
TIGHTLY-COUPLED RTK/INS INTEGRATED NAVIGATION USING A LOW-COST
GNSS RECEIVER AND A MEMS IMU

Xiao Sun1 , Yuan Zhuang1, 2∗, Shaohua Chen1, Yuxin Shao1, Dong Chen1

1 State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University,
Wuhan 430079, China. (e-mail: xsun@whu.edu.cn (X. Sun))

2 Wuhan Institute of Quantum Technology, Wuhan 430206, China.

Commission III, WG III/1

KEY WORDS: Integrated navigation, RTK, INS, Tightly coupled integration, GNSS-challenging environment.

ABSTRACT:

The Global Navigation Satellite System (GNSS) real-time kinematics (RTK) is a technology to provide centimeter-level navigation
services in outdoor areas. GNSS/INS integration is a typical integrated navigation system, including loosely, tightly, and ultra-tightly
coupled integration, which has been studied for decades. Although GNSS aiding INS is a relatively mature system, RTK is rarely
used to be integrated with INS. In this work, we present a model with a tightly-coupled (TC) scheme to integrate RTK and INS
using an extended Kalman Filter (EKF). Multi-GNSS multi-frequency double-differenced pseudo-ranges and carrier phases are the
updates of the measurement model. To make the ambiguity resolution, we used the well-known LAMBDA algorithm to search for
the possible ambiguity series, and then use the best integer equivariant (BIE) method to decide on the most likely ambiguities with
a proper weighting strategy to select from the ambiguity candidates. To test the performance of the proposed TC integration model,
we implemented two field vehicular tests with a low-cost GNSS module equipped with a Micro-Electro-Mechanical System (MEMS)
IMU. Using this low-cost platform, our RTK/INS integrated navigation engine can achieve centimeter-level navigation solutions under
open sky conditions. In harsh environments, our TC integration system navigates on two scenarios with mean errors of 0.48 and 0.57
m, which is 51% and 28% better than a loosely-coupled system.

1. INTRODUCTION

The Global Navigation Satellite System (GNSS) real-time kine-
matics (RTK) is a technology to provide centimeter-level posi-
tioning services in outdoor areas. Under open-sky conditions
when ionosphere disturbances are not severe, RTK can achieve
rapid or even instantaneous ambiguity resolution (AR) for short
baseline. However, GNSS faces problems such as signal block-
age and multipath in urban areas and other GNSS-challenging
environments. To provide continuously reliable navigations, the
inertial navigation system (INS) is considered as an ideal tech-
nology to aid GNSS. GNSS/INS integration is a typical inte-
grated navigation system, including loosely, tightly, and ultra-
tightly coupled integration, which has been studied for decades.
Although GNSS aiding INS is a relatively mature system, most
researches focused on single-frequency pseudo-range measure-
ments, as a result, RTK is rarely used to be integrated with INS.

In the literature, a tightly-coupled RTK/INS integrated naviga-
tion system has been studied by a few works [Li et al., 2017,
Yang et al., 2021, Li et al., 2019, Yan et al., 2021]. Reference
[Li et al., 2017] discussed the integration of multi-GNSS single-
frequency RTK and MEMS IMU. Further, the same group inte-
grates RTK/INS with the aid of a monocular camera to use in
GNSS-challenging environments [Li et al., 2019]. This work
solved the problem in a harsh environment by using a camera and
a navigation-grade IMU. Reference [Yang et al., 2021] proposed
a non-holonomic robust and adaptive Kalman filter to improve the
robustness of the RTK/INS integrated system. Reference [Yan et
al., 2021] studied the in-motion alignment in RTK/INS system
for autonomous driving. Similar to RTK/INS, a tightly-coupled
PPP-RTK/INS integrated system under the complex urban envi-
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ronments is discussed in [Li et al., 2021]. However, multi-GNSS
multi-frequency RTK/INS tightly-coupled integration has rarely
been explored, nor has been the use of a low-cost GNSS receiver
with a MEMS IMU.

