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ABSTRACT:

Recent years, more and more mobile robot has been used in many fields. In order to improve the service quality of mobile robot,
how to improve the accuracy of robot position information has gradually become a research hotspot in this field. In this work, we
will focus on the following situation: in an indoor environment, one mobile robot moves along one similar trajectory repeatedly.
And the extreme gradient boosting (XGB) assisted self-learning Kalman filter (KF) will be derived in this work. To the method,
the XGB is used to build the mapping between the distances from the ultra wide band (UWB) reference nodes (RNs) to the UWB
blind node (BN) and the mobile robot’s position. Then, the XGB is used to build the measurement of the Kalman filter by using
the off-line and on-line mode, which is able to provide the accurate position information. The real test has bee done, and the results
show that the proposed XGB assisted self-learning KF is able to improve the localization accuracy gradually.

1. INTRODUCTION

Recent years, as the key technologies for mobile robots to com-
plete various tasks, the navigation and positioning of mobile
robots in indoor complex environment has gradually become
a research hotspot in this field (Xu et al., 2021a, Jaenal et al.,
2021, Zhao and Huang, 2020).

In order to provide accurate positioning information, many ap-
proaches have been proposed (Cui et al., 2019, Zhao et al.,
2016). For example, in (Han et al., 2007), one attempt using
radio frequency identification (RFID) has been designed, and
ultra wide band (UWB) localization technology has been pro-
posed for indoor quadrotor localization (Xu et al., 2021b). It
should be pointed out that although the UWB localization tech-
nology improves the localization accuracy, its positioning in the
indoor environment is still facing challenges. When compared
with the back propagation (BP) neural network, the extreme
gradient boosting (XGB) algorithm has the advantages of high
interpretability, high computational efficiency and less require-
ments for data (Chen and Guestrin, 2016).

A single learner has a small scope of application, low univer-
sality, and cannot show a good prediction effect in the face of
complex and highly volatile data. Meanwhile, the model com-
posed of a single learner is not conducive to parameter adjust-
ment and segmentation of multiple features. With the develop-
ment of The Times, there are more and more kinds of time se-
ries data, and algorithms need to adapt to more kinds of data as
much as possible while ensuring accuracy. Therefore, the con-
cept of integrated learning algorithm is proposed, which can be
divided into Bagging, Boosting and Stacking according to dif-
ferent sampling and training methods (Shi et al., 2010, Zhang
et al., 2021, Zhang et al., 2020).

To create training data, bagging employs a band-and-put sam-
pling strategy. Using multiple rounds of return, the original
training set is randomly sampled, and several training sets are
generated in parallel, corresponding to the training of multiple
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basic learners (there is no strong dependence between them).
Then, to create a strong learner, combine these fundamental
learners. The method mainly focuses on the randomness of
samples by adding different sampling methods to improve the
fitting degree of the model.

The sample composition of the training set used in Boosting
algorithm remains unchanged. The algorithm first develops a
base learner through the original training group, and then ad-
justs the distribution of training samples according to the per-
formance of the base learner, so that the training samples made
wrong by the previous base learner get more attention in the
follow-up, and then trains the next base learner based on the
adjusted sample distribution. Finally, the trained base learn-
ers are weighted and summed to form the final strong classi-
fier. Boosting algorithm mainly focuses on training models by
giving different weights to different samples, in order to distin-
guish the importance of relevant features in prediction and ulti-
mately improve the prediction accuracy of the model. XGBoost
algorithm is one of the most representative algorithms in Boost-
ing class, and it will be introduced in detail next (Chen and
Guestrin, 2016). XGBoost algorithm is essentially a method
based on Tree structure combined with ensemble learning, and
its basic Tree structure is CART (Classification and Regression
Tree).

The essence of CART is a binary tree, which continuously di-
vides the sample space by input features. Each region is re-
cursively divided into two sub-regions by setting thresholds for
features, and the output values of each sub-region are deter-
mined. The criteria for dividing molecular regions depends on
the type of tree.

