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ABSTRACT: 

 

The fast-growing small-size equipment requires robust navigation with low power consumption and high positioning accuracy. 

However, as the mainstream robust navigation method against different environments, GNSS/INS causes excessive power dissipation. 

Considering downsampling is confirmed as a simple but efficient way to reduce energy usage, this paper focuses on the impact of 

sensor data sampling rate in GNSS/INS integrated navigation to give guidance for selecting proper GNSS/INS rates. Specifically, we 

first simulated data sequences with various sensor grades and then downsampled them into multiple sampling rates, followed by 

positioning accuracy evaluation. Experiment results have shown that GNSS interval caused more significant degradation of the 

navigation accuracy than the IMU rate. Meanwhile, the 5 sec GNSS interval with the 20 Hz IMU rate may be the most suitable for a 

power-accuracy trade-off solution in our experiments, which has a 16% reduction in positioning accuracy compared to the standard 

sampling rate combination (i.e, 1 sec GNSS interval and 200 Hz IMU sampling rate). 

 

 

1. INTRODUCTION 

With the rapid development of small-size equipment and the 

surging needs of intelligent cities, robust, high-accuracy, low-

power navigation in mobile and embedded devices are in great 

demand in various scenarios, such as wearable positioning 

systems. The major approach to achieve high accuracy and 

robustness against different environments is adopting a global 

navigation satellite system (GNSS)/inertial navigation system 

(INS) integrated navigation system, which complementarily 

combines GNSS for external-reference long-term positioning 

and INS for internal-derivation short-term positioning. However, 

GNSS/INS, while boosting positioning accuracy and robustness, 

will unavoidably have high computational loads and more energy 

consumption, leading to possible unsuitability for devices with 

rigid power restrictions, like smartphones and internet-of-things 

(IoT) devices. Besides, different manners and degrees of power 

reduction have various influences on positioning accuracy. 

Therefore, to achieve robust navigation and meet both power and 

accuracy needs for small-size equipment, it is essential but 

challenging to find a power-accuracy trade-off point in 

GNSS/INS integrated navigation. 

 

Various methods to reduce the power consumption of integrated 

navigation systems are proposed by reducing the computation 

load, which are generally divided into improving the inertial 

navigation algorithm and simplifying the Kalman filtering (Yan, 

2021). Zhang et al. reduced the computation efforts by omitting 

computation terms of the INS navigation equation like rotation 

correction and sculling correction that have little influence on the 

accuracy confirmed by quantitative analysis (Zhang, 2013). Yan 
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et al. proposed an integrated navigation algorithm with multi-

power adaptive capability through simplified equations, which 

can reduce the clock frequency of the microcontroller unit (Yan, 

2021). The above methods have also proposed low-power 

solutions considering down-sampling the inertial measurement 

unit (IMU) to a low rate, such as 10 Hz. Considering decreasing 

sampling frequency is regarded as a simple but efficient way to 

reduce power consumption (Dieter, 2005), research on choosing 

a reasonable lower rate is necessary. 

 

To select a suitable sampling rate for scenes with different 

accuracy and power consumption requirements, a few works 

conducted a quantitative study about the impact of sensor data 

sampling frequency on positioning accuracy. Zhang et al. 

assessed the effect of high (50 Hz) and low (1 Hz) GNSS 

sampling rates on GNSS/INS through Allan variance and guided 

the reasonable selection of GNSS sampling rates to meet the 

demands (Zhang, 2019). Lee and Choi analyzed the effect of the 

strap-down integration order and sampling rate on the attitude 

estimation accuracy for low-cost IMU applications (Lee, Choi, 

2018). Among them, reducing sampling frequency will sacrifice 

accuracy. However, these works mainly focus on the relationship 

between the single sampling rate of INS or GNSS and the single 

performance of accuracy or power. It remains a unified and 

quantitative investigation for a more appropriate selection of 

GNSS and IMU sampling rates to meet the demands of high-

accuracy GNSS/INS in low-energy equipment. 

 

To tackle the issues above, this paper mainly concentrates on the 

impact of the sampling frequency combinations of GNSS 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVI-3/W1-2022 
7th Intl. Conference on Ubiquitous Positioning, Indoor Navigation and Location-Based Services (UPINLBS 2022), 18–19 March 2022, Wuhan, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVI-3-W1-2022-205-2022 | © Author(s) 2022. CC BY 4.0 License.

 
205

mailto:liyou@whu.edu.cn


 

 
 

Figure 1. Flowchart of experiment scheme. Our work is in blue. 

