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ABSTRACT:

Attitude estimation is central to a wide range of applications such as robotics, virtual reality and mobile smart devices. With the
development of sensor technologies, these application devices are often equipped with gyroscopes and depth sensors. In this paper,
we propose a novel method to fuse gyroscope and depth information for drift-free and robust attitude estimation in structured
indoor applications. Our method relies on the depth information and the Manhattan world assumption to estimate the absolute
orientation, which is then fused to correct the accumulated error of the gyroscope-determined attitude. We first utilize the mean
shift algorithm on the unit sphere to align the surface normals from the depth measurements with the orthogonal planar structures
of the Manhattan world. Therefore, the orientation estimates are drift-free and absolute with respect to the Manhattan world. We
then fuse the orientation estimates with the gyroscope measurements in an error-state Kalman filter manner to further improve the
attitude estimation accuracy and robustness. We validate the performance of our method on public datasets, demonstrating the
robustness and accuracy of the method for attitude estimation.

1. INTRODUCTION

Attitude estimation is the problem of determining the orient-
ation of a rigid body with respect to a reference frame. It has
been widely investigated with the guidance, navigation and con-
trol communities for several decades (Lefferts et al., 1982). It is
a fundamental building block for applications in aerospace, ro-
botics, virtual and augmented reality (VR/AR) and autonomous
vehicles. In general, attitude estimation systems require two
main types of sensors: high-rate angular rate sensors, namely
gyroscopes that measure the instant angular velocity of the body
and reference vector sensors that measure a set of known direc-
tion vectors in the reference frame. Integrating angular velocit-
ies to estimate attitude leads to drift due to measurement noises.
Reducing drift is a matter of fusing this information with abso-
lute attitude readings from reference vector sensors.

With advancements in micro-electro-mechanical system
(MEMS) technologies, the MEMS-based inertial measurement
unit (IMU) has become the most critical sensor for attitude
estimation due to its low-cost, small size and low power con-
sumption. An IMU typically consists of tri-axial gyroscopes,
tri-axial accelerometers and tri-axial magnetometers. Signific-
ant literature has introduced attitude heading reference systems
(AHRS) based on IMUs. In AHRS, the reference vectors,
namely Earth’s gravity, and the Earth’s magnetic field are
derived from accelerometer and magnetometer measurements.
The vectors are then fused to correct the attitude errors accumu-
lated from integration of noisy gyroscope measurements, where
sensor fusion methods such as complementary filters (Mahony
et al., 2008, Fourati et al., 2010, Wu et al., 2016), Kalman
filters (Marins et al., 2001, Crassidis et al., 2007, Del Rosario
et al., 2018) or recent Bingham filter (Gilitschenski et al.,

∗ Corresponding author (E-mail address: sqn175@gmail.com).

2015, Wang and Adamczyk, 2019) are usually employed.
Most works assume that the body’s acceleration is negligible
and there is little electromagnetic interference that perturbs
the measurable geomagnetic field (Del Rosario et al., 2018).
However, the acceleration assumption is not always possible
for a highly dynamic body. Furthermore, indoor environments
which may compose of ferromagnetic materials and significant
electromagnetic disturbances will lead to divergence of attitude
error (De Vries et al., 2009).

Parallel to the work in AHRS there is a lot of work on atti-
tude determination for robotics and consumer electronics ap-
plications based on 3D depth sensors. Since depth sensors such
as depth cameras and Light Detection and Ranging (LiDAR)
sensors have also become lightweight and low-cost. For ex-
ample, Apple released iPads and iPhones equipped with a
LiDAR sensor recently (Dehghan et al., 2021). Most indoor
environments consist of orthogonal and parallel planar struc-
tures, such as corridors and bedrooms, which exhibit Manhattan
World (MW) characteristics (Coughlan and Yuille, 1999). MW
is defined by three orthogonal vectors, which form a Manhattan
Frame (MF). Under the MW assumption, some recent works
perform attitude estimation using the surface normal vectors
calculated from depth measurements. The attitude of the body
with respect to the surrounding MW is estimated by exploit-
ing the relationship between the surface normal vectors and the
dominant direction vectors of the MF. In this way, the depth
sensor acts like a reference vector sensor that measures the
orientation of the MF. A ”structure compass” is introduced in
(Straub et al., 2015), where a maximum a posteriori (MAP) in-
ference is used to estimate the orientation of a reference MF.
Furthermore, the authors extended the MF model to a mixture
of MFs (MMF) and proposed a manifold-aware Gibbs sampling
algorithm with Metropolis-Hastings split/merge proposals for
adaptive and robust MMF inference (Straub et al., 2017). To
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guarantee a globally optimal solution, (Joo et al., 2016) in-
troduced a branch-and-bound framework to estimate the MF
orientation. Instead of MAP inference, (Zhou et al., 2016)
proposed a manifold-constrained mean-shift tracking scheme,
which is simpler and more computationally efficient. However,
the above methods strongly rely on the MW assumption, which
will fail when only one or no direction vector of the MF can be
found. Furthermore, the depth sensors can only provide a lim-
ited field of view (FoV), such as 64.6× 50.8 in horizontal FoV
and vertical FoV respectively (Orbbec, 2022). This will signi-
ficantly reduce the chance to find more direction vectors of the
MF. Therefore, the depth sensor can only provide intermittent
attitude estimation and is less robust.

