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ABSTRACT: 
The calibration result of the IMU has a strong impact on the accuracy of inertial navigation and its integration with other navigation 
techniques. Thus, how to efficiently obtain high-precision IMU calibration results is an important research problem for localization 
and motion tracking with consumer devices. To solve this problem, this paper proposes a handheld calibration method. Similar to our 
previous work, the pseudo observation is used to replace the measurement equation of the Kalman filter in the GNSS/INS loosely-
coupled navigation algorithm. Compared to the existing online calibration algorithm, a more convenient data acquisition method is 
used, and the heading constraint information is added to assist in obtaining the calibration results of the IMU. To verify the proposed 
algorithm, a simulator is used to generate the heading updates with various precisions. The proposed algorithm shows the potential to 
estimate the vertical gyro bias, which does not converge in the existing calibration method, within around 0.5s when the accuracy of 
the heading’s random error is 5 degrees. When the heading random error is 60 degrees, the vertical gyro bias can converge in about 6 
seconds after rotation with the standard deviation of 121.7765 deg/h.  
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1. INTRODUCTION 

In the related services of navigation and positioning, the global 
navigation satellite system (GNSS) can provide global, all-
weather, high-precision positioning results in outdoor scenarios. 
However, in urban sections with elevated buildings such as 
tunnels and underground garages, the accuracy of the 
positioning results will be reduced or even lost. In this case, 
high-precision positioning results are usually obtained in 
combination with inertial measurement unit (IMU) data. In 
indoor scenarios, the IMU can provide reliable data around the 
clock, and in combination with other sensors, it can also provide 
better indoor positioning results. 
With the advancement and development of microelectronics 
technology, IMU is also developing in the direction of small 
size, small weight, and low power consumption. Compared with 
traditional IMU, although its price is low and there are many 
application scenarios, its error also increases several orders of 
magnitude. To make better use of the micro-electromechanical 
systems (MEMS) IMU data, it is usually calibrated to obtain 
biases and scale factors errors (Jimenez et al. 2009). The biases 
and scale factors will change with time and temperature. 
Therefore, before data acquisition, it is generally necessary to 
calibrate the device to obtain the biases and scale factors errors. 
Therefore, how to easily and quickly obtain high-precision IMU 
data is an important research question. The calibration result of 
the IMU determines the accuracy of subsequent navigation 
using it. 
Commonly used classical IMU calibration methods include the 
6-position method, 12-position method, and 24-position method 
(Xiao et al. 2008), etc. To use such methods, the IMU data is 
collected under special conditions through equipment such as 

turntables and cubes, and then the calibration parameters are 
calculated and obtained. Such approaches can provide accurate 
and reliable calibration results. However, for consumer devices 
such as smartphones and Internet-of-Things (IoT) devices 
(Poulose et al. 2019), it is not always affordable to use 
professional calibration equipment. Thus, it is necessary to use 
develop calibration methods that do not rely on calibration 
devices. There are existing in situ or online calibration methods 
for consumer-grade IMUs (Li et al. 2012); however, the latest 
online calibration method requires around 30 seconds for the 
gyro errors to converge. Meanwhile, it has weak observability 
on vertical gyro errors. Thus, new calibration methods are 
required to further improve calibration efficiency and enhance 
the observability of the vertical gyro.  
This paper designs an algorithm to obtain IMU calibration 
results with heading information assistance. The algorithm 
obtains IMU data and other sensor data by hand-held motions, 
uses rotations within a limited range as pseudo observations, 
and uses the pseudo observations value instead of GNSS 
observations, which in the GNSS/INS loosely-coupled 
navigation algorithm (Falco et al. 2017). Add the heading 
information of other sensors to constrain and increase the 
observability of the vertical gyro. Meanwhile, the gyro and 
accelerometer biases in the IMU are calibrated together, using 
the Kalman filter algorithm. Furthermore, to analyze the 
algorithm performance and guide the calibration motion design, 
the observations in the navigation algorithm are calculated. 
Therefore, the proposed IMU calibration method is different 
from the existing ones, which require special movements or 
professional equipment to initialize the equipment used in the 
corresponding scenarios. The goal of the proposed calibration 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVI-3/W1-2022 
7th Intl. Conference on Ubiquitous Positioning, Indoor Navigation and Location-Based Services (UPINLBS 2022), 18–19 March 2022, Wuhan, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVI-3-W1-2022-235-2022 | © Author(s) 2022. CC BY 4.0 License.