In this work, we investigte the XGB assisted self-learning Kalman
filter for UWB localization. In this mode, the XGB is used to
build the mapping between the distances d(UWB) between the
UWB reference nodes (RNs) and the UWB blind node (BN)
and the mobile robot’s position Po. Then, the XGB is used
to build the measurement of the Kalman filter, which is able to
provide the accurate position information. The rest of the paper
is organized as follows. Section 2 presents the scheme of the
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XGB assisted self-learning Kalman filter. Section 3 shows the
real test. Section 4 presents the conclusions.

2. XGB ASSISTED SELF-LEARNING KALMAN
FILTER

In this section, the XGB assisted self-learning Kalman filter
will be designed. Firstly, the scheme of the XGB for the self-
learning Kalman filter will be introduced. Secondly, the data
fusion model for Kalman filter will be investigated.

2.1 The strategy of XGB assisting KF

The strategy of XGB assisting KF will be designed in this sub-
section. In this work, we will focus on the following situa-
tion: in an indoor environment, one mobile robot moves along
one similar trajectory repeatedly. Meanwhile, the localization
accuracy decreases since the signal of the localization will be
affected by the indoor environment. The XGB assisted self-
learning Kalman filter (KF) will be derived to improve the lo-
calization accuracy in this work.

In this mode, the XGB is used to build the mapping between
the distances d(UWB) from the UWB reference nodes (RNs) to
the UWB blind node (BN) and the mobile robot’s position Po.
Then, the XGB is used to build the measurement of the Kalman
filter, which is able to provide the accurate position informa-
tion. The XGB assisted self-learning Kalman filter needs the
following steps:

• In the offline mode, we measure the d
(UWB)
offline on the fixed

point’s position Pooffline. Then, both the XGB is used to
build the mapping between the d(UWB)

offline and the Pooffline,
which is shown in Fig. 1.

• In the online mode, when XGB is in estimation mode, the
d
(UWB)
t input to the XGB, and then, the XGB outputs the

Pôt by using the mapping between the d(UWB) and the
Po, which is built in offline mode. The strategy of the
online mode when the XGB is in estimation mode is shown
in Fig. 2.

• When the XGB is training mode, the XGB builds the map-
ping between d

(UWB)
offline + d

(UWB)
1:t and Pooffline + Po1:t,

which is used for the KF in the next time index. The strat-
egy of the online mode when the XGB is in training mode
is shown in Fig. 3.

2.2 The XGB method

The process of CART generation is actually a process of select-
ing features. Let’s say we have a total of multiple features. The
first step is to select a feature as the first node of the binary tree.
Then select a segmentation point for the value of the feature.
When the value of a sample feature is smaller than the segmen-
tation point, it is divided into one category; if it is larger than
the segmentation point, it is divided into another category. This
builds one node of the CART tree and continues to generate
other nodes through this method. Finally, after layer segmenta-
tion, the final node is given a certain value or category, that is,
as the final prediction result. CART usually adopts the squared
error minimization standard. The objective function generated
by CART regression tree is:

∑
xi∈Rm

(yi − f(xi))
2 , (1)

where f(xi) represents the fitted data, yi represents the real
data, and the function represents the sum of variances.

XGBoost model integrates the concept of integrated learning
from the binary tree model, and XGBoost model is also a spe-
cial GBDT. GBDT is an algorithm for data classification or re-
gression by using an additive model (i.e. a linear combination
of basis functions) and continuously reducing residuals gener-
ated during training. The XGBoost algorithm adds trees by ad-
justing the weight distribution of the sample, adding one tree at
a time (essentially learning a new function) to fit the previously
predicted residuals. XGBoost can define a set of objective func-
tions, which can be converted into a unary quadratic function by
Taylor expansion. The extreme point and the objective function
of extreme XGBoost are as follows:

L (φ) =
∑
i

l (yi, ŷi) +
∑
k

Ω (fk) , (2)

By adjusting the output of the base learner and the weight co-
efficients of each base learner, the fitting degree of the model
is finally improved. The higher the accuracy of the model is,
the lower the value of the objective function will be. On the
contrary, if the objective function is high, the weight of the cor-
relation learner will be adjusted by feedback.