In this paper, considering that the MF orientation estimation is
drift-free with respect to the reference frame and inspired by
the AHRS methods, we choose to fuse the depth measurements
with the gyroscope measurements to guarantee robustness and
accuracy for attitude estimation. The depth sensor acts like a
reference vector sensor that measures the absolute orientation
of the MF and corrects the accumulated errors from gyroscope
measurements. Closest to our spirit is the work in (Straub et
al., 2015), which utilized a standard extended Kalman filter
(EKF) to fuse gyroscope measurements with the inferred MF
orientations. However, the method used a MAP inference to
estimate the MF orientation, which requires significant compu-
tation cost. And the EKF-based attitude estimation may cause
over-parametrization issues (Sola, 2017). In our method, we
first develop the MF orientation estimation based on the mean
shift algorithm for efficiency (Zhou et al., 2016). A quaternion-
based error-state Kalman filter (ESKF) (Sola, 2017) is then used
to jointly estimate the attitude and the gyroscope bias. In this
way, the noisy gyroscope measurements are used for continu-
ous filter prediction, the MF orientation estimates are used for
periodic filter updates when available. The overview of our pro-
posed method is shown in Fig. 1.

Figure 1. The overview of our proposed indoor attitude
estimation method using gyroscopes and depth sensors.

In summary, the key contributions of this work are as follows:

1. A tightly coupled attitude estimation method using the
noisy gyroscope measurements and depth measurements
in indoor structured environments.

2. Extensive evaluations on public datasets, which demon-
strate better performance of our method in terms of accur-
acy and robustness when compared to the state-of-the-art
methods.

2. PROBLAM FORMULATION

In this section, we briefly state the attitude estimation prob-
lem in indoor environments and introduce the preliminaries and
background theories for the problem.

2.1 Problem Statement

We first define some notations that are employed throughout
this paper for clarification. Rotation matrix R ∈ SO(3) and
Hamilton quaternion q are both used to represent rotation, with
quaternions used in state vector and rotation matrices used in
MF estimation, respectively. The i-th standard basis vector of
Rn is denoted as ei, i.e., the i-th column of In×n. In×n denotes
the identity matrix of size n. The quaternion product is denoted
by ⊗. The n-dimensional unit sphere is denoted by Sn = {x ∈
Rn+1| xTx = 1}. The skew-symmetric matrix of vector v is
denoted as [v]×. We denote (·)w as the world frame, which
is defined the same as the MF. (·)b is the body frame, which
coincides with the IMU frame. (·)c is the depth camera frame.
The rotation from frame a to frame b is denoted as Rb

a or qb
a.

This paper studies the problem of estimating the attitude qw
b in

indoor environments utilizing gyroscopes and depth sensors. To
be specific, we thoroughly investigate the depth and gyroscope
sensor models that relate the measurements with the attitude
state to formulate an information fusion framework for accurate
and robust attitude estimation.

2.2 Rigid Body kinematics

In this paper, we model mobile devices and robotic systems as
rigid bodies. Using the quaternion to represent the attitude (or
orientation in reference frame), the kinematics of the rigid-body
attitude are given by:

q̇ =
1

2
q⊗ ω (1)

where ω are the the angular rates defined locally with respect to
the true quaternion. Therefore, the gyroscope measurements
can be directly used for integration, as they provide body-
referenced angular rates (Sola, 2017).