 
235

mailto:liyou@whu.edu.cn


 

algorithm is to obtain the calibration results of the gyro and the 
accelerometer during a short period only by collecting the 
necessary data using a mobile phone or other devices.  

 
2. METHODOLOGY 

Compared with the traditional IMU calibration algorithm, the 
algorithm in this paper has the following advantages: 
First, there is no need to use turntables, cubes, or other 
equipment to collect static and quasi-static data of the IMU 
under different attitudes, which reduces the difficulty of 
calibration data collection. 
Second, taking the GNSS/INS integrated navigation algorithm 
as the main body, the concept of pseudo observations is 
introduced, and the three-axis accelerometer and the three-axis 
gyro can be calibrated with each other through the Kalman filter 
algorithm to obtain better calibration results. 
Third, by adding heading observations, the divergence of the 
gyro heading data is further constrained, the observability of the 
vertical gyro is increased, and the convergence of the calibration 
results is accelerated. 
 
2.1 Basic ideas 

Under certain dynamic conditions, the GNSS/INS loosely-
coupled navigation algorithm can compensate online for the 
biases and scale factors of the IMU (Hong et al. 2005). 
However, due to the possibility of GNSS data loss, and the 
consideration of the indoor environment. This paper uses 
constraints instead of GNSS measurements. As the IMU rotates 
around its measurement center, its position remains constant 
and its linear velocity is zero. Then it can be considered that the 

observed value under the constraint condition is ˆnr =constant, 
ˆnv =0. In the actual calibration process, the motion change of 

the IMU is reflected in the noise covariance matrix of the 
measurement equation in the Kalman filter. 
Another rationale for this algorithm is that the output of the 
accelerometer can be used to calibrate the gyro (Fong et al. 
2008). In the traditional accelerometer calibration algorithm, the 
gravity vector can provide the calculation data of the algorithm, 
and at the same time, the attitude information provided by the 
gyro can also assist in calculating the errors of the 
accelerometer. 
 In the GNSS/INS integrated navigation system, its 
observability largely depends on maneuvering (Lu et al. 2007). 
To obtain better calibration results, three-axis accelerometers 
and three-axis gyros should be fully stimulated by the 
corresponding motion. 
For the existing online calibration algorithms, the observability 
of the vertical gyro is weak. On this basis, if there is the 
constraint of heading information, the errors of the gyro can be 
quickly converged in the calibration algorithm, and the 
efficiency of the algorithm can be improved. 
Therefore, the motion mode of the data acquisition in this paper 
is shown in Figure 1. The rotation direction of the IMU 
coincides with the Z-axis, and it is fully rotated around the IMU 
measurement center to obtain the output data of the 
accelerometer and gyro. Different from the existing online 
calibration algorithm, this algorithm also needs to obtain 
constraint information, which comes from the heading 
information within the rotational motion range. For consumer 
devices such as smartphones and Internet-of-Things (IoT) 
devices, it can be extracted from data acquired by sensors such 
as cameras or magnetometers that are fixed to the IMU, and this 
process is not described in detail in this paper. 

X

Y

Z

O

 
Figure 1. The rotations of IMU data collection. 