In this work, we present a model with a tightly coupled scheme to
integrate RTK and INS using an extended Kalman Filter (EKF).
Dual-frequency double-differenced (DD) pseudo-ranges and car-
rier phases are used as measurements. To make the ambiguity
resolution, we used the well-known LAMBDA algorithm [Teu-
nissen, 1995] to search for the possible ambiguity series, and then
use the best integer equivariant (BIE) method [Teunissen, 2003]
to decide on the most likely ambiguities with a proper weighting
strategy to select from the ambiguity candidates.

To test the performance of our tightly coupled integration model,
we did several field vehicular tests within the campus of Wuhan
University. The test platform is built on an AgileX SCOUT mini
robot, with an Aceinna OpenRTK330LI GNSS module equipped
with a Micro-Electro-Mechanical System (MEMS) IMU. Using
this low-cost platform, our RTK/INS integrated navigation can
achieve centimeter-level navigation solutions under open sky con-
ditions, both for loosely coupled (LC) and tightly coupled (TC)
schemes. As for sheltered conditions, LC RTK/INS will not give
reliable positioning solutions. Correspondingly, TC RTK/INS
integration will moderately help with computing the states and
makes the navigation trajectory smoother. Experimental results
show our TC RTK/INS integration gets better positioning results
than LC schemes and is suitable for low-cost outdoor navigations.
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2. METHODOLOGY

2.1 Multi-GNSS Multi-frequency RTK Model

GNSS uses the pseudo-range and carrier phase measurements to
locate a target. The former is a kind of distance measurement
and is irrelevant to carrier frequency. However, when we use car-
rier phases for positioning, these measurements should be trans-
formed into ranges using the corresponding wavelengths. RTK
uses DD observation equations to eliminate the atmospheric de-
lays, clock errors, satellite orbit errors, etc., which goes [Li et al.,
2017, Yang et al., 2021]

∇∆P ijrb = ∇∆ρijrb +∇∆εijP,rb (1)

λ∇∆ϕijrb = ∇∆ρijrb + λ∇∆N ij
rb +∇∆εijϕ,rb (2)

where ∇∆()ijrb indicates the DD symbol between satellites i,j
and receivers r,b. P and ϕ are the pseudo-range and the carrier
phase. λ is the wavelength to transform phases into ranges. ρ
is the distance between a satellite and a receiver. N is the phase
ambiguity and ε is the measurement error including noises and
multipath errors. Please note that these equations hold only for
short baselines when ionosphere disturbance is not severe.

For multi-GNSS multi-frequency RTK, we need to divide the car-
rier phase observations into categories referring to the GNSS sys-
tems and carrier frequency bands. For instance, the carrier fre-
quency of GPS L1 (1575.42MHz) differs from that of BDS B1
(1562.098MHz). As a result, if we difference two measurements
of these two bands, the ambiguity becomes λL1NL1−λB1NB1,
which can not be derived as an integer any more. To maintain
the integer property of the phase ambiguity, all the DD observa-
tion equations are discussed among the category with the same
frequency band.

In each frequency band where at least two satellites are observ-
able, we select a reference satellite to do differencing. The refer-
ence satellite is chosen with the highest elevation and relatively
higher signal-to-noise ratios (SNR). To resolve the ambiguity, we
use the well-known LAMBDA algorithm [Teunissen, 1995] to
decide on several groups of ambiguity candidates, and then use
the BIE method [Teunissen, 2003] to average these candidates
with properly designed weights

N =
wiNi
n∑
i

wi

,wherewi = e−
si
2 − e−

smax
2 (3)

In (3), Ni is the ith ambiguity within n candidates, and si is its
normalized uncertainty, whose value has a lower bound of 1. An
ambiguity N is an integer, or in another way, a fixed one only
when all the candidates averaged are integers. A fixed ambigu-
ity is with relatively small variance, while a float one is with a
variance calculated by

σ2
float,i =

wi(N −Ni)2
n∑
i

wi

(4)

Since in this work RTK is integrated with a MEMS IMU, whose
accuracy is not high, IMU does not aid the ambiguity resolution.