The rigid body is equipped with an IMU which consists of a
3-axis gyroscope. We note that we use only gyroscope meas-
urements rather than all gyroscope, acceleration and magnetic
measurements due to the reasons we have introduced in Sec 1.
However, our method in this paper can be easily extended to
combine with the acceleration and magnetic measurements like
AHRS does.

The gyroscope measurements from IMU are given by

ωm = ω + b + nω (2)

where b is the gyroscope bias and n the additive noise. We
assume that the noise is Gaussian white noise, nω ∼ N (0,σ2

ω).
The bias is modeled as the random-walk noise, which derivative
is Gaussian white noise,

ḃ = nb, nb ∼ N (0,σ2
b) (3)

Directly integrating the the gyroscope measurements can ob-
tain the attitude. However, the bias is slowly time-varying
and will cause significant estimation error in long-term applic-
ation. Therefore, the bias shoule be simultaneously estimated
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and compensated. The rigid body kinematics equipped with
gyroscopes are then given as

q̇ =
1

2
q⊗ (ωm − b + nω) (4)

ḃ = nb (5)

2.3 Manhattan World

Figure 2. The MW can map to a unit sphere in the surface
normal space.

Following the MW assumption, the buildings and objects in
structured man-made environments always compose of ortho-
gonal and parallel planes. The MF is then the interpretation
of a 3D MW structure using the Gauss Mapping as shown in
Fig. 2. In other words, the MF describes the notion of the MW
in the space of surface normals (Straub et al., 2017). For per-
fect and noise-free MW, the surface normals align with the six
orthogonal directions as the columns in

Ew =

1 −1 0 0 0 0
0 0 1 −1 0 0
0 0 0 0 1 −1

 (6)

In the depth camera frame, the six orthogonal directions are
rotated by Rc

w and given as

Ec = Rc
wEw (7)

The attitude represented by Rc
w is unknown and to be estimated.

For surface normal vectors extracted from noisy depth measure-
ments, they should appear some distribution that is more likely
to locate around the columns of Ec. In other words, Ec can be
measured by depth measurements. The process of estimating
Rc

w is therefore equivalent to recovering the columns of Ec.

3. ATTITUDE ESTIMATION

3.1 Method Overview

The method overview is shown in Fig. 1. We start by processing
the depth measurements from the depth camera. In the prepro-
cessing module, a bilateral filter is applied to the depth image to
filter out outliers. The point cloud is computed from the depth
image using the intrinsic matrix of the depth camera and then
fed into the MF estimation module for MF orientation estim-
ation. At the same time, the gyroscope measurements are in-
tegrated in a high frequency during the ESKF prediction stage.

Once the MF orientation estimation is available, the ESKF cor-
rection stage is utilized. In this way, the attitude estimation
is less prone to gyroscope integration error and MF estimation
failure, thus leading to more accuracy and robustness. The atti-
tude estimates are finally streamed out in the frequency of IMU
or depth camera.

The system initialization process is done once the MF is suc-
cessfully estimated for the first time. When the absolute MF is
found, the initial attitude can be set and the gyroscope integra-
tion process can be continuously performed.

3.2 MF Orientation Estimation

To recover the orthogonal directions of the MW in the depth
camera frame, we extract the surface normals from the depth
image. After Gauss mapping to unit sphere S2, the surface nor-
mals ni always appear some kind of distribution around the or-
thogonal directions on the unit sphere S2. Finding the local
maxima, i.e., the modes, in this distribution can reveal the or-
thogonal directions, which is a typical mode-seeking problem.
A fast and robust method for solving mode-seeking problems is
the popular mean shift algorithm (Carreira-Perpinán, 2015).

