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ABSTRACT:

In this paper, we propose an indoor navigation method based on the tightly-coupled (TC) integration of Bluetooth low energy (BLE)
and pedestrian dead reckoning (PDR) using a graph optimization model. We first utilize the Gaussian probability model to update
the particle weights that considers the ranging model’s estimation performance at different distances to determine the particle weight.
Moreover, the BLE walking-surveyed or crowdsourced landmarks, combined with accurate ranging of BLE at a short distance, is
used to construct a graph optimization model, and the Levenberg-Marquardt (LM) algorithm is adopted to optimize this model to
improve track tracking performance. The performance of the proposed algorithm has been verified in the hallway scene and another
challenging room scene. The results show that compared with the standard particle filter (PF) method, the average positioning accuracy
of the proposed algorithm is improved by 64.0% and 54.75%, and the error variance is significantly reduced by 76.23% and 68.60%,
respectively, which is a significant improvement in both robustness and accuracy. Furthermore, the test shows that the proposed method
can calculate reasonable trajectories even in complex room scenarios.

1. INTRODUCTION

Recently, with the popularisation of intelligent equipment and the
construction of ubiquitous sensor networks, digital cities, smart
homes, the internet of things, people have an increasingly urgent
demand for indoor positioning (Wang et al., n.d.). Due to the sig-
nal obstruction and multipath effects, mature satellite position-
ing technology is difficult to provide reliable positioning services
indoors. It is extremely challenging to find an accurate and sta-
ble indoor positioning method. Fortunately, abundant sensors de-
ployed in the environment and powerful sensor systems mounted
on mobile platforms such as smartphones, constitute a wireless
sensor network providing conditions for indoor positioning im-
plementation. Scholars have explored numerous indoor position-
ing technologies such as inertial navigation systems (INS) (Chen
et al., 2021, Chen et al., 2020), BLE (Baronti et al., 2018, Choi
et al., 2022), WiFi (Ji et al., 2022, Ko and Wu, 2022), mag-
netic (Wang et al., 2022, Wang et al., 2016), ultra-width band
(UWB) (Bing et al., 2018), sound (Liang et al., 2018), and visible
light positioning (Zhuang et al., 2019). Although the mainstream
technologies have their advantages, they also have limitations.
The UWB, light emitting diode (LED), ultrasonic, infrared, and
pseudo satellites are limited by an expensive foundation and im-
plementation environments. WiFi, Bluetooth, and geomagnetic
positioning face uncertain environment interference and received
signal strength (RSS) fluctuation. Inertial navigation positioning
is also limited by error accumulation. Thus, multi-sensors fusion
is the realistic solution according to various works.

Frank et al. (Korbinian et al., 2009) proposed a pedestrian naviga-
tion solution based on WiFi fingerprinting with a magnetometer
and foot-mounted inertial sensors, which is a foot-mounted sys-
∗Corresponding author. E-mail: yuan.zhuang@whu.edu.cn (Y.
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tem not suitable for handheld devices. Mamun et al. (Lee et al.,
2017) combined the micro-electromechanical systems (MEMS)-
based PDR with the RSS-based fingerprinting method to per-
form position estimates, and the indoor floor plan was utilized to
implement a landmark-assisted PDR. However, fingerprint posi-
tioning is labour-intensive and is not conducive to system main-
tenance and upgrade. Zhuang et al. (Zhuang and El-Sheimy,
2016) presented a tightly-coupled integration system of WiFi and
MEMS sensors to improve the performance in an environment
with the sparse deployment of APs. Furthermore, a two-filter
fusion for MEMS and WiFi fingerprint was proposed in their
another work to constrain the search space and achieve a con-
strained solution (Zhuang et al., 2016). Two other methods of
using propagation models to fuse IMU were proposed in (Yu et
al., 2017), and both reported positioning accuracy greater than
3 m. Moreover, a WiFi time of flight (ToF) indoor positioning
system with MEMS-based INS was proposed in (Schatzberg et
al., 2014), but current universally installed WiFi chipsets do not
support ToF. Moreover, some fusion schemes such as IMU/UWB
(Krishnaveni et al., 2021), IMU/Camera (Poulose and Han, 2019)
and IMU/Audio/Bluetooth (Xu et al., n.d.) have been prosperous
in recent years, but these schemes often rely on additional expen-
sive device hardware and face many problems such as the multi-
path and the light-of-sight (NOL). This paper mainly focuses on
the ubiquitous BLE and IMU positioning technologies and uses a
tight combination and graph optimization technique to achieve a
robust and robust integration system.