2.2 Tightly Coupled RTK/INS Integration Scheme

In our TC multi-GNSS multi-frequency RTK/INS integrated nav-
igation system, we choose error states of 21 dimensions to form
the state vector

x =
[
δrT δvT ψT δbTg δbTa δsTg δsTa

]T (5)

where δr , δv, and ψ are position errors, velocity errors, and at-
titude errors. bg and ba are gyro bias errors and accelerometer
bias errors, sg and sa are gyro scale factor errors and accelerom-
eter scale factor errors. All these vectors are in the navigation
frame (North-East-Down, NED). For a MEMS IMU, the differ-
ential states are simply modeled with only some dominant er-
ror terms, hence, the first three vectors are modeled in (6). Bias
and scale factor errors are modeled with white noises, since there
seems to be no evident noise correlation. ψ̇nδv̇n

δṙn

 =

 −Cn
b δω

b
ib − ωnin ×ψn(

Cn
b f bib

)
×ψn + Cn

b δf
b
ib − (2ωnie + ωnen)× δvn + δgn

δvn − ωnen × δrn


(6)

In (6), Cn
b is the direction cosine matrix to transform from b-

frame (body frame) to n-frame (navigation frame). f bib and ωbib
are accelerometer and gyro outputs. ωnin is the angular velocity
from i-frame (inertial frame) to n-frame, which is projected on
n-frame (similar marks can be explained as this). δgn, δωbib, and
δf bib are calculated as follows.

δgn =
2gn

R+ h
(7)

δωbib = δbg + diag(ωbib)δsg (8)

δf bib = δba + diag(f bib)δsa (9)

Using (6)-(9), we could make the 21× 21 state transition matrix
Φ in the discrete-time domain for Kalman prediction. The state
and covariance prediction of EKF are calculated by

x−
k = Φxk−1 (10)

P−
k = ΦPk−1Φ

T + Q (11)

where Q is the covariance of noise.

In our model, we use DD pseudo-range and carrier phase mea-
surements to update. In the measurement model, the innovation
vector zk is expressed by

zk =

[
∇∆ρ̂INS −∇∆PGNSS

∇∆ρ̂INS − λ (∇∆ϕGNSS −∇∆N)

]
(12)

where ρ̂INS is the predicted distance calculated by satellite posi-
tions and predicted receiver positions. Considering the lever arm
between the GNSS receiver and the INS center, a single INS-
predicted DD distance∇∆ρ̂INS can be calculated by

∇∆ρ̂INS =
∣∣∣rir∣∣∣− ∣∣∣rib∣∣∣− (

∣∣∣rjr∣∣∣− ∣∣∣rjb∣∣∣)
− (ei − ej) ·Ce

n(δrn −Cn
b `
b) (13)

where `b is the lever arm vector in b-frame, ei and ej are unit
vectors of between the satellite i, j and the receiver in e-frame.

The design matrix is calculated using unit vectors and the lever
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arm vector [Li et al., 2017]

Hk =

[
H∗
ρC

e
n 0nρ×3 H∗

ρC
e
n

[(
Cn
b `
b
)
×
]

0nρ×12

H∗
ϕCe

n 0nϕ×3 H∗
ϕCe

n

[(
Cn
b `
b
)
×
]

0nϕ×12

]
(14)

where H∗
ρ and H∗

ϕ are used for pseudo-range and carrier phase
measurements, respectively. H∗

ρ is a matrix with a dimension
nρ × 3 (nρ is the number of DD pseudo-range observations),
H∗
ϕ is with a dimension nϕ × 3. Each line of them is a vector(
−ei + ej

)T , corresponding to the satellite pair and its carrier
frequency.

In addition, the covariance matrix R of DD observations influ-
enced navigation performance much. In our scheme, we make
the R matrix based on SNR, elevations, and the ambiguity vari-
ance calculated by (4), to form the following equation.

σ2 = σ2
N ×

10− SNR−40
10

(sin e)2
(15)

where σ2
N is the ambiguity variance discussed in subsection 2.1,

e is the elevation.

2.3 Overall Architecture

We use accelerometer leveling and a given heading for attitude
alignment. The initial position is set with a single point position-
ing (SPP) result. In addition, to simplify the navigation prepara-
tion, we set the accelerometer bias with a zero vector and the gyro
bias with mean values of gyro measurements during the static
phase. The initial scale factors are also set with zero.

