. 

 
Particle Swarm Optimization (PSO) is a matching navigation 
algorithm, that was originally developed in the context of bird 
predation:When birds are on the prowl for food, the coordinates 
of the food are unpredictably distributed. The most 
straightforward and most effective search strategy is to delineate 
an area as close as possible to the food source. Individual birds 
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continuously modify their positions in order to find food 
through information sharing and individual cognition[Grandi et 
al.,2012].Gravity-matching navigation is essentially an 
optimization problem. The particle swarm optimization 
algorithm and the affine transformation were used in 
conjunction in this study to provide a two-stage positioning 
solution for real-time underwater gravity matching. 

2. PARTICLE SWARM OPTIMIZATION  

2.1 Principle  

Each particle in the PSO algorithm is defined by a position and 

velocity specified in a D-dimensional space (i.e., D-dimensional 

vectors). The particles continue to move and search in the space, 

impacted by other particles in the group and by themselves. The 

level of influence is determined by the fitness function. The 

optimal solution is obtained through iterative calculation while 

simultaneously recording both the local and global extrema. The 

position of the i-th particle at time t is expressed as: 

 1 2 3 min, max,, , ...... , ,
T

t t t t t t

i i i i iD i d dX x x x x x x x       （1） 

where D  is the particle dimension, 1,2,3...i N , N is the 

number of particles, and min, max,,d dx x are the maximum and 

minimum values of the search space, respectively. The particle 

velocity reads as 

 1 2 3 1 min, max,, , ...... , ,
T

t t t t t t

i i i i iD i d dV v v v v v v v       （2） 

where min, max,,d dv v  are the maximum and minimum velocities, 

respectively. The extremum values of the particle are: 

 1 2 3, , ......
T

t t t t t

i i i i iDP p p p p                   （3） 

The global extremum of the swam is: 

 1 2 3, , ......
T

t t t t t

Dg g g g g                      （4） 

Each particle determines its motion speed, adjusts the motion 

trajectory, and moves towards the optimal point based on its 

own and the group’s motion experiences. Particle position and 

velocity are updated using the following equation: 

   1

1 1 2 2

t t t t t t

id id id id d idv v c r p x c r g x           （5） 

According to Equation (5), the motion of a particle can be 

classified into three components: its own inertial speed, the 

“cognitive” speed of the local optimal particle, and the 

“guiding” speed of the global optimal particle[Golubovic et 

al.,2007], where 1r  and 2r  are random numbers within the 

range[0,1]. Additionally, 1 2c c， ，  represent the weights of 

the three components. More precisely,   is the inertia weight, 

which is employed to mitigate the influence of the previous 

speed on the current speed. The larger the value of c, the better 

the global search ability of PSO, and the smaller the value of 

 , the better the local search ability. Furthermore, 
1c  and 

2c are the acceleration and learning factors, respectively, which 

are used to adjust the maximum stage size of the movement 

towards the global optimal particle and the local optimal 

particle. Appropriate values for 1 2c c，  (which are typically 

positive) can expedite the convergence and avoid the local 

optimum. In this study, these factors are assumed as 1c =2.25 

and 2c =2.25. 

 

To prevent the particles from falling into a local optimum, the 

following convergence factor was introduced to constrain the 

particle speed using the linear decreasing inertia weight PSO 

algorithm. 

  max/start start end t T                （6） 

1 1t t t

id id idx x v                            （7） 

where, maxT  is the maximum number of iterations, start is the 

initial inertia weight, and end is the inertia weight at the 

maximum iteration. Experiments demonstrated that the PSO 

algorithm converged quickly when  0.4 0.9 ， , with the 

convergence factor,  , as follows: 

2

1 2=2 / 2 4 , 4c c                 （8）  

  

2.2 Fitness Function 

The fitness function is critical in directing the particle toward 

the optimal position. For sequence correlation matching 

algorithms, common operators include cross-

correlation(COR),mean absolute difference (MAD), and mean 

square deviation (MSD). Here, COR has the worst stability and 

accuracy, making it unsuitable for use as a decisive indicator. 

MAD and MSD have comparable performance and are both 

superior to COR. MSD equals the square of MAD, which is 

essentially a magnified indicator. Therefore, MSD was utilized 

in this study. 