BLE improves the Bluetooth technology with a low energy con-
sumption and a long lifetime, which has been widely used since
they perform better in terms of quality and cost. PDR, especially
on smartphones, is a method of inertial navigation that also plays
an increasingly important role in indoor navigation due to its con-
tinuous positioning, fast data updating, and the ability to work
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without additional hardware. Thus, in this paper, we propose an
indoor navigation method based on the TC integration of BLE
and PDR. In order to make the smartphone-based navigator ac-
curate and practical, we proposed two methods to improve the
navigation performance:

1. The first approach utilizes the PF algorithm to perform a TC
fusion of BLE and PDR. Different from the study (Zhuang
and El-Sheimy, 2016), which uses EKF to integrate the MEMS
and the distance converted by RSS, we innovatively propose
a Gaussian-based distance model (GDM) to update the par-
ticle weights to reduce the adverse effects of the inaccuracy
range model and instability of signals at different distances
(in particular, propagation model accuracy loss in the mid-
dle and long-distance (Qureshi et al., 2019)). Moreover, the
proposed TC fusion model can reduce PDR’s drift by us-
ing BLE information even if only one or two access points
(APs) are available.

2. In the second approach, we leverage the advances of the
pose-graph-based optimization techniques and the simulta-
neous localization and mapping techniques. In our proposed
system, the graph constraints are constructed by multiple in-
formation, including the pose graph, the RSS of the BLE,
the updated position, the heading and step information cal-
culated by the PDR construction, and the signal or behavioural
landmark information. After the graph is constructed, the
PDR system and position estimation are optimized.

The rest of this article is organized as follows. In Section 2,
PDR-based navigation and the proposed GDM-based BLE are
described. Then, the TC integration of PDR and BLE is pre-
sented. The graph optimization model is discussed and proposed.
The experimental results are presented in Section 3, and the con-
clusions and future work are summarized in Section 4.

2. BDM-BASED BLE AND PDR NAVIGATION

2.1 PDR-Based Navigation

PDR is a localization algorithm suitable for low-cost microelec-
tronic systems since it does not depend on infrastructure and high-
precision hardware. PDR periodically updates the position using
the heading and step length information obtained from the inertial
sensors.

This paper adopts a robust step counting method proposed in our
previous work (Wang et al., n.d.) to perform pedestrian step de-
tection and eliminate incorrect position updates in non-walking
states. Step length estimation algorithm adopts a Weinberg model
commonly used in PDR, which uses the difference between each
step cycle’s maximum and minimum acceleration to determine
the step length. The model is as follows:

L = k · 4
√
Accmax −Accmin, (1)

where, Accmax and Accmin are the maximum and minimum ver-
tical accelerations, respectively, and the constant k is set as 0.35
by testing pedestrians with different heights.

The attitude and heading reference system (AHRS) is an attitude
reference system that has strong robustness and high accuracy
due to the fusing of the accelerometer, gyroscope, and magne-
tometer data. In this study, the Madgwick-AHRS (Madgwick and
Others, 2010) algorithm is adopted to obtain the device’s attitude
held by the user.

Figure 1: The collected data are used to fit the signal propagation
model.

In the PDR system, it is assumed that the initial position is recorded
as (xk−1, yk−1), the following formula can generally express the
recursive form at the next moment:(

xk
yk

)
=

(
xk−1

yk−1

)
+ ∆rk−1 ×

(
cos θk−1

sin θk−1

)
, (2)

where ∆rk−1 represents the single step size calculated by the
step detection algorithm, and the θk−1 represents the heading for
this step.

2.2 BLE base on Gaussian-based distance model

The typical propagation model follows the distance power law:

RSSI = A− 10 · n · lg d+Xσ, (3)

whereRSSI represents the estimation of received signal strength
at a distance from the transmitter; A is a constant that represents
RSS at 1m from the transmitter; N represent the path loss ex-
ponent with typical values; Xσ represents the noise modeled as
a Gaussian random variable with zero mean. The distances be-
tween the receiver and the AP can be calculated by the following
formula:

d =
A−RSSI

10 · n , (4)

where A and n are constants generally fitted with a large amount
of data collected at different distances.

As shown in Figure 1, the logarithm-normal distribution prop-
agation model fitted to all data, mean, and median at different
distances describes the relationship between spatial distance and
signal strength to a certain extent. However, due to the hardware
characteristics and complex indoor environment, this method still
faces signal uncertainty, non-line-of-sight, and insufficient rang-
ing accuracy in medium and long distances about of 5-15 m. The
RSS at different distances can be described by:

RSSIDi = RSSIDi +XDi
σ , (5)

where RSSIDi represents the RSSI observation at distance i
, and the RSSIDi represents the true RSSI at the correspond-
ing position. The RSSI noise can be modelled as Gaussian noise
(Salo et al., 2007, Kschischang et al., 2001), i.e.,XDi

σ ∼
(
0, σ2

Di

)
.