The overall architecture of this RTK/INS integration after the
alignment phase is shown in figure 1. We use the network RTK
via NTRIP protocol to collect observations from a virtual base
station. After collecting rover and base station data, we select a
reference satellite for each frequency band and double-difference
the observations based on the selected reference satellites. Then,
we use the LAMBDA algorithm and BIE method to solve the am-
biguities. The solved ambiguities, together with double-differenced
carrier phases and pseudo-ranges, are fused with the INS-predicted
DD ranges to form the innovations for our Kalman filter using the
equation (12). After the process of an EKF, the states are fed back
to INS for revision. Position, velocity, and attitude error states are
also used to update the navigation outputs.

Base Station

Rover Station

Select Reference
Satellites and 

Double-Differencing
Ambiguity Resolution

Data Fusion

IMU INS Mechanization

INS-predicted
DD Ranges

EKF

Updated PVA

Output

Feedback to INS

Figure 1: The system diagram of RTK/INS integration after the
alignment phase.

3. EXPERIMENTAL SETUP

To test our TC RTK/INS integrated navigation system, we imple-
mented several field vehicular tests within the campus of Wuhan
University. The hardware platform is built on an AgileX SCOUT

mini robot, with an Aceinna OpenRTK330LI GNSS module equipped
with a Micro-Electro-Mechanical System (MEMS) IMU, which
is shown in figure 2. The OpenRTK330LI GNSS module is of
low-power consumption and can output the dual-frequency ob-
servations. The IMU model is OpenIMU330BI, whose perfor-
mance parameters are listed in Table ??. These parameters are
read from its datasheet and are used to form the covariance ma-
trix Q in (11).

Aceinna OpenRTK330LI module

AgileX SCOUT mini

Patch-sized antenna

Unicore UB4B0

Mobile power supply

Figure 2: The hardware platform of our experiments.

We did two kinematic experiments using this system. In an open
sky environment, it is easy for RTK to obtain a high proportion of
fixed solutions. In this case, both LC and TC integration schemes
can achieve accuracy within ten centimeters, and there are no sig-
nificant differences between the results of these two schemes. To
test the performance in harsh environments, we implemented two
tests on sheltered roads. Figure 3 shows the trajectories of these
two tracks. In these two tracks, most RTK solutions are float and
may contain errors of several decimeters, or even larger than 1
meter. Some fixed solutions are wrongly fixed and contain errors
greater than 1 decimeter.

Characteristics Value
Sampling rate 100Hz

Velocity Random Walk 6.67× 10−4m/s/
√

s
Angle Random Walk 5.82× 10−5rad/

√
s

Bias Instability of Acce. 1.96× 10−4m/s2

Bias Instability of Gyro 7.27× 10−6rad/s
Scale Factor Error of Acce. 0.4%
Scale Factor Error of Gyro 0.4%

Table 1: Technical characteristics of OpenIMU330BI from
datasheet.

To evaluate the accuracy of our integrated navigation trajectories,
we used a high-precision Unicore UB4B0 board (shown in fig-
ure 2), which adopts triple-frequency RTK technology. Since its
power consumption is much higher than Aceinna OpenRTK330LI,
a mobile power supply was installed to maintain the rated power
of this Unicore board. In both two test sites, Unicore UB4B0 was
capable of fixed solutions of a proportion higher than 99%, thus
it was trustworthy to be regarded as a reference.
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(a)

(b)

Figure 3: Two RTK tracks of our experimental results, on which
the yellow parts are float solutions, green parts are fixed solutions.
(a) Track 1 is a two-round clockwise loop on Sept. 26, 2021; (b)
Track 2 is a two-round counterclockwise loop on Oct. 27, 2021.
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Figure 4: The integrated navigation results of track 1.

4. RESULTS AND ANALYSIS

In both track 1 and track 2, RTK measurements were 1 Hz, and
the RTK/INS integrated navigation outputs were 10 Hz. Before
the rover engine was started, it would stay static for a couple of
minutes for alignment. In this alignment phase, no navigation
results were computed. Thus, this phase is not shown in this sec-
tion.

