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ABSTRACT: 

 

Although Global Navigation Satellite System (GNSS) has achieved success in outdoor localization, it does not often work well in 

urban canyon, which is due to the weak signals and the loss of satellites. WiFi technology is widely used at present, and the 

crowdsourced WiFi data has the advantages of rich sources and low cost. Therefore, utilizing the crowdsourced WiFi data for 

localization may effectively improve the deficiency of GNSS in the urban canyon. In this paper, we propose a novel method of 

crowdsourced WiFi fingerprint localization in urban canyon. Considering that the crowdsourced data is noisy, discontinuous and 

unstable, we carry out pre-processes for data refining, and grid-based statistical method for noise smoothing. Then in order to 

quickly locate the terminals in large-scale area, the AP coverage intersection method is proposed, in which the coverage range, 

centers and density of all APs are inferred, and the personal hotspots as well as the mobile APs are removed. To further enhance the 

positioning accuracy, the fine localization is carried out, which is based on the iterative KWNN algorithm. Extensive field tests are 

carried out in a typical urban canyon, results show that the average positioning error of our method is 16.82 m, which shows the 

effectiveness of the proposed method for crowdsourced positioning in urban canyon. 
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1. INTRODUCTION 

With the rapid development of social economy and mobile 

communication network, smart devices have become popular, 

and various location-based mobile APPs provide lots of 

convenience to our daily life, such as AMap and Meituan. 

Undoubtedly, the location-based services (LBS) have the 

significance to our daily life (Chen and Chen 2017). Currently, 

outdoor positioning services mainly rely on Global Navigation 

Satellite System (GNSS) technology. However, GNSS often 

performs poorly in urban canyon, which is due to the weak 

signals, multipath transmission and the loss of satellites (Chen 

et al. 2021a). Therefore, it is urgent to develop a supplementary 

localization system in urban canyon(Wang et al. 2018).  

Although a variety of localization methods have been proposed, 

which include UWB(Li et al. 2020), FM(Du et al. 2020), 5G 

(Chen et al. 2021b) etc, it is still challenging to use these 

schemes to achieve robust positioning in urban canyon 

environment. Considering that abundant WiFi access points 

(APs) can be well received in urban cities, it is thus promising 

to leverage the universally available WiFi infrastructure as 

GPS-free positioning scheme in urban canyon. The advantage is 

that, there is no additional cost for deploying the hardware with 

the method. 

Fingerprinting is one of the most common methods for WiFi 

positioning. However, as is well known, it is time-consuming 

and labour-intensive to collect enormous amount of Wi-Fi RSSI 

(Received Signal Strength Indication) to build the database, 

especially in large-scale areas. Recently, crowdsourcing 

approach has been a promising solution to tackle this problem 

by obtaining a large amount of data from massive mobile users. 

In the literature, Jung et al. (Jung et al. 2016) use an 

unsupervised learning method to calibrate the localization 

model with unlabelled crowdsourced WiFi fingerprints and 

estimate the optimal position of fingerprints on an indoor map, 

under the constraint by the inner structure of the map, such as 

walls and partitions. Song et al. (Song and Wang 2017) propose 

a WLAN fingerprint indoor positioning method based on 

implicit crowdsourcing and semi-supervised learning. This 

method constructs database with a large number of unlabelled 

data and some labelled data, and estimate location through Co-

Forest algorithm. Li et al. (Li et al. 2020) propose an enhanced 

crowdsourcing-based localization method, which integrates 

inertial, wireless and magnetic sensors. And it avoids the 

intervention of users and tuning of parameters, using 

crowdsourced sensor data to update simultaneously both the 

magnetic and wireless databases while positioning. It is noticed 

that, such techniques mentioned above have been developed for 

indoor positioning, where the number of APs is limited and the 

areas are relatively small, compared with the positioning in 

outdoor urban canyon scenarios. As to the research on 

crowdsourced outdoor localization, the WoLoc system (Wang 

et al. 2018) adopts a semi-supervised manifold learning 

technique to utilize all the labelled and unlabelled 

crowdsourced hotspot data and estimates the queried location. 