 
2.2 Algorithm design 

The overall flow of the calibration algorithm proposed in this 
paper is shown in Figure 2. The algorithm is based on the 
loosely-coupled GNSS/INS navigation algorithm (Wendel et al. 
2004). First, input the collected accelerometer and gyro initial 
data into the INS mechanization to obtain the required 
information such as position, velocity, and attitude. Pseudo 
observations are introduced to replace GNSS position and 
velocity information. The state vector is constructed, and the 
pseudo observation information is input to the filter to correct 
the state vector (Welch et al. 1995). Using the heading 
information of the motion obtained from other sensors as a 
constraint, the state vector corrected by the pseudo observation 
value is further corrected, and the vertical gyro information is 
constrained to obtain the final accelerometer and gyro 
calibration results. 
 The mechanical arrangement of the IMU can refer to (Shin 
2005), which will not be described in detail here. 

IMU INS
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 Figure 2. The overall process of the calibration algorithm. 

 
2.2.1 Sensor error models 
The main influence errors that need to be considered when 
using MEMS-IMU sensors in different scenarios are mainly the 
biases and the scale factors, which are mainly affected by 
factors such as temperature. 
Among the two, the biases have a greater influence, so only the 
errors generated by the biases are considered in this paper, and 
the complete error model will be considered in the follow-up 
research (Aggarwal et al. 2008). 
Therefore, considering the effect of the biases on the output of 
the accelerometer and gyro, the error equations for the 
accelerometer and gyro are as follows: 

( )b b
a a af b diag f s wδ δ= + +           (1) 

 ( )b b
ib g ib g gb diag s wδω ω δ= + +          (2) 

where bfδ  and b
ibδω  are the error vectors of specific force and 

angular velocity. ab  and gb  are the biases vector of the 

accelerometers and gyros. aw  and gw  are the sensor noises. 

asδ  and gsδ  are the scale factor errors vector of the 

accelerometers and gyros. bf is the measured specific force. 
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b
ibω  is the measured angular rate. diag  refers to converting the 

vector to a diagonal matrix. 
Since the time spent in the calibration process is generally short. 
In this process, the biases errors and scale factor errors can be 
regarded as a random constant that does not change with time 
(Maybeck 1982). 
 
2.2.2 Kalman filter system model 
The Kalman filter system model used in this paper is derived 
based on the paper(Shin 2005). 

c c c c
ecr r vδ ω δ δ= − × +            (3) 

(2 )c c c c c
vr ie ec
c p b

b

v F r v

f C f

δ δ ω ω δ

ψ δ

= − + ×

+ × +



      (4) 

( )c c p b
ie ec b ibCψ ω ω ψ δω= − + × −       (5) 

where crδ and cvδ are the error of position and velocity, 
respectively. ψ is the conversion angle between p-frame (The 
platform frame is the frame in which the transformed 
acceleration from the accelerometers and angular rates from the 
gyros are resolved (Scherzinger 1996)) and c-frame (The 
computer frame is the frame that the INS computer assumes to 
be the true navigation frame (Scherzinger 1996)). p

bC  is the 
direction cosine matrix of coordinate transformation from b-
frame to b-frame. cf  is the projection of specific force on the 
c-frame. c

ieω  is the projection of the angular velocity of the 

earth's rotation in the c-frame. c
ecω is the projection of the c-

frame relative the e-frame’s motion in the c-frame. 
 

2([     ])vr
M N

g g gF diag
R h R h R h

= − −
+ + +

 (6) 

where MR is the radius of the meridian circle. MR is the radius 
of curvature in the prime vertical. R is the Gaussian radius of 
curvature. g is the local gravity value, and h is the 
corresponding altitude. 
For the scenario in this paper, (3) to (5) are correspondingly 
simplified, and the process will not be described in detail in this 
paper. For the specific process, please refer to(Li et al. 2012). 

n nr vδ δ=                 (7) 
n n p b

bv f C fδ ψ δ= × +                         (8) 
p b

b ibC wψ δ= −      (9) 
 
2.2.3 Kalman filter measurement Model 
In this paper, the pseudo observations are used as the 
measurement equation of the Kalman filter, and either pseudo-
velocity or pseudo-position can be used. 