Track 1 is a two-round rectangular-like trajectory. The western
part of this track was not sheltered much, in which RTK got a
high proportion of fixed solution (shown in figure 3a). However,
the rest scenarios of this track were severely sheltered, where the
RTK accuracy declined to several decimeters or even meters. The
observation condition (sheltered or not) matched well with our
navigation results. Figure 4 shows that both LC and TC solutions
in the eastern part are of worse accuracy than the western part. On
sheltered conditions, the TC scheme got much better navigation
performance than the LC scheme.

We used the Unicore UB4B0’s RTK results as references to eval-
uate the errors. Figures 5 and 6 show positioning errors of track
1. In figure 5, there are many epochs where errors are evidently
smaller. Those are static phases, which have been divided out.
In figure 6a, the Cumulative Distribution Function (CDF) implies
that the average error is centimeter-level. However, this is not
practical. Figure 5 shows that a large proportion of the measure-
ments were on the static points, and they are set on open-sky con-
ditions. To truly present the error distribution, we excluded all
the static points, and give the CDFs of only the kinematic phase.
Figure 6b shows that a percentage of 67% TC positioning errors
are within 0.63 m, compared with LC of 1.26 m. The largest error
of TC is 2.73 m, compared with LC of 4.77 m.
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Figure 5: 3-dimensional error plots of track 1 in n-frame.

For track 2, we present results in a similar form with track 1. The
positioning trajectory is shown in figure 7, and the error distri-
butions are shown in figures 8 and 9. In the northeast part of
figure 3, errors seem large and not continuous. Correspondingly,
that part of figure 7 deviates much from the reference trajectory
(green curve), especially the LC results. After excluding the static
points, CDFs show that a percentage of 67% TC positioning er-
rors are within 0.57 m, compared with LC of 1.00 m. The largest
error of TC is 2.95 m, compared with LC of 10.10 m.

In conclusion, we made Table ?? to compare the error statistics
of LC and TC integration results. Since we excluded the static
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Figure 6: Track 1 CDFs of LC and TC integrated navigation
results. (a) CDFs of all positioning results; (b) CDFs of only
kinematic phase, static positioning points are excluded.
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Figure 7: The integrated navigation results of track 2.
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Figure 8: 3-dimensional error plots of track 2 in n-frame.
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Figure 9: Track 2 CDFs of LC and TC integrated navigation
results. (a) CDFs of all positioning results; (b) CDFs of only
kinematic phase, static positioning points are excluded.

points, this table reflects the integrated navigation performances
on sheltered conditions.

Track 1 Track 2
LC TC LC TC

50% error 0.63 0.39 0.32 0.21
67% error 1.26 0.63 1.00 0.57
95% error 3.32 1.87 4.14 1.61

100% error 4.77 2.73 10.10 2.95
mean error 0.79 0.57 0.98 0.48

RMS 1.53 1.03 1.76 0.74

Table 2: The error statistics of LC and TC navigation solutions
in kinematic phases (Unit: m).

On sheltered conditions, TC integration results are much better
than LC. The reasons are three folds: (1) Without external aids, a
single low-cost RTK system can hardly give reliable positions on
sheltered conditions. (2) In some epochs, solutions are even lost
in the pure RTK (shown in figure 3a). In this case, the LC states
may easily diverge since there are no updates in EKF. (3) Fixed
solutions usually have small covariance and will give strong con-
straints to the Kalman system. Thus, some wrongly fixed solu-
tions may mislead the LC integration system.

5. CONCLUSION

In this paper, we presented a multi-GNSS multi-frequency RTK/INS
tightly-coupled integrated navigation model. Our RTK and INS
TC models are comprehensively demonstrated. To verify its prac-
tical usage in GNSS-challenging environments, we did two tests
on sheltered conditions using a low-cost GNSS receiver, a patch-
sized antenna, and a MEMS IMU. When GNSS RTK is hard to
give reliable solutions, TC RTK/INS can also output continuous
positioning results with accuracy of several decimeters. In harsh
environments, our TC integration system navigates on two sce-
narios with mean errors of 0.48 and 0.57 m, which is 51% and
28% better than an LC system.
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