In the objective function of XGBoost algorithm,
∑
k

Ω (fk) rep-

resents the regularization term. When data is fitted by function,
in fact, the real data is fitted by accumulative method through
multiple influence factors (i.e. independent variables) with dif-
ferent weights. The formula is as follows:

f (xi) = w0x0 + w1x1 + w2x2 + · · ·+ wnxn , (3)

The independent variable x is the training feature in the data
set. However, in the process of machine learning, many fea-
tures have low weight in sample learning and can be discarded.
Although over-fitting can make the algorithm train with high
accuracy, the generality of the model will become poor, and
its classification is only suitable for the current training data
set. With the expansion of the data set, the more real samples
need to be classified, and the practicability of the model will
decrease. Therefore, it is always a major task to avoid the over-
fitting of the model under the current data.

The prediction accuracy of the algorithm model is jointly de-
termined by the deviation and variance between the model and
the actual data, that is, the prediction data should be as close
to the actual data as possible to reduce the deviation, and the
allowable data fluctuation range should be defined to reduce the
variance between the model and the actual data. The objective
function of XGBoost algorithm is composed of loss function
and regularization term. The loss function represents the devi-
ation of the model, and the regularization term represents the
variance of the model. The algorithm will reduce the number
of samples in the fitting function as much as possible (in the
algorithm structure of XGBoost, each tree should not be too
complicated for the improvement of accuracy). To prevent the
occurrence of over-fitting conditions.
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Figure 1. The strategy of the offline mode.
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Figure 2. The strategy of the offline mode when the XGB is in estimation mode.
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Figure 3. The strategy of the offline mode when the XGB is in training mode.

2.3 The data fusion model of the KF

The data fusion model used in this work will be introduced in
this subsection. The state equation used by KF in this work is
listed ib Eq. (4).

 x−t
Vx−t
y−t

Vy−t


︸ ︷︷ ︸

x−
t

=

 1 ∆t 0 0
0 1 0 0
0 0 1 ∆t
0 0 0 1


︸ ︷︷ ︸

A

 xt−1

Vxt−1

yt−1

Vyt−1


︸ ︷︷ ︸

xt−1

+wt , (4)

where the sampling interval is denoted as ∆t; xt and yt are the
robot’s position in x and y direction in the time index t respec-
tively; Vxt and Vyt are the robot’s velocity in x and y direction
in the time index t respectively; and wt ∼ N (0,Qt) means
the system noise.

The measurement equation used by KF in this work is listed ib
Eq. (5).

[
x̂t
ŷt

]
︸ ︷︷ ︸

zt

=

[
1 0
0 1

]
︸ ︷︷ ︸

G

[
x−t
y−t

]
︸ ︷︷ ︸

x−
t

+vt , (5)

where vt ∼ N (0,Qt) means the measurement noise. The
code of the KF filtering algorithm based on model (4) (5) is
listed in Algorithm 1.

3. TEST

In this section, we will employ one real test to show the perfor-
mance of the proposed method. Firstly, the parameters of the
experimental equipment and the data fusion filter will be intro-
duced. and then, the performance of the proposed method will
be compared.