 

and IMU on power consumption and positioning accuracy by 

experiments concerning various scenarios. However, different 

sensor grades, movement trajectories, and vehicles may have 

different selections of an accuracy-power trade-off sampling rate 

while it is of high workloads to implement experiments for all 

scenarios in the real world. Therefore, the experimentations will 

be based on a GNSS/INS simulation software (AINS-SIMU) 

developed by the GNSS Research Center at Wuhan University to 

conveniently and efficiently set specific scenes at zero cost. 

 

The scheme of our experiment is illustrated in Figure 1. First, 

AINS-SIMU simulates multi-precision data for both GNSS and 

IMU. In particular, these data contain real-time kinematic (RTK) 

(5 cm position accuracy) and standard point positioning (SPP) 

position data (1 m position accuracy) for GNSS, and tactical-

grade (1 deg/h gyro bias) and consumer-grade (300 deg/h gyro 

bias) INS data. Then, the GNSS/INS data is downsampled with 

multiple sampling rates, followed by putting the downsampled 

GNSS data and INS data (after INS mechanization) into Kalman 

filter for trajectory calculation in AINS (Aided Inertial 

Navigation System, an integrated navigation program). Finally, 

we evaluate positioning accuracy and comprehensively analyze 

the relationship between precision, sampling rate, power, and 

accuracy.  

 

2. NAVIGATION ALGORITHM  

The most popular GNSS/INS integration scheme is loosely 

coupled, where the position and velocity derived from GNSS 

signal processing are merged into an update of the INS estimated 

position information through a Kalman filter (Aggarwal and 

Priyanka, 2010). In our work, the downsampled data will be 

processed by a loosely-coupled GNSS/INS integration algorithm.  

 

2.1 System State Estimation 

The Kalman filter state vector contains navigation state errors 

and sensor errors given in (1). 

 

𝛿𝒙(𝑡) = [(𝛿𝒓𝑛)𝑇 (𝛿𝒗𝑛)𝑇 𝝓𝑇 𝒃𝑔
𝑇 𝒃𝑎

𝑇 𝒔𝑔
𝑇 𝒔𝑎

𝑇]
𝑇
,        (1) 

 

where  𝛿𝒓𝑛 = inertial navigation position error vector 

 𝛿𝒗𝑛 = inertial navigation velocity error vector 

 𝝓  = inertial navigation attitude error vector 

 𝒃𝑔
  = tri-axis gyroscope bias 

                𝒃𝑎
  = tri-axis accelerometer bias 

                𝒔𝑔
  = tri-axis gyroscope scale factor error 

                𝒔𝑎
  = tri-axis accelerometer scale factor error 

According to the continuous-time differential equation, after 

deriving the derivative for 𝛿𝒙(𝑡), the obtained error model is 

illustrated by the sequence of differential equations as stated in 

(2) (El-Sheimy, 2004). 

 

𝛿𝒓
 
𝑒̇ = 𝛿𝒗𝑒 ; 

                𝛿�̇�𝑒 = 𝑵𝛿𝒓𝑒 − 2𝜴𝑖𝑒
𝑒 𝛿𝒗𝑒 − 𝑭𝑒𝝓𝒆 + 𝑪𝑏

𝑒𝛿𝒇𝑏   ;         (2) 

         �̇� = −𝜴𝑖𝑒
𝑒 𝝓𝑒 + 𝑪𝑏

𝑒𝛿𝝎𝑖𝑏
𝑏  , 

 

where    “dots” denote the time derivatives; the superscript “e” 

and “b” denote the e-frame (i.e., the Earth-Centered, 

Earth-Fixed frame), and the b-frame (i.e., the body 

frame) (Godha, 2006),  

 𝑵 = tensor of the gravitational gradients 

 𝜴𝑖𝑒
  = skew-symmetric matrix of the Earth rotation rate 

relative to inertial space 

 𝑭 = skew-symmetric matrix of specific force  

𝑪𝑏
𝑒  = rotation matrix from b-frame to e-frame 

                𝛿𝒇  = output errors of accelerometer 

                𝛿𝝎𝑖𝑏
 = output errors of gyroscope 

                 

Gyro and accelerometer biases and scale factor errors are 

modeled as first-order Gauss-Markov processes as 

 

                       

{
  
 

  
 �̇�𝑔(𝑡) = −

1

𝑇𝑔𝑏
𝒃𝑔(𝑡) + 𝒘𝑔𝑏(𝑡)

�̇�𝑎(𝑡) = −
1

𝑇𝑎𝑏
𝒃𝑎(𝑡) + 𝒘𝑎𝑏(𝑡)

�̇�𝑔(𝑡) = −
1

𝑇𝑔𝑠
𝒔𝑔(𝑡) + 𝒘𝑔𝑠(𝑡)

�̇�𝑎(𝑡) = −
1

𝑇𝑎𝑠
𝒔𝑎(𝑡) + 𝒘𝑎𝑠(𝑡)

 
 
 
 

,                    (3) 

 

where  𝑇  = correlation time of first-order Gauss-Markov   

processes 

w = white noise of first-order Gauss-Markov processes 

  

2.2 GNSS Observation Equation 

The GNSS position observation equation is used as the 

measurement update of the Kalman filter, and the measurement 

equation is given in (4) (Li, 2015). 