    
2

1

1
, ,

N

i i

i

MSD g x y g x tx y ty
N 

      （9） 

In Equation (9),  ,ig x y  is the measured gravity anomaly of the 

inertial navigation system (INS), and  ,ig x tx y ty  is the 

gravity anomaly of the matching track point extracted from the 

background image. Additionally, tx  and ty  are the offsets in 

latitude and longitude of the matching point relative to the INS 

indicated track point  ,x y , respectively. When MSD is the 

smallest, the correlation is the best, and the optimization is the 

best at the current position.  

 

3. MATCHING NAVIGATION SCHEME 

Let the measured gravity anomaly sequence be 

 1 2 3, , ...... LLS LS LS LS LS , where  ,i INS INSLS B L g ，  is the 

latitude, longitude, and measured gravity anomaly output of the 

inertial navigation system. 

 

The two-stage method was employed for matching navigation. 

The critical component in the first stage was to determine the 

starting point. A search area was formed by centering it on the 

starting point of the inertial navigation system output[17]. The 

particles were scattered with a predetermined resolution interval, 

and the LS  sequence was employed as a template to generate 

the matching sequence. If the number of LS sequence 
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measurement points in the calculation is too large in the first 

stage, it will affect the matching efficiency. If the number is too 

low, it will reduce the probability of a successful matching. 

Thus, eight points were used in a single particle sequence as 

 1 2 3 8, , ......i i i i iMS MS MS MS MS ,where  ,ij ij ij ijMS B L g ，  and 

ijg are the interpolated gravity anomalies at  ,ij ijB L . The 

PSO algorithm was utilized to obtain the starting point. 

 

The search in the first stage is a necessary post-hoc process, as 

sufficient feature information cannot be obtained from only a 

single point, and the results are often divergent. iMS  is the rigid 

transformation of  1 2 3 8, , ......LS LS LS LS that neglects the noise 

and Transitions between tracks. According to the fundamental 

concept of inertial navigation, the difference between the real 

and inertial tracks is negligible during the initial stage of error 

accumulation, as illustrated in Figure 1. 1,2,3....iLS i n， , 

and hence the influence of noise and changes between tracks 

was ignored. With an increase in the number of sample points, 

iMS  and iLS  changed considerably, as illustrated by point 

1,2,3....n jLS j ， in Figure 1. Moreover, in order to match 

the coordinates of the gravity point in real time, the strategy 

must be adjusted in the second stage. 

1LS

2LS
3LS

nLS
2nLS 

1nLS 

3nLS 

 

Figure 1. Schematic diagram of an inertial navigation track and a matching track 

In the second stage, the starting points, 0 0,B L , were swapped 

into the particle,assuming  0 0, , , ,i i i iMST B L B L    

i L=1,2,... , where i  is the rotation angle, and  is the 

scaling factor. The matching track and the real track share 

several similarities, and according to the affine transformation, 

the point I is expressed as: 

0

0

cos sin

-sin cos

i

i

B BB

L LL

 


 

      
       

      
       （10） 

where B  and L  are translation parameters. The affine 

transformation was then applied to 

 1 2 3 -1, , ...... iLS LS LS LS LS and the optimal position of 

point i was estimated using the PSO algorithm. 

 

4. SIMULATION PREPARATION 

The steps utilized to implement the PSO algorithm are as 

follows: 

 

1) Define a search area in which the starting point of the inertial 

navigation system is located in the center and the radius is set as 

the maximum allowable navigation error of 3 . 

 

2) Initialize the particle swarm by setting the parameters of the 

first and second stages, including the maximum number of 

iterations, learning factor, position and speed, and fitness 

function. 

 

3) Determine the fitness value of the initial particle in order to 

obtain the initial local and global optimal particles. 

 

4) Update the speed and position of the particle and specify the 

fitness value of each particle, which is then compared to the 

existing optimum of the individual particle. If the MSD value is 

small, the local optimal particle is replaced with the current 

particle. 

 

5) Compare the fitness value of each particle to the global 

optimum and store the particle with the lowest MSD value as 

the new global optimal particle. 

 

6) Exit when the terminating condition is met (i.e., the error is 

acceptable or the maximum number of iterations is reached), 

otherwise return to Step 4, and increase the iteration number by 

one. 