But their data is obtained by only three smartphones, and the 

user movements are only walking and bicycling, therefore, the 

quality of the data is relatively continuous and stable. It is the 

fact that, the quality of the crowdsourced data is much worse, 

since it is collected by different brands of mobile phones, and 

the motion patterns of collectors also vary. In addition, to save 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVI-3/W1-2022 
7th Intl. Conference on Ubiquitous Positioning, Indoor Navigation and Location-Based Services (UPINLBS 2022), 18–19 March 2022, Wuhan, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVI-3-W1-2022-177-2022 | © Author(s) 2022. CC BY 4.0 License.

 
177



 

the energy of phone battery, the collection frequency is low and 

unfixed. As a result, the crowdsourced data in reality is noisy, 

discontinuous and unstable, which brings great challenge to the 

localization research. 

In this paper, we propose a novel crowdsourced WiFi 

fingerprint localization method used in urban canyon scenarios. 

To tackle the problem of noise and instability of crowdsourced 

data, we first filter out the data with low positioning accuracy in 

the pre-processing process. Then a grid statistical method is 

carried out to smooth the noise. For a quick localization in a 

large-scale urban canyon, the AP coverage intersection method 

is applied. To further improve the position accuracy, the 

iterative KWNN method is carried out.  

The contributions of this work include the following aspects:  

⚫ A series of processes for refining the crowdsourced 

data are carried out, which includes removing abnormal 

records with low confidence of GPS accuracy and 

smoothing the noise using the grid-based statistical 

method. 

⚫ To quickly locate the terminals in the large-scale 

urban canyon, the AP coverage intersection method is 

proposed. In order to achieve this, an AP database is 

constructed, in which the coverage range, centers and 

density of all APs are inferred, and the personal hotspots 

as well as the mobile APs are removed. 

⚫ To further enhance the positioning accuracy, a fine 

localization is applied, which is based on the iterative 

KWNN algorithm. 

⚫ To validate the feasibility of our method, extensive 

field tests are conducted in a typical urban canyon 

scenario with 1.158 km in length and 0.574 km in width. 

Test results show that the average positioning error is 

16.82 m, which indicates that our method is efficient.  

 

2. CROWDSOURCED WIFI FINGERPRINT-BASED 

LOCALIZATION 

To tackle the deficiency of GNSS in urban canyon, a whole 

crowdsourced WiFi fingerprint localization system is proposed 

for outdoor urban canyon environment. The system consists of 

three parts as shown in Figure 1, namely, the pre-processing of 

the crowdsourced data, the offline building database and the 

online localization.  

 
Figure 1. The architecture of crowdsourced WiFi fingerprint localization system  

 

2.1 Pre-processing of Crowdsourced data 

In reality, the crowdsourced data is noisy, unstable and of 

varying quality. In order to remove the data with inaccurate 

GPS coordinates, we carry out the pre-processing method.  

The crowdsourced data consists of many elements as shown in 

Figure 2, including the scanning time, the location (latitude, 

longitude) of the collector, confidence range, and a set of 

information of the APs measured by the phone. What need to be 

explained is that the confidence range represents the accuracy 

of GPS, which ranges from 1 to 200. Basic Service Set 

Identifier (BSSID) is the Media Access Control (MAC) address 

of AP. And the number of APs received by each terminal is 

between 1 and 100.  

 

Figure 2. The elements contained in crowdsourced data 
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Firstly, we remove the data with a confidence range of GPS 

accuracy beyond 10 meters, in this way we can filter out lots of 

data with poor quality initially. To further eliminate the 

discontinuous data, we remove such abnormal data with huge 

distance changes in a short time interval (e.g. moving 50 m in 2 

seconds) by analysing the GPS coordinates.   

2.2 Database construction 

2.2.1 Inference on the Coverage of APs  

In order to quickly locate in the large-scale urban canyon, we 

use the AP coverage intersection method, which is described in 

detail in section 2.3.1. And to obtain the coverage of APs, we 

should infer the range and center of each AP first. 