ˆn n
vv v nδ= +     (10) 

ˆn n n
rr r r nδ− = +        (11) 

with nr constant=  
where ˆnv and ˆnr are velocity and position vectors predicted by 
the INS mechanization. nr is the observation vector of the 
proposed pseudo observation. nvδ  and nrδ are represent the 
velocity errors and position errors, respectively. vn  and 

rn represent the measurement noises of proposed pseudo-
velocity and pseudo-position, respectively. 
 
2.2.4 Heading observation 
To increase the observability of the vertical gyro, this paper 
introduces the heading information to correct the state vector. 

ˆheading heading headingψ ψ δψ− =               (12) 

where ˆheadingψ is the heading angle predicted by the INS 

mechanization. headingψ  is the heading angle measurement 

obtained by other sensors. headingδψ  represents the heading error. 
 
2.2.5 Setting of the Kalman filter parameters 
The setting of the Kalman filter parameters can refer to (Li et al. 
2012), which will not be described in detail here. 
According to the addition of heading information, it is 
necessary to consider the setting of parameters related to 
heading constraints. The measurement noise covariance matrix 
of the acquired heading angle hR . 

2( ( ) )hR diag sigma heading=               (13) 
where the exact value of hR  cannot be directly obtained, so 
experiences are usually set. And the experiences are manually 
adjusted according to the experimental results to obtain the best 

hR . 
 

3. SIMULATION TESTS AND RESULTS 

To verify the feasibility of the calibration algorithm in this 
paper, a simulator is used to generate the IMU data required by 
the calibration algorithm. Using the simulator to obtain the test 
data, the true value of the navigation information can be 
obtained. Adding the required error to the navigation 
information, other interference factors can be greatly reduced. 
(Zampella et al. 2011). 
 
3.1 Simulation analysis method 

The simulator model used in this paper is shown in Figure 3. 
The part in the red box is the input, and the part in blue is the 
output data of the simulator, which is the output of the true 
information of reference navigation (i.e., position, velocity, and 
attitude), GNSS measurement information, and IMU output 
information respectively. 
The simulator uses the artificially set initial navigation 
information, as well as the angular velocity and acceleration 
true value information generated by the set trajectory, and 
inputs it into the navigation mechanical arrangement algorithm 
to infer the navigation truth value at each subsequent time. The 
actual navigation information can be obtained by adding 
artificially set errors to the obtained truth information. 

GNSS/INS
Simulator

GNSS
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Trajectory
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IMU 
Performance

GNSS
performance

IMU Outputs
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Navigation

Information (i.e. 
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Navigation
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Figure 3. The diagram integrated navigation simulation and 

solution. 
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3.2 Simulation Tests 

The motion trajectory of the calibration data is shown in Table 1. 
 

Time(Sec) Motion description 
1-10 Keep static 

Turn 360 degrees 
Keep static 

10-20 
20-30 

Table 1. Simulated calibration motions. 

 

Figure 4. Simulated true trajectory. 
 

 
Figure 5. Simulated velocity and attitudes. 

 
Through this motion trajectory, the reference navigation 
information and the true value of the IMU output can be 
obtained. As shown in Figure 4 and Figure 5, its true position 
and true velocity changes are approximately zero. 
Based on the true value of the IMU output, according to (1) and 
(2), a series of simulation data can be obtained by adding 
typical consumer-grade errors. By adding random errors to the 
real heading data, the actual heading data obtained by other 
sensors can be simulated. 
 
3.3 Calibration results and analysis 

To more realistically simulate the application of the sensor 
related to the heading, this paper adds different errors to the real 
heading data.  
The heading model is as follows: 

heading heading h hb wψ ψ= + +    (14) 

where headingψ  is the heading angle measurement obtained by 

heading sensors. headingψ  is the true value of heading 
information. hb  the static error of the heading sensors. aw  are 
the sensor noises. 
In this paper, we set the value hb to 0 and thought the sensor 
noises are gaussian white noise. The standard deviation of white 
noises are set to 5 degrees, 15 degrees, 30 degrees, and 60 
degrees, respectively. The setting of other parameters can refer 
to (Li et al. 2012), which will not be described in detail here. 
 