 

                          𝐳 = �̂�INS
e − �̃�GNSS

e = 𝛅𝐫e + 𝐕r ,                      (4) 

 

where        �̂�INS
e  = the position vector predicted by INS mechaniza-         

tion 

�̂�𝐼𝑁𝑆
𝑒  = the position vector provided by GNSS 

𝐕𝑟 = measurement noise 
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3.  ANALYSIS METHOD  

The simulation analysis consists of three steps: simulation, 

downsampling, and accuracy evaluation. First, we simulate 

multi-precision data for both GNSS and IMU. Then the 

GNSS/INS data is downsampled with multiple sampling rates for 

navigation. Finally, we evaluate positioning accuracy statistically.  

 

3.1 Simulation 

As mentioned in Section 1, the simulation process is completed 

by AINS-SIMU. The work module of the simulator is shown in 

Figure 2 (Li, 2012). GNSS/INS performance and trajectory 

information settings are put into the simulator, then the simulator 

exports the reference navigation information (i.e., position, 

velocity, and attitude), GNSS measurements, and IMU outputs. 

 

  
 

Figure 2. Block diagram of the simulator. 

 

 

3.2 Downsampling 

After acquiring the simulation navigation data, we downsample 

the data into various sampling rates to imitate a simplified non-

real-time processing case, then input the pre-processed data to the 

positioning software.  

 

It was evident that when reducing the sampling rate of GNSS, the 

navigation results will drift with time more significantly. With a 

lower rate of the GNSS correction, the period of single INS 

estimation gets extended, thus accumulating larger velocity and 

attitude errors and then degrading the positioning accuracy (Niu, 

2010). 

 

During the INS-mechanization process, to model the motions of 

vehicles, some changes are regarded as happening in a short time 

∆t (i.e., ∆t approaches zero), such as the location changes and the 

attitude changes (Noureldin, 2013). While reducing the INS 

sampling rates, ∆t will become longer, bringing more significant 

uncertainty, so the assumption that the change is a minor amount 

may lead to a larger error. 

 

3.3 Evaluation 

Following the above, the position errors that measure the 

accuracy of navigation results can be skillfully defined as the 

deviation between the reference position from the simulator and 

the estimated position from the Kalman filter. We give a 

statistical summary of position errors through the root mean 

square (RMS). For the rate of Kalman filter output is in common 

with the INS sampling rate, different INS frequencies may have 

different rates of navigation results. Thus, we calculate the RMS 

of every data group in common points. 

 

4. SIMULATION TESTS AND RESULTS  

4.1 Simulation Tests 

Two different grades of IMU were simulated in this paper. The 

first was FSAS tactical-grade IMU with 1 deg/h gyro bias, and 

the other was MTi-G consumer-grade IMU with 300 deg/h gyro 

bias. Meanwhile, two different performances of GNSS including 

RTK with 5 cm position accuracy and SPP with 1 m position 

accuracy were simulated. The specific descriptions of the 

simulated sensor accuracy are given in Table 1 and Table 2, 

respectively. 

 

Table 1. IMU performance configuration. Sensor biases are 

modeled as first-order Gauss-Markov processes. 

 

Table 2. GNSS performance configuration. 

 

Four types of the GNSS and INS combination are as follows: 

1. RTK + FSAS; 

2. SPP + FSAS; 

3. RTK + MTi-G; 

4. SPP + MTi-G. 

 

        

         

   

 e  o man e

    

 e  o man e

  a e to  

 n o mation

 e e en e

 a i ation

 n o mation

    

 eas  e

 ments

   

  t  ts

 Simulated 

errors 

FSAS 

(tactical-grade) 

MTi-G 

(consumer-grade) 

IMU Gyro bias  

instability 

σ=0.75 deg/hr，      

τ=4 hr 

σ=360 deg/hr，  

τ=100 se  

Gyro white  

noise (ARW) 

0.1 deg/sqrt(hr) 3 deg/sqrt(hr) 