Firstly, we collect the information of all APs in the testing area 

and classify all the testing records according to their BSSID to 

obtain an AP database, and infer the centers, radii and density 

of all APs. In other words, an AP set covers all the coordinates 

of its receivers. Then we put the coordinates of the covered 

receivers into the corresponding AP set, and use the centroid 

localization method (Lv et al. 2019) to calculate the 

approximate location of AP, that is, take the average 

coordinates of all known receivers as the center of the specific 

AP: 

1

1
( , ) ( , )

n

i i

i

x y x y
n =

=                                 (1) 

Where (x, y) is the estimated center coordinates of AP, (xi, yi) is 

the known coordinates of the receiver i, n is the number of 

receivers that can hear the AP. 

Then we calculate the average distance between all receiving 

points and the AP center, and take this as the coverage radius of 

AP: 
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However, there may have some personal hotspots and mobile 

APs in the AP database. Among them, the personal hotspots are 

temporary, and the mobile APs are unfixed, such as vehicle-

mounted APs. These APs may adversely affect positioning, so 

we are supposed to eliminate them as much as possible. 

It’s noticed that the personal APs cover few receivers, so we 

can get rid of those APs heard by a small number of terminals. 

And the mobile APs cover receivers sparsely, so we can remove 

those APs with low density. The density can be calculated using 

(3) 

2

n
D

R
=                                         (3) 

To sum up, we obtain an AP database shown in Figure 3, which 

contains the BSSIDs, the location of receivers, the AP centers, 

radii and density of WiFi APs. 

 

Figure 3. The structure of AP Database 

2.2.2 Building Fingerprint Database Using Grid-Based 

Statistical Method 

In order to smooth noise and compress the size of database, we 

construct a fingerprint database using grid-based statistical 

method. 

Firstly, we divide the research area into several grids, then the 

records are placed into the corresponding grid according to their 

GPS coordinates. Each grid point can be called a fingerprint, 

and we make full use of data from the surrounding grids (upper 

left, upper right, lower left and lower right) to obtain more 

accurate RSSI measurements. In other words, the data in a grid 

is reused four times, except for the edge grids.  

Specifically, all AP information of the four neighboring grids is 

classified by the BSSIDs, and we eliminate the personal 

hotspots and mobile APs according to the AP database. For 

each AP, it has several RSSI measurements since there are 

several records have heard it, so we calculate the mean value of 

all RSSI measurements. The process is shown in Figure 4.  And 

we will discuss the validity of this approach in Section 3.2.2. 

 

Figure 4. The method of building grid fingerprint database 

2.3 Online Localization  

In order to carry out real-time positioning in the large-scale 

urban canyon, a coarse-to-fine strategy is adopted during the 

online localization. The aim of the coarse localization is to 

quickly achieve an initial estimated position by AP coverage 

intersection, and the position is further refined by the step of 

fine localization. 
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2.3.1 Coarse Localization based on AP coverage 

intersection method 

To save time and computing resources, we can quickly 

calculate the coarse estimated position and coverage radius 

according to the distribution parameters of APs obtained during 

the construction of AP database above, using the AP coverage 

intersection method as shown in Figure 5. 

 

Figure 5. Coarse localization: the light grey rectangle 

represents the entire testing area, the different colored circles 

represent different APs, the black position is the coarse 

estimated position, and the black circle indicates the fingerprint 

matching area. 

In AP coverage intersection method, we can obtain the coarse 

estimated position and the coverage radius of matching area 

through (4) and (5): 

1c
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=                                       (4) 
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Where (xi , yi) is the center of APi, Ri is the coverage radius of 

APi, n indicates the number of APs heard by the testing record 

and existing in the AP database, (xc , yc) is the coarse estimated 

position, Rc is the coverage radius of the matching area. 

As a result, we successfully limit the matching area to a small 

area, and greatly save the calculation time and improve the 

positioning efficiency.  