Thus, we can assume that theRSSIDi ∼
(
uDi, σ

2
Di

)
at distance

Di from the transmitter, and the ui and the σ2
Di can be calculated

by the signals collected at different distances. Compared with
the fitted logarithmic curve, the mean and variance variables can
better describe the signal strength and the fluctuation character-
istics of the signal at different distances and provide support for
the next TC integration and gross error detection.
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2.3 System Model of TC Integration

This section describes the TC of PDR and BLE in detail. In
this paper, a TC model is constructed based on the PF algorithm,
which utilizes the PDR algorithm to update the particle state and
the particle weight update by GDM defined in the previous sec-
tion rather than the BLE-based ranging model. The advantage
of the TC is that the BLE can be utilized to reduce PDR error
accumulation in the case of fewer than three transmitters. The
proposed TC model performs better than the loosely-coupled in-
tegration and reduces the adverse effects of inaccurate ranging
models and varying signal fluctuations at different distances on
fusion systems.

The basic process of particle filtering includes four parts: ini-
tialization, importance sampling, weight calculation, and resam-
pling. The particle’s initial position

(
xi0, y

i
0

)
follows the Gaus-

sian distribution and the mean of the particles is the mean of the
multiple BLE location results. The following equation gives the
system variables and their updates:

Xt = S
{
Xi
t | i = 1, 2, . . . , n

}
, (6)

Xi
t =

(
xi, yi, θi

)T
, (7)

in which,S represents the set of particles at time t, and Xi
t rep-

resent the position and heading of the particle at time t. Every
particle can be recurrence as fellow:

Xt+1 =

 xt+1

yt+1

θt+1

 =

 xt + lt × cos θt
yt + lt × sin θt
θt + ∆θt:t+1

+W 3×1
t−1 , (8)

where lt−1 and ∆θt:t+1 are the variation of pedestrian step length
and pedestrian heading estimated by the step detection algorithm,
respectively. The updated state vector of a particle can be ex-
pressed as:

Xi
t+1
′ =

(
xi, yi, θi

)T
, (9)

The particle’s weight can be calculated by the GDM model estab-
lished in the previous section. The algorithm first calculates the
actual distance between the updated particle and each AP:

diAP,k =

√
[λXi − λAP,k) (N + h) cosϕ]2

+ [(ϕXi − ϕAP,k) (M + h)]2
, (10)

where λXi and ϕXi represent the longitude and latitude in the
geodetic coordinate system corresponding to the PDR-based par-
ticle position; M and N represent the meridian radius and prime
vertical of the earth curvature, respectively; λAP,k and ϕAP,k
represent position coordinates of the kth BLE AP. Therefore,
bringing the diAP,k of each particle and the RSSIAP,k into the
Gaussian model, the sum of the probability of the particle can be
calculated and used as particle weights:

wi =



0,
∣∣∣RSSIAP,k=1,2··· − ud′≈di

AP,k=1,2,···

∣∣∣ > 3σd′≈di
AP,k=1,2,···

n=NAP∑
k=1

1√
2πσ

e

−
(RSSIAP,k−ud′≈di

AP,k
)2

2σ2
d′=di

AP,k , other

(11)
where RSSIAP,k represents the observed RSSI of k − th AP.
When building the GDM model, We build several Gaussian-distributed
signal models at approximately 0.5m intervals over a distance of
0.5m -15m. Thus, d′ ≈ diAP,k represent the algorithm would

bring the RSSI into the nearest signal strength probabilistic model.
Moreover, the algorithm also introduces the ”3σ” criterion to ex-
clude some incorrect particle updates. Then, the fusion system
output position is given by Equation 12:

P =

n∑
i=1

wi
(
xi, yi

)T
. (12)

2.4 Graph optimization model based on LM algorithm

Factor graph was first proposed in (Kschischang et al., 2001) to
model factorizations. Formally, a graph contains two types of
nodes, namely variable nodes and factor nodes, and the edges.
Variable nodes represent state variables at different movements,
and the edge connects the variables nodes and factor nodes, which
encodeS the error function. An error function represents a prob-
ability constraint applied to a state, and the goal is to find an op-
timal state that minimises the sum of all error functions. The
optimization graph can be expressed as:

X = min
X0

εTwε (13)

whereX represents the space state quantity to be optimized in the
graph; ε represents the error function; w represents the weights
of the constraints of the entire optimization problem. An optimal
state estimate can be computed using a traditional nonlinear least-
squares formulation, thereby minimizing the error on the graph, a
least-squares optimization problem since it seeks to minimise the
sum of squares.