3.1 The setting of the test

In this subsection, the parameters of the experimental equip-
ment and the data fusion filter will be introduced. In this work,
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Algorithm 1: The KF filtering algorithm based on model (4)
(5)

Data: zt, x̂0, P̂0, Qt, Rt

Result: x̂k

1 begin
2 for t = 1 :∞ do
3 x̂−t = Fx̂t−1

4 P̂−t = FP̂t−1F
T + Qt

5 Kt = P̂−t G
T
(
GtP̂

−
t G

T + Rt

)−1

6 x̂t = x̂−t + Kt

[
zt −Gx̂−t

]
7 P̂t = (I−KtGt) P̂

−
t

8 end for
9 end

one real test will be done in the No.2 teaching building of the
University of Jinan, China. Fig. 4 displays the real test environ-
ment used in this work. In this work, we employ four UWB ref-
erence nodes (RNs) and one UWB blind node (BN). From the
figure, we can see that four UWB RNs are fixed on the known
position, and the UWB BN is fixed on the mobile robot, which
is shown in Fig. 5. Moreover, in this work, in order to pro-
vide the reference path, we use the LiDAR, which is also fixed
on the mobile robot. The architecture of experimental platform
used in this work is shown in Fig. 6. In the test, the LiDAR
used in this work can provide the reference path by using the
environmental characteristics. The UWB localization system is
used to provide the robot’s position. In this test, two comput-
ers are used. The computer fixed on the mobile robot is used
to collect the sensors’s data, Meanwhile, the other computer is
used to control the mobile robot. To the data fusion filter, we
set ∆t = 0.2s, Qt = I4×4 and Rt = I2×2 in this work.

Figure 5. The mobile robot used in this work.

3.2 The localization error

In this section, the localization error of the proposed method
will be investigated. In the test, firstly, we collect some dis-
tances between the UWB RNs and the UWB BN. It should be
pointed out that the UWB BN’s position used for the off-line

Figure 6. The architecture of experimental platform used in this
work.

training is static points, the static points’ positions for the off-
line training of the XGB method used in this work are shown in
the Fig.7.

Figure 7. The static points’ positions for the off-line training of
the XGB method used in this work.

In this test, we firstly measure the d
(UWB)
offline on the fixed point’s

position Pooffline. Then, both the XGB is used to build the
mapping between the d

(UWB)
offline and the Pooffline, which is

shown in Fig. 1. Secondly, we require the robot to run fol-
low a similar trajectory three times. The positions of the XGB
and XGB+KF in X and Y directions of the first time are shown
in Figs. 8 and 9. Figs. 10 and 11 display the positions of the
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Figure 4. The real test environment.

XGB and XGB+KF in X and Y directions of the second time.
And the Figs. 12 and 13 display the positions of the XGB and
XGB+KF in X and Y directions of the third time. From the fig-
ures, we can see that all the methods can provide the accurate
position information. When compared with the performance of
the first time, the positions estimated in the third time are more
closer to the reference path. The position errors of the cumu-
lative distribution function (CDF) are shown in Fig. 14. And
its enlarged view near 0.9 is shown in the Fig. 15. From the
figure, we can see that the proposed method is able to improve
the localization accuracy gradually.
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Figure 8. The position of the XGB and XGB+KF in X directions
of the first time.

0 100 200 300 400 500 600

Time index

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Y
 P

o
si

ti
o

n
 [

m
]

XGB
XGB+KF
Reference value

Figure 9. The position of the XGB and XGB+KF in Y directions
of the first time.

4. CONCLUSIONS

In this work, we will focus on the following situation: in an
indoor environment, one mobile robot moves along one sim-
ilar trajectory repeatedly. And the extreme gradient boosting
(XGB) assisted self-learning Kalman filter (KF) has been de-
rived in this work. To the method, the XGB has been used to
build the mapping between the distances from the UWB refer-
ence nodes (RNs) to the UWB blind node (BN) and the mobile
robot’s position. Then, the XGB has been used to build the mea-
surement of the Kalman filter by using the off-line and on-line
mode, which is able to provide the accurate position informa-
tion. The real test has bee done, and the results show that the
proposed XGB assisted self-learning KF is able to improve the
localization accuracy gradually.
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Figure 10. The position of the XGB and XGB+KF in X
directions of the second time.
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Figure 11. The position of the XGB and XGB+KF in Y
directions of the second time.
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Figure 12. The position of the XGB and XGB+KF in X
directions of the third time.
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