We use the SO(3)-manifold constrained mean shift algorithm
to align the surface normals from the depth measurements with
the orthogonal directions of the MW (Zhou et al., 2016). The
details are given in Algorithm 1. The method is composed of
two procedures, mode seeking and orientation adjusting. The
mode-seeking procedure utilizes the mean shift method for each
planar mode. It starts by collecting all the surface normals that
are within a neighborhood of the previous orthogonal direction
rj (line 5). For every surface normal vector in the neighbor-
hood, it is rotated by Q such that the z-coordinate is along the
direction of rj (line 8). The normal vector is then lifted to the
tangent space R2 using a Riemann exponential map for con-
venient distance calculation (line 9). The mean shift can then be
easily computed in the tangential space with a Gaussian kernel,
where c is the band with of the kernel (line 11). The mean shift
is then retracted back to the unit sphere S2 using the Riemann
logarithmic map to update rj . The updated rj is finally rotated
back to the depth camera frame using Q (line 12). In prac-
tical implementation, the columns in Ec can form 24 possible
representations of the same one MF. We put together the neg-
ative and positive direction of the same orthogonal directions
into one mode (line 5). Therefore, we perform mode seeking
for three modes r̂1, r̂2, r̂3, which effectively form the MF basis
axes.

After mode seeking, we can form the columns of Ec, which is
simply Rc

w. Since Ew is the world reference frame, i.e., the
identity matrix I. To satisfy SO(3) orthogonality constraint on
rotation matrix Rc

w, we proceed with the orientation adjusting
procedure. A singular value decomposition (SVD) method is
employed against the combined modes, where λi is a weighting
factor indicating how certain the observation of the direction is
(line 16). The factors are determined by a non-parametric vari-
ance approximation using the local Kernel Density Estimation
(KDE).

In this way, the drift-free rotation of the rigid body with respect
to the reference frame of the MW, i.e., the MF orientation, can
be estimated in every depth camera frame. We note that our MF
orientation estimation method differs from the method of (Zhou
et al., 2016) in that our method utilizes only one mean shift it-
eration to save computation time. This may lose some accuracy
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for MF estimation results. However, it is an implementation
trade-off since we have an ESKF filtering mechanism to ensure
that final attitude estimation results satisfy the accuracy require-
ments.

Algorithm 1 MF orientation estimation algorithm
1: procedure MODE SEEKING
2: for j ← 1 to 3 do
3: let ni be the ith normal vector.
4: let rj be the jth mode.
5: Find the collection of normal vectors Nj satisfying

that:
‖ni,j × rj‖ < sin(θth),ni,j ∈ Nj (8)

6: Compute Q to rotate the normal vectors along the
direction of rj :

Q = I + [v]× + [v]2×
1− c
s2

(9)

where v = rj × [0, 0, 1]T , s = ‖v‖, c = rTj · [0, 0, 1]T .
7: for ni,j ∈ Nj do
8: Rotate the normal vectors: ni,j ← Qni,j

9: Compute the rescaled coordinates of ni,j in the
tangential plane of rj :

mi,j =
sin−1(λ)sign(zni,j )

λ

(
xni,j

yni,j

)
(10)

where λ =
√
x2ni,j

+ y2ni,j
.

10: end for
11: Compute the mean shift in the tangential plane:

sj =

∑
ni,j∈Nj

e−c‖mi,j‖2 ·mi,j∑
ni,j∈Nj

e−c‖mi,j‖2
(11)

12: Update the mode:

rj ← QT r̂j
T

‖rj‖
(12)

where r̂j =
[ tan(‖sj‖)
‖sj‖

sTj 1
]

13: end for
14: end procedure
15: procedure ORIENTATION ADJUSTING
16: Reassemble the estimate Rc

w,m of MF orientation:

Rc
w,m = UVT (13)

[U,D,V] = SV D([λ1r̂1, λ2r̂2, λ3r̂3]) (14)

17: end procedure

3.3 Attitude Estimation

At the arrival of MF orientation estimation results, the gyro-
scope biases are rendered observable and thus can be correctly
estimated. In this work, we choose to use the ESKF to fuse the
information. Considering that the nominal state x is integrated
by the high-frequency gyroscope measurements ωm, the noise
terms nω are not considered. The integration errors thus will
grow. The errors can be collected into the error state δx and
estimated in the ESKF. As a consequence, the magnitudes of
the error states are very small, and its evolution function can be
defined by a linear dynamic system associated with the values
of the nominal state. Since the attitude error state can be para-
metrized by a minimal three degrees of freedom, the attitude
over-parametrization issues can be avoided. When integrating

the nominal state, the ESKF predicts the error state under the
Gaussian assumption. At the arrival of the MF orientation es-
timation, the ESKF correction is performed. To this end, the
error state is observable and can be estimated. Finally, ESKF
injects the error state into the nominal state and updates the co-
variance matrix of the error state.