2.3.2 Fine Localization based on iterative KWNN 

To further improve the positioning accuracy, we carry out the 

fine localization. The initial fingerprint matching area is 

determined as a circular area according to the coarse estimated 

position and coverage radius obtained by coarse localization, 

with the coarse estimated position as the center and the 

coverage radius as the radius, all the fingerprints of the grid 

fingerprint database within this range should be matched. 

During the process, we calculate the similarity between the 

fingerprints and the testing data using the cosine distance (Shuai 

et al. 2015).  
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       (6)  

where 
f

uL  is the common AP set, 
u

lr  represents the RSSI value 

of APl measured by user, 
f

lr represents the RSSI value of APl 

measured by fingerprint. 

Since the APs they heard might not be exactly the same, we set 

the missing values as -120 dBm for APs appearing in 

fingerprint 
f

lr while not in fingerprint 
u

lr . 

Then we get a set of candidate points, and use K Weighted 

Nearest Neighbor algorithm (KWNN) (Wei et al. 2016) to 

further refine the estimated position. We select the top K 

fingerprints with high similarity and use them to calculate the 

fine estimated position: 

1 1

( , ) { * , * ,}
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=                      (7) 

Where (xf , yf) is the fine estimated position, (xi , yi) is the 

coordinates of candidate point i, we set K = 20 in practice, and 

i  is the weight of candidate point i calculated as follows: 
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                                        (8) 

However, considering the case that, the position of user might 

be outside the fingerprint matching area as shown in Figure 6. 

Therefore, we adopt a method of iteratively updating the 

matching area. 

 

Figure 6. The possible condition of coarse localization 

During the process, we perform several rounds of fingerprint 

matching, and update the center of matching area with the 

estimated position calculated in the last round. In addition, if 

the similarity of all candidate points is low (e.g. less than 0.9), 

the coverage radius will be lengthened to obtain more candidate 

points. The distance Δd between the estimated position 

calculated in this round and last round is obtained as follows: 

1 2 1 2( ) ( )n n n n

d f f f fx x y y− − = − + −                 (9) 

where ( , )n n

f fx y  is the estimated position calculated in this 

round, 
1 1( , )n n

f fx y− −
 is the estimated position calculated in last 

round. 

The loop will continue until Δd is less than εd or the number of 

loops reaches the maximum, and we set εd = 1 meter and set the 

maximum number of rounds is equal to 10. The process is 

shown in Figure 7.  

 

Figure 7. The process of iteratively updating the matching area  
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Algorithm 1: Fine localization 

Input: The WiFi information received by user testData, the 

coarse estimated position (xc , yc), the radius of matching area Rc 
and the grid fingerprint database DB 

Output: The fine estimated position ( , )f fx y  

 1: // Initialize parameters 

 2: n ← 0, Rf ← Rc, (xf  , yf) ← (xc , yc) 

 3: Define a point set candiPoints to store candidate points 

 4: While n < 10 

 5:     Extract the fingerprints in DB within the matching area  

 with the center (xc , yc) and the radius Rc,, the number  

 of fingerprints is fingerNum 

 6:     For i = 1 to fingerNum do 

 7:          Calculate 
f

uS  between testData and fingerprints(i) 

 8:          Add fingerprints(i) into candiPoints 

 9:      end // for     

 10:    Keep k fingerprints with high similarity in candiPoints  

  and remove others with low similarity 

 11:    Calculate the estimated position ( , )n n

f fx y  using KWNN 

 12:    If Δd < εd then  

 13:         Break // exit   

 14:    Elseif the highest similarity less than 0.9 

 15:          Rf ← Rf + Δr 

 16:    Else  

 17:         ( , ) ( , )n n

f f f fx y x y  

 18:    End // if 

 19: End // while 

 

3. EXPERIMENTS AND EVALUATION 

3.1 Experiment Setting 

The crowdsourced dataset is collected over 3 days by a large 

number of volunteers using different brands of mobile phones. 