Matched behavioral landmark (MBL) (Wu et al., n.d.), matched
signal landmark (MSL), and the ranging information are utilized
as the constraints of the factor graph. The MBL refers to the
behavioral or location landmarks detected by methods such as
machine learning, sensor thresholds detection, or deep learning,
which are directly mapped to the location of an entity. The MSL
refers to the signals landmarks collected by walking-surveyed or
crowdsourcing. As shown in Figure 2, the PDR trajectory can be
divided into several segments by the MBL and MSL, and the end
position of every segment can be estimated by:

PL =

(
xl
yl

)
= Pk0 +

l∑
k=k0

∆rk−1 ×
(

cos θk−1

sin θk−1

)
(14)

in which, PL and Pk0 represent the start-point and the end-point
position calculated by PDR, respectively; l is the step number of
the trace. Thus, system accumulated deviation is resulted from
the inaccurate step length and heading estimation, and the state
can be expressed as:

X0 =[∆rk0 ,∆rk0+1,∆rk0+2, . . . ,∆rk−1

θk0 , θk0+1, θk0+2, . . . , θk−1]

where ,∆rk ≥ 0, π > θk > −π (15)

Figure 2 illustrates the basic concept of graph-based optimiza-
tion utilizing the three constraints mentioned above. First, the ba-
sic observations of the PDR recursive system generate the graph
nodes. Then, when the system detects MBL or MSL, it will de-
tect the most recent steps and extract the last optimization key
position to form an optimization sequence. Finally, the accumu-
lated error is reduced by the constraints of the geographic location
MBL → Zp or MSL → Zp, and the distance calculated by the
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Figure 2: Illustration of the proposed graph model mainly in-
cludes three constraints: MBL, MSL, and range measurement.

Figure 3: Ichnography and trajectories for the test scene.

strongest RSSI. A cost function can be defined as:

ε = f(x̂) ,


∥∥∥∥∥∥Pk0 +

l∑
k=k0

∆rk−1 ×
(

cos θk−1

sin θk−1

)
− Zp

∥∥∥∥∥∥
w1

+

∥∥∥∥∥∥
Nap∑
m=1

l∑
k=k0

∣∣∣Dk
pm −Dk

ap−p

∣∣∣
∥∥∥∥∥∥
w2

 ,

where


Dl
ap−p = 10−

RSSIml +A

10×n

Dl
pm =

√
(λXi − λAP, m) (N + h) cosϕ

+ [(ϕXi − ϕAP, m) (M + h)]2

}


(16)
in which, w1 and w2 represent the weightS of two types of con-
straints. The closer to the end of the sequence, the higher weight
will be for the weight w1. While w2 is regarded as an equal
weight estimation. As the range estimation accuracy significantly
reduced with increasing distance, we only adopted the strongest
RSSI observations at each step as constraints.

We introduce the LM algorithm to solve this nonlinear least-squares
optimization problem. The Second-order Taylor expansion of the
cost function equation is as follows:

f(X) ≈f (X0) +
(
J (X0)T × ψ0

)T
× δX

+
1

2
δTX ×

(
J (X0)T × J (X0) + µI

)
× δX

(17)

where X0 is the function expansion point; J is the Jacobi matrix
of Equation 16; µ is the second-order information term omitted in
the Gauss-Newton algorithm. LM is an iterative solution process.
The iteration k − th is as follows:

Xk+1 = Xk −
(
J (Xk)T J (Xk) + uI

)−1

×J (Xk)T · f (Xk)
(18)

The LM can be utilized to fuse the MBL, MSL, and RSSI obser-
vation with the model above to optimize the PDR estimation.

3. EXPERIMENTAL RESULTS

Our previous work evaluated that the tight-coupled model im-
proved the performance of the MEMS-based positioning even if
less than 3 APs (Zhuang and El-Sheimy, 2016), so we did not
repeatedly evaluate it in this work. In this study, to evaluate the
performance of the proposed indoor pedestrian navigator, sever
experiments were performed. The experiment site prototype was
the university of Calgary building E, with a floor area of approx-
imately 3200 m2. We mainly evaluated the positioning perfor-
mance of the tightly-coupled PF based on map match (MPF), the
proposed tightly-coupled PF based on map match and graph op-
timization (OMPF), standard PF, PDF, and BLE. Our previous
work (Wang et al., 2020) has exhaustively evaluated the relation-
ship between the number of particles, the positioning accuracy,
and the calculation cost in detail. The results show that when
the number of particles exceeds 200, the system’s positioning ac-
curacy tends to be stable. Therefore, the particle number is set
to 200 in the proposed PF algorithm. As shown in Figure 3, a
challenging trajectory was designed to evaluate the performance
of the proposed methods. In this case, test data were simulated
in the corridors and room environments, and wireless signals of
about 27 APs were simulated for positioning.