Gyro scale  

factor instability 

σ=300     σ=3000     

Accel. bias 

instability 

σ=1000 m a ,     

τ=4 hr 
σ=3000 mGal，
τ=100 se  

Accel. white 

noise (VRW) 

0.03 m/s/sqrt(hr) 0.12 m/s/sqrt(hr) 

Accel. Scale 

factor instability 

σ=300     σ=3000     

Data rate  200 Hz 200Hz 

 Simulated 

errors 

RTK SPP 

GNSS Position 

instability 

σ=0.05 m 

 

σ=3 m 

 

Data rate  1 Hz 1Hz 
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The trajectories of the above modes described in Table 3 were 

designed to cover a variety of vehicle motion types, such as 

uniform linear motion, uniformly accelerated linear motion, 

variable acceleration motion, uniform circular motion, and 

variable angular velocity motion so that we can analyze the 

impact of sampling rates in diverse situations (Li, 2015). The 

track is visualized in Figure 3. 

 

Also, a set of real-world collected data is used in this experiment, 

including the stationary state and linear motion state. The sensor 

accuracy and the estimating trajectory of real data are given in 

Table 4 and Figure 4, respectively. 

 
Figure 3. Simulated trajectory (configuration: SPP + FSAS). 

 

 
Figure 4. Real collected trajectory. 

 

Time  

segment (Sec) 

Motion description 

0-100 Static 

100-110 Forward velocity increases linearly in time 

(acceleration = 2 m/s2) 

110-170 Uniform linear motion (speed = 20 m/s) 

170-180 Forward velocity decreases linearly in time 

(acceleration = -1 m/s2) 

180-190 Turn 90 degrees with constant angular 

acceleration 

190-220 Uniform linear motion (speed = 10 m/s) 

220-280 Motion with sinusoidal varying forward 

acceleration (forward acceleration changes with 

Amplitude = 4 m/s2 and Period = 20 s) 

280-290 Uniform linear motion (speed = 10 m/s) 

290-350 The first three-second angular velocity rises 

from 0 to 18 deg/s; then uniform angular motion 

(angular velocity =18 deg/s); the last three-

second angular velocity falls to 0 

350-360 Uniform linear motion (speed = 10 m/s) 

360-420 Motion with sinusoidal varying angular 

velocities 

(speed = 10 m/s; angular velocity changes with 

Amplitude = 36 deg/s and Period = 20 s) 

420-430 Forward velocity decreases linearly in time 

(acceleration = -1 m/s2) 

430-530 Static 

Table 3. Description of the trajectory.  

 

Table 4. Real-world sensor accuracy. 

 

 

 

 

 

 

 

 

 

 

 Errors Values 

 

 

GNSS Position instability RTK: σ=0.05 m 

SPP: σ=3 m 

 

Data rate 1 Hz  

IMU Gyro bias  0.0035 deg/hr  

Gyro bias variation 0.00175 deg/hr  

Gyro white  

noise (ARW) 

0.0025 deg/sqrt(hr)  

Gyro scale  

factor error 

5 PPM  

Accel. bias  30 μg  

Accel. bias variation 15 μg  

Accel. white noise 

(VRW) 

1.3 μg/sqrt(Hz)  

Accel. Scale 

 factor error 

100 PPM  

Axes misalignment 5 arcsec  

Data rate  200 Hz  

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVI-3/W1-2022 
7th Intl. Conference on Ubiquitous Positioning, Indoor Navigation and Location-Based Services (UPINLBS 2022), 18–19 March 2022, Wuhan, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVI-3-W1-2022-205-2022 | © Author(s) 2022. CC BY 4.0 License.

 
208



 

  

     Mode REAL 

RMS (m) 

RTK+FSAS 

RMS (m) 

SPP+FSAS 

RMS (m) 

RTK+MTi-G 

RMS (m) 

SPP+MTi-G 

RMS (m) 

1 s (standard) 0.446 
 

0.091 1.838 0.142 4.204 

2 s 0.447 0.142 2.572 0.265 5.853 

4 s 0.460 0.480 3.468 0.479 7.932 

5 s 0.502 0.682 3.199 0.896 9.415 

10 s 0.967 0.950 4.385 4.771 17.311 

30 s 11.949 0.942 5.632 119.123 126.672 

Table 5. Positioning errors under various GNSS intervals; unit: m. 

 

 

4.2 Results and Analysis 

From experience, the location applications based on GNSS 

become the top power-hungry apps due to the high processing 

and communication costs (Lo’ai A.  a a beh, 2016). Therefore, 

we firstly choose a proper GNSS sampling rate that minimizes 

power consumption while meeting accuracy. 