The testing area is located on Luoyu Road in Wuhan, Hubei 

Province, which covers an area of about 0.67 square kilometers, 

as shown in Figure 8. There are many high-rise buildings and 

large shopping centers here, and it is a typical urban canyon 

environment, as shown in Figure 9. In this area, GNSS signals 

are weak but WiFi APs are abundant. The collected data 

includes GPS coordinates, GPS accuracy, and WiFi information, 

such as BSSIDs and RSSIs. The sampling frequency of the 

crowdsourced data is unfixed with the time interval ranging 

from seconds to minutes or even hours, which makes 

localization more difficult. 

 

Figure 8. Satellite image of the testing area 

 (1.158 km × 0.574 km) 

The total number of data records is 223625. In each record, the 

number of hearable APs varies from 1 to 100. Figure 10 shows 

the GPS coordinates of the total data records. Different points 

represent different records, and the color of the points is 

randomly set. It can be seen that most of the collected data are 

concentrated on wide roads and a few are in narrow areas, 

which is in line with the trajectory of people's daily life. 

 

Figure 9. Street view of the testing area 

 

Figure 10. Location of the total data records 

3.2 Performance Analysis 

3.2.1 Pre-processing of Crowdsourced Data 

To evaluate the effectiveness of the pre-processing module, we 

conduct a group of comparative tests: one group of the test is 

not pre-processed, and the other test is pre-processed. Figure 12 

shows the results of comparative tests. As can be seen from 

Figure 12, compared with the test without pre-processing, the 

positioning error in 95% accuracy of the test with pre-

processing is reduced by 42.72%. The reason may be that GPS 

is prone to failure in urban canyons, which makes the 

crowdsourced data contain a large number of wrong location 

references. Therefore, after removing abnormal records with a 

confidence range of more than 10 m, or records with large 

changes in distance in a short time interval, the positioning 

accuracy is significantly improved. 

 

Figure 12. Error CDF of with/without pre-processing 
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3.2.2 Results of AP Database and Grid Database 

During the process of building AP database, the APs whose 

number of receivers is less than 7 are eliminated, which are 

classified as the personal hotspots, while those APs are also 

eliminated if the hearable number is less than 0.002 normalized 

in one m2, which are classified as the mobile APs. 

After clearing a large number of the personal hotspots and 

mobile APs, the total number of APs in the testing area is 20208 

and the AP density is about 30402 per km2. Figure 11 shows the 

location of all APs, it can be seen that the APs density near the 

shopping center is high, while it is low in residential areas. 

 

Figure 11. Approximate location of APs estimated by the 

centroid method described in section 2.2.1 

As can be seen from Figure 13, compared with the test before 

removing the personal hotspots and mobile APs, the positioning 

accuracy in 95% of the test after removing the personal hotspots 

and mobile APs is increased by 10.54 m. The reason may be 

that the mobility of personal hotspots and mobile APs has an 

adverse effect on localization. 

 

Figure 13. Accuracy comparison between after/before 

removing the personal hotspots and mobile APs. 

To compare the influence of the grid length on positioning, the 

grid length is set as 2 m, 3 m, 4 m, and 5 m. As can be seen in 

Figure 14, the grid length does not have effect on the coarse 

positioning, which is due to the reason that, the coarse 

localization is only achieved by the AP coverage intersection. It 

also can be observed that the average error of fine positioning 

does not change dramatically with the grid length changes, and 

the grid length of 3 or 4 meters achieves the best positioning 

results. The reason may be that, when the grid size is small, 

each grid contains a small number of records, so there are not 

enough measurements for noise smoothing. And when the grid 

size is large, the fingerprints are so sparse that the positioning 

accuracy decreases. 