The positioning results of the trajectories are shown in 4 and Ta-
ble 1. This challenging trajectory traverses the corridor and the
room scene, and its complex interior structure results in poor sig-
nal quality and great difficulty in particle updating. The results
clearly show that the PDR positioning can continuously track the
pedestrian position but is limited by the serious error accumu-
lation, the mean positioning error is 6.01 m, and the maximum
positioning error in the north direction (MEND) reaches 9.00 m.
There is no errors accumulation in BLE positioning, but it faces
serious problems such as positioning result rollback, dense/sparse
positioning results, and poor positioning continuity. The mean er-
rors (ME) and maximum positioning errors in the east direction
(MEED) of BLE are 1.81 m and 5.20 m, respectively. The stan-
dard PF performs greatly decreasing rationality of updated tra-
jectory, which is difficult to consistent with the real situation due
to the more complex indoor structure. In the testing process, the
method that only uses the building structure to restrict the parti-
cle updating and the methods would repeatedly face the problem
of particle update failure, i.e., the particle cannot enter or leave
a room which significantly reduces the localization performance.
As shown in Figure 4, compared with the standard PF algorithm,
the ME of the MPF algorithm is reduced by 55.93%, and the posi-
tioning stability is improved by 70.25%. The results indicate that
the proposed MPF can solve the above problem and significantly
improve the localization performance and rationality.

We introduced this approach into the MPF and evaluated the pro-
posed OMPF in testing trajectory. The performance comparisons
of MPF and OMPF are shown in Figure 5, and the navigation per-
formances are summarized in Table 2. We can find that the OMPF
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(a)

(b)

Figure 4: Positioning results of BLE, PDR, PF, and MPF for the
first trajectory with a total length of approximately 230 m: (a) the
positioning performance of BLE and PDR and (b) the positioning
performance of PF and MPF.

ME(m) EV(m) MEED(m) MEND(m)

BLE 1.81 1.24 5.20 4.17
PDR 6.01 6.80 3.78 9.00
PF 2.36 1.21 4.49 3.82

MPF 1.04 0.36 2.83 3.06

Table 1: The positioning results of the second trajectory.

further improves the accuracy of pedestrian trajectory, especially
at the corners and the edge of the building and room. In particular,
when the algorithm matches MBL or MSL, the system would re-
initialise the particle. This measure can avoid divergence of the
longer-time particle filter system and helps the system to work
over a long time. The OMPF further reduces the ME to about 0.9
m, and the positioning accuracy is further improved by 11.54%
compared with the MPF methods, which also shows that OMPF
has more obvious advantages in complex scenarios. As shown
in Figure 6, the cumulative error percentages for a different ap-
proach also indicate the significant improvement of the proposed
approach.

ME(m) EV(m) MEED(m) MEND(m)

PF 2.36 1.21 4.49 3.82
MPF 1.04 0.36 2.83 3.06

OMPF 0.92 0.38 3.45 3.05

Table 2: Comparisons of navigation performance for PF, MPF,
and OMPF.

Figure 5: Navigation solutions of MPF and OMPF

Figure 6: Cumulative error percentages of BLE, PDR, PF, MPF,
and OMPF

4. CONCLUSION

This study presented a handheld indoor positioning navigator and
proposed two major contributions to improve the accuracy and
robustness of this navigator. Firstly, a PF was constructed to per-
form a TC model of BLE/PDR, and a GDM was innovatively pro-
posed updating the particle weights. Moreover, we leveraged the
advanced application of graph optimization within the robotics
field to propose a graph optimization model that extensively used
the wireless signal RSS, the matched MBL/MSL as constraints
to optimize the PDR system and position estimation. Experi-
mental results showed that the proposed MPF and OMPF had
better accuracy and robustness than existing solutions, especially
when dealing with the problem of insufficient positioning accu-
racy and unreasonable trajectory update in some complex scenes.
Besides, in this study, information such as wireless signals, be-
havioral landmarks, and the architecture structure was used as a
restriction to optimize systems, and one room and corridor scene
were used to test the proposed system. More information (such
as light, barometric pressure, magnetic field, velocity), more en-
vironments (such as shopping malls, workshops, transportation
hubs), and more advanced error models will be studied and tested
further in future works.
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