 

 
Figure 5. Impact of GNSS sampling rate on positioning 

accuracy. 

 

Figure 5 shows the impact of the GNSS sampling rate on 

positioning accuracy. Also, the three-dimensional RMS of the 

navigation results is given in Table 5. It can be seen that long 

GNSS gaps reduce the positioning accuracy distinctly. Moreover, 

the GNSS sampling rate has a more noticeable impact on MTi-G, 

the consumer-grade IMU, which dramatically degrades 

especially when the GNSS interval is 30 sec. In this experiment, 

5 sec GNSS interval with lower consumption than the shorter 

interval can maintain about 10 m accuracy even at the lowest 

sensor level (SPP + MTi-G). Therefore, we choose the GNSS rate 

of 0.2 Hz to be an appropriate choice in the follow-up tests. 

 

It should be noted that the simulated data rate is 200 Hz, which 

is lower than the real-world data rate in a high frequency. While 

reducing the IMU sampling rate, the simulated data may not 

reflect the correct results very well. Therefore, we will focus on 

the real-world collected data to analyze the impact of the IMU 

sampling rate. 

 

Figure 6 shows the partial trajectory of the navigation results with 

various IMU sampling rates.  For real-world data, we regarded 

the smoothing navigation results as the reference value. 

 

As shown in Figure 6, when the vehicle turned around, the extent 

to which the predicted position deviated from the reference value 

increased as the sampling rate decreased. Moreover, when the 

vehicle began to move in an approximately linear motion, the 

impact of the various IMU sampling rates became more 

inconspicuous. According to the inference in Section 3, IMU 

downsampling may increase the position error because of the 

approximate processing, and turning around usually means 

greater acceleration and angular velocity, which magnifies the 

error caused by the proximate processing. 

 
Figure 6. Partial trajectory of navigation results; GNSS 

interval: 5 sec. 

 

Figure 7 shows the impact of the IMU sampling rate while the 

GNSS interval is 5 sec.  

 

 

 

GNSS 

interval 
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Figure 7. Impact of the IMU Sampling Rate on positioning accuracy; GNSS interval 5 sec. 

 

     Mode REAL 

RMS (m) 

200 Hz (standard) 0.502 

100 Hz 0.483 

50 Hz 0.507 

20 Hz 0.520 

10 Hz 0.600 

5 Hz 1.273 

Table 6. Positioning errors under various IMU sampling rates; 

GNSS interval: 5 sec; unit: m. 

 

As illustrated in Figure 7, the experiments based on the real-

world data showed the same trend as expected. From 200 Hz 

IMU rate to 10  Hz IMU rate, the uptrend of position error is slow, 

while the 5 Hz IMU rate causes a significant degradation. 

Meanwhile, it is obvious that during the static period, the IMU 

sampling rate has little influence on the positioning accuracy, 

which is in line with the anticipation. The precise comparison by 

the statistic summary of the position errors is shown in Table 6. 

 

It can be seen from Table 6 that the 100 Hz IMU had little 

influence on the positioning accuracy while the 5Hz IMU rate 

reduced that by about 153%. Consequently,  200 Hz or 100 Hz 

may be good choices for a high accuracy demand, while 5 Hz 

decreasing 97.5% computation load meets the low power 

consumption need. Meanwhile, the 20Hz IMU sampling rate that 

reduced the accuracy by approximately 3% and decreased 90% 

power consumption can be a power-accuracy trade-off solution 

for our experiments. Compared with Table 5, the combination of 

the 5 sec GNSS interval and the 20 Hz IMU sampling rate 

reduced the positioning accuracy by about 16%. 

 

5.  CONCLUSION  

In this paper, the impact of sensor data sampling rate in 

GNSS/INS was analyzed by experiments with simulated data and 

real-world data. In our experiments, the GNSS sampling rate 

significantly affected the positioning accuracy. Because of the 

dramatic uptrend of position errors from 5 sec GNSS interval to 

10s GNSS interval, we choose the GNSS interval as 5 sec (i.e., 

0.2 Hz GNSS sampling rate). Through a precise comparison, we 

found that the 20 Hz IMU sampling rate with 90% power 

consumption decreasing and 3% positioning accuracy 

degradation is more appropriate for our experiments. The final 

result shows that 5 sec GNSS interval and 20 Hz IMU sampling 

rate combination decreased the positioning accuracy by 16%. 

This paper has shown that sometimes downsampling with the 

acceptable accuracy degradation is a feasible way to reduce the 

power consumption and provide initial guidance for choosing 

sampling rates that meet navigation needs.  

 

Future works will focus on acquiring broader results through the 

investigation of more types of motions and inertial sensors. 
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