 

Figure 14. Accuracy comparison of different grid lengths 

As mentioned in Section 2.2.2, a grid point contains the data 

from four neighbouring grids, i.e., upper left, upper right, lower 

left, and lower right. To further verify the effectiveness of the 

proposed method, we carry out two comparative tests using the 

same testing data, with the one using the data from the four 

neighboring grids, while with the other using the data from one 

grid, and set the grid center as the fingerprint coordinates as 

shown in Figure 15. Figure 16 shows that compared with the 

test using only one grid, the positioning accuracy in 95% of the 

test using four neighboring grids is enhanced by 2.02 m. 

 

Figure 15. Two methods of constructing the grid fingerprint 

database 

 

Figure 16. Accuracy comparison between using four 

neighboring grids and using only one grid 
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3.2.3 Online Localization 

Figure 17 shows the distribution of the number of WiFi APs 

received by testing records, it can be found that most records 

can receive 21 to 40 APs. And many records can receive 100 

APs, this is because one device can only record a maximum of 

100 APs even though it can detect more than 100 APs. 

 

Figure 17. The number of WiFi APs received by testing data 

To explore the relationship between the number of hearable 

APs and localization accuracy, we classify the positioning 

results into five categories, which are shown in Figure 18. It can 

be seen that the localization accuracy of the testing data 

receiving 1-20 APs is the lowest. The best positioning accuracy 

comes from the testing data of the category of 21-40 APs 

received. Since the large number of hearable APs will increase 

the energy consuming of the mobile phone, the tests results 

suggest that, the proposed localization method is able to trade-

off between achieving high-precision localization and low 

power consumption. 

 

Figure 18. Error statistics of testing data receiving different 

numbers of APs 

However, it can be noticed from Figure 18 that the positioning 

accuracy does not continue to increase with the number of APs 

received.  Figure 19 shows the location of all test points, and 

Figure 20 shows the location of testing points receiving 

different numbers of APs. It can be observed that the testing 

points receiving 21-40 APs and 41-60 APs are evenly 

distributed in the testing area, while the testing data receiving 

61-80 APs and 81-100 APs are mostly distributed in the ends of 

the road. And it can be seen from the Figure 8, the ends of the 

road are the areas where high-rise buildings intersect. The AP 

density in this area is high, but the high-rise buildings 

intersection will form a complete blind area of GPS, resulting in 

deviation of their position reference. 

 

Figure 19. Location of testing data  

 

Figure 20. Location of testing data receiving different numbers 

of APs 

Figure 21 shows the positioning accuracy of all testing points. 

In the figure, the mean value mu is equal to 16.82 m and the 

standard deviation is 16.14 m. The testing points with 

positioning error greater than 49.10 m are marked in red and the 

rest in green. It can be seen that most of the red points gather 

around the area with high-rise buildings. 

 

Figure 21. The statistics of the testing results 

 

4. CONCLUSIONS 

To solve the location problem in urban canyon, a novel 

crowdsourcing WiFi fingerprint location method is proposed in 

this paper. The method consists of three steps, namely, pre-

processing, offline step for database building and online 

location.  
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To tackle the problem of noise and instability of crowdsourced 

data, we proposed a pre-processing method to remove abnormal 

records, and the test results showed that this method is able to 

effectively improve the positioning accuracy. In the step of 

database construction, we applied grid-based statistical method 

to smooth the noise and compress the size of database. To 

quickly locate in the large-scale urban canyon, we proposed the 

method of AP coverage intersection and built an AP database, 

then eliminated the personal hotspots as well as the mobile APs. 

To further improve the position accuracy, we carried out the 

fine localization, which is based on the iterative KWNN method. 

The proposed method was verified by the tests results in a 

typical urban canyon. By applying the pre-processing method, 

the positioning accuracy was increased by 42.72%, compared 

with using the raw crowdsourced data directly. And by applying 

the process of removing the personal hotspots and mobile APs, 

the positioning accuracy was able to improve by 18.17%. In 

addition, in the process of fine positioning, with four 

neighboring grids to construct fingerprint database, the 

positioning accuracy was increased by 2.02 m. In general, the 

average positioning error of the proposed method was 16.82 m, 

which showed the effectiveness of the proposed method used in 

urban canyon. 
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