 

Two sea areas were selected in this study, and two tracks of 

underwater vehicles were obtained through simulation. Table 1 

reports the coordinates of the starting point, the initial error, the 

heading angle, the speed, the linear error, and the random error 

of the simulated tracks. The reference map for gravity anomalies 

was the DTU12 model released by the Danish University of 

Science and Technology，the model has a 1' resolution and an 

accuracy of 3-8mGal. 

Table 1. Simulated tracks and parameters 

Parameters Track 1 Track2 

Coordinates of the starting point of the 

simulated real tracks 
18.5 ºN,114ºE 26.5 ºS,161ºE 

Initial error of the INS tracks 1n mile, 1n mile -2n mile, 2n mile 

Heading angle of the simulated real tracks 50º Change 

Velocity of the simulated real tracks 10n mile/h 

INS linear error 2n mile/h 

Random error of the INS tracks 0.12n mile 

Root mean square error of track point gravity 

anomaly 
1mGal 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVI-3/W1-2022 
7th Intl. Conference on Ubiquitous Positioning, Indoor Navigation and Location-Based Services (UPINLBS 2022), 18–19 March 2022, Wuhan, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVI-3-W1-2022-149-2022 | © Author(s) 2022. CC BY 4.0 License.

 
151



 

Sampling number of INS tracks 160 

Random error of the simulated real tracks 0.06n mile 

 

 

5. EXPERIMENTAL VALIDATION AND ANALYSIS 

The PSO algorithm was employed to carry out matching 

navigation for the two simulated tracks. The results are 

illustrated in Figures 2 and 3, with Figure 2 depicting a straight 

track, and Figure 3 depicting a curved track. As can be observed, 

the matching and real tracks were quite consistent. A gravity 

anomaly was interpolated between the matching track points. 

The longitude, latitude, and interpolated gravity anomaly of the 

matched track points were compared to the real track. Tables 1 

and 2 report the maximum, minimum, average, and standard 

deviation of the differences in longitude, latitude, and gravity 

anomalies. It can be noticed that the difference was within 1n 

mile, the average difference in gravity anomaly was within 

0.4mGal, and the standard deviation was within 1.5mGal. 

 

In terms of computational time, the matching time was identical 

for the two tracks because they had the same number of track 

points, iterations, and particles. The matching speed in the first 

stage is quick. With 200 iterations and 100 particles, the 

calculation took 196 seconds. As the number of track points 

increased in the second stage of calculation, the computational 

time for each track point continuously increased proportionally. 

When there are many matching track points, the track can be 

calculated in segments to improve the timeliness.

 

                  

(a)                                                                                           (b) 

 
(c)  

Figure 2. Matching results of track I 
 

Table 2.The accuracy of matching navigation results 

  Minimum Maximum Average Standard deviation 

Latitudinal difference -0.59n mile 1.86n mile 0.50n mile 0.45n mile 

longitudinal difference -0.69n mile 0.67n mile 0.02n mile 0.27n mile 

Difference in gravity 

anomaly 
-2.37mGal 3.15mGa 0.40mGal 1.01mGal 
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(a)                                                                                          (b) 

 
(c) 

Figure 3. Matching results of track II 
 

Table 3. The accuracy of matching navigation results 

  Minimum Maximum Average Standard deviation 

Latitudinal difference -1.35n mile 0.81n mile 0.19n mile 0.43n mile 

longitudinal difference -1.39n mile 0.44 n mile -0.32n mile 0.24n mile 

Difference in gravity 
anomaly -3.08mGal 3.84mGal 0.15mGal 1.33mGal 

 

6. CONCLUSIONS 

In this study, the PSO algorithm was integrated with affine 

transformation to simulate underwater gravity-matching 

navigation. Following a review of the principles and 

implementation of the PSO algorithm, a two-stage solution was 

proposed for underwater gravity matching navigation. The first 

stage was used to determine the starting point, and the second 

stage was to match the real-world track points in real time, 

which not only ensured the stability of the results, but also took 

into account the real-time performance and effectiveness. The 

results indicated that the matching track and the real track were 

in good agreement, and that the differences in the position and 

gravity anomaly between the two tracks remained within a 

reasonable range. In terms of computational time, the 

calculation efficiency decreased as the number of track points 

increased. The authors will attempt to segment the track and 

perform matching navigation separately in their future research. 
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