For our attitude estimation method, we define the nominal state
as follows:

x = [qw
b ,b] (15)

For notation brevity, the superscript and subscript of qw
b are

omitted. The corresponding error-state is given as:

δx = [δθ, δb] (16)

Using the first-order integration, the nominal state kinematics
in discrete time are written as:

q← q⊗ q{(ωm − b)∆t} (17)
b← b (18)

where q{v} is the associated quaternion to the rotation vector
v:

q{v} = exp(v) = exp(φu) =

[
cos(φ/2)

u sin(φ/2)

]
(19)

where v = φu is the rotation vector with φ the rotation angle
and u the rotation axis.

The error-state kinematics in discrete time are then derived as:

δθ ← RT {(ωm − b)∆t}δθ − δb∆t+ θi (20)
δb← δb + bi (21)

where θi and bi are the random zero-mean Gaussian impulses
with covariance matrices as Θi = σ2

ω∆t2, Bi = σ2
b∆t, re-

spectively. R{v} is the associated rotation matrix to the rota-
tion vector v.

The error-state system transition model is written as

δx← f(x, δx,ωm, i) = F(x,ωm) · δx + i (22)

where

i =

[
θi
bi

]
(23)

The ESKF state and covariance prediction equations are given
as

δ̂x← F(x,ωm) · δ̂x (24)

P← FPFT + Qi (25)

such that δx ∼ N (δ̂x,P). Qi is the covariance matrix of i. F
is the Jacobian of f() with respect to δx and is written as

F =
∂f

∂δx

∣∣∣
x,ωm

=

[
RT {(ωm − b)∆t} −I∆t

0 I

]
(26)

At the arrival of the MF orientation estimation, the system ob-
servation model can be written as

y = h(x) + v (27)

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVI-3/W1-2022 
7th Intl. Conference on Ubiquitous Positioning, Indoor Navigation and Location-Based Services (UPINLBS 2022), 18–19 March 2022, Wuhan, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVI-3-W1-2022-169-2022 | © Author(s) 2022. CC BY 4.0 License.

 
172



where y = q{Rw
c,mRc

b} =
[
qw qx qy qz

]
is the associ-

ated quaternion of MF orientation estimate in the body frame,
h() is equal to I and v is a zero-mean white Gaussian noise with
covariance V. we therefore proceed with the ESKF correction
equations:

K = PHT (HPHT + V)−1 (28)

δ̂x← K(y − h(δ̂x)) (29)
P← (I−KH)P (30)

where H is the Jacobian matrix of h() with respect to the error
state δx:

H =
∂h

∂δx

∣∣∣
x

=
1

2


−qx −qy −qz 0 0 0
qw −qz qy 0 0 0
qz qw −qx 0 0 0
−qy qx qw 0 0 0

 (31)

We note that V is set as a fixed value in this work. Readers are
encouraged to derive an appropriate value of V by taking into
consideration the uncertainties of the estimate of MF orienta-
tion.

After this correction, the observed error state is used to update
the nominal state:

q← q⊗ q{δ̂θ} (32)

b← b + δ̂b (33)

To this end, the information from depth measurements and
gyroscope measurements are tightly fused and the optimal at-
titude estimate can therefore be continuously output.

4. EXPERIMENTAL EVALUATIONS

In this section, the experimental evaluations are performed to
show the performance of our proposed method. We start by
giving a detailed implementation and parameter settings of our
method. We then evaluate the method on a real-world dataset
to show the robustness and accuracy of our method. The evalu-
ation results are also compared to the methods which use only
gyroscope measurements or depth measurements.

4.1 Detailed Implementation

For computation efficiency, we calculate the surface normals
on every 10 × 10 depth pixel block using the Area Weighted
method (Klasing et al., 2009). The parameter θth is set to be
a small value of 10◦, since we can keep a smooth track of the
orientation of the MF. During implementation, we also require
that the normals within θth should have a minimum number of
100 for more robust mode seeking. The factor c is set to be
15. The depth camera intrinsic matrix and the extrinsic rotation
matrix between depth camera and gyroscope are all given by
sensors suits settings.

4.2 Experimental Results

We perform the experimental evaluations on the open-source
OpenLORIS-Scene dataset (Shi et al., 2020). The data-
set provides visual and inertial data recorded with real-world
wheeled robots in real indoor scenes. The equipped sensor is
primarily a RealSense D435i camera, which is mounted at a
fixed height of 1m. The camera records the depth images with

Figure 3. The structured indoor scenes from OpenLORIS-Scene
dataset. (top) home1 scene. (bottom) corridor1 scene.

Figure 4. The attitude estimation error for the home1
consequence.

a resolution of 848× 480 in 30Hz and provides gyroscope data
with a frequency of 400Hz. The gyroscopes are hardware syn-
chronized to the image sensor. The ground-truth robot trajector-
ies are derived from offline LiDAR Simultaneous Localization
and Mapping (SLAM) based on the Hokuyo laser scans.

We evaluate our method on the dataset sequences of home1 and
corridor1, since they are collected on a structured indoor en-
vironments. The duration of home1 sequence is 153 seconds,
corridor1 115 seconds. The snapshots of the scenes are given
in Fig. 3.

In our experimental implementation, the gyroscope noise char-
acteristics are derived from the camera datasheet, the covari-
ance matrix V is set to be I4×4 · 1e−5. We first present the
effectiveness of our method based on the home1 consequence.
The attitude estimation errors are given in Fig. 4. The estim-
ated attitudes along with the ground-truth are shown in Fig. 5-
7. The attitudes are expressed in the form of Euler angles with
yaw, pitch, roll sequence. From the result, we can see that com-
bining the depth measurements and gyroscope data can produce
comparable results with the ground-truth attitude, thus proving
the effectiveness of our method.

We then show the performance of our method in terms of ac-
curacy and robustness by comparing against MWO (Zhou et al.,
2016), which is the state-of-the-art attitude estimation method
for structured indoor environments using only depth measure-

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVI-3/W1-2022 
7th Intl. Conference on Ubiquitous Positioning, Indoor Navigation and Location-Based Services (UPINLBS 2022), 18–19 March 2022, Wuhan, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVI-3-W1-2022-169-2022 | © Author(s) 2022. CC BY 4.0 License.

 
173



Figure 5. Comparison of our estimated roll angle with the
ground-truth for the home1 consequence.

Figure 6. Comparison of our estimated pitch angle with the
ground-truth for the home1 consequence.

Figure 7. Comparison of our estimated yaw angle with the
ground-truth for the home1 consequence.

Scene
Ours DR MWO
RMS Max RMS Max RMS Max

home1 3.3 9.4 32.8 54.2 1.9* 3.9*

corridor1 3.6 10.7 20.7 38.3 3.5* 13.1*

*: MWO failed to run the entire sequence.

Table 1. Performance Comparison (unit: degrees).

ments. We also implement the integration method using only
gyroscope measurements, namely Dead Reckoning (DR), for
comparison. The results against the datasets are summaries in
Table. 1. It can be easily shown that our method achieves bet-
ter accuracy than DR in terms of root mean square (RMS) and
maximum angular error. We also note that MWO failed when
it runs to 19% of the sequence home1 and 30% of corridor1.
The performance of MWO is relatively better than ours since
the performance statistic are collected in a much shorter range
of data. However, MWO is not guaranteed to run successfully
for entire sequences. This clearly shows the robustness of our
method when compared with the state-of-the-art method.

It is worth mentioning that our method cannot process the en-
tire sequence corridor1. This is because some part of the scene
does not follow the MW assumption, which has multiple ver-
tical walls that are not orthogonal to each other. This is typic-
ally an Atlanta World (AW), which is outside the scope of this
paper. The extension of our work from MW to AW is left as
future work. For a fair comparison, all methods are performed
on the same segment of corridor1.

5. CONCLUSIONS

In this paper, we proposed a novel attitude estimation method
for structured indoor environments that integrates depth and
gyroscope measurements. The depth information is used to
provide absolute orientation by modeling the structured man-
made environments as a MW. The depth sensor is then treated
as a reference vector sensor, which renders the gyroscope bi-
ases observable. In this way, this paper tightly fused the depth
and gyroscope measurements using a quaternion-based ESKF.
To realize the information fusion, we made several technical
contributions, including the one-iteration mean shift algorithm
for MF orientation estimation, and the underlying dynamic sys-
tem modeling. Extensive evaluations on real-world datasets
demonstrate the effectiveness, accuracy and robustness of our
proposed method.
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