3.3.1 Statistical display of experimental results 
 
For the above-mentioned four kinds of heading information 
with different precisions, this paper designs three different 

2( ( ) )hR diag sigma heading=  for experiments. After obtaining 
multiple sets of experimental results, this paper uses the 
standard deviation and the root mean square value as statistical 
characteristics for evaluation. The statistical data is defined as 
the calibration result data from the convergence time of the 
algorithm to the end time. 
The selection of convergence points refers to the following 
conditions: 
(1) Taking the calibration results from 20 s to 30 s when the 

rotation motion stops as a sample, calculate the 
mathematical expectation and standard deviation of the 
sample, and the difference between the convergence point 
and the expectation should not exceed twice the standard 
deviation. 

(2) Taking the convergence point as the center, select 20 data 
including the convergence point, and the variation of the 
data within this range should not be over the specified 
threshold. 

The overall situation of the experimental results is shown in 
Figure 6. 
Experiments show that the algorithm in this paper has good 
feasibility. For the x-axis and y-axis, the average value of the 
standard deviation of the accelerometer’s biases are 385.752 ug 
and 424.616 ug, and the average value of the standard deviation 
of the gyro’s biases are 23.5502 deg/h and 31.6084 deg/h, 
which have good precision. 
For the bias error of the z-axis gyro, the average value of 
multiple sets of data is 292.6624 deg/h, which is basically in 
line with the accuracy of using.  
The standard deviation of the z-axis bias of the accelerometer 
has a static error of about 7000 ug. The reason may be as 
follows. In the data acquisition designed in this paper, only the 
rotation of the z-axis is performed, and the scale factors error of 
the z-axis cannot be well estimated and constrained. Therefore, 
the scale factors error is compensated for the biases error of the 
z-axis. Because the x-axis and the y-axis have no rotation, the 
corresponding scale factor error does not affect the respective 
results. 
For specific experimental results, please refer to sections 3.3.2-
3.3.6. 
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Figure 6. The standard deviation of bias. 
 

 
3.3.2 No Heading information 
 

 
Figure 7. Accelerometer calibration results without heading 

information. 
 

 
Figure 8. Gyro calibration results without heading information. 
 
In this section, the value of ( )sigma heading  is 100 radii, which 
is used to replace the situation where heading information is not 
available. In this case, the algorithm in this paper degenerates 
into an online calibration algorithm. Because of its local gravity 
vector, the z-axis bias of the accelerometer can converge in the 
initial one to two seconds, and the x-axis and y-axis gradually 
converge within two to four seconds after the IMU rotates. 
According to the statistical results of the standard deviation and 
the root mean square value, the calculated biases results of the 
x-axis and y-axis of the accelerometer are better than the results 
of the z-axis. As shown in Figure 8, although the results of the 

x-axis and y-axis of the gyro converge to a good value within 5 
seconds, the gyro’s bias error of the z-axis cannot converge. The 
existing online calibration algorithm cannot obtain a complete 
gyro calibration result under this condition. 
To obtain the complete gyro calibration results, heading 
information is used to assist in correcting calibration results, 
and the relevant experiments display in 3.3.3 to 3.3.6 sections. 
3.3.3 The standard deviation of the heading’s random 
error is 5 degrees 
This section uses the heading information with an error of 5 
degrees to implement the algorithm. Because hR  has no exact 
value, set ( )sigma heading  to 0.05, 0.1, and 0.5 radii for 
experiments.  
The statistical results of each group are shown in Table 2 and 
Table 3. 

Accelerometer 0.05rad 0.1rad 0.5rad 
Convergence time (s) 
x-axis  12.69 12.75 12.46 
y-axis  13.87 13.44 12.28 
z-axis  1.21 1.21 1.17 
STD (ug) 
x-axis 502.63 153.55 497.54 
y-axis 239.51 153.19 504.08 
z-axis 7792.53 7730.71 7734.53 
RMS (ug) 
x-axis 40472.91 40057.46 40218.69 
y-axis 49876.12 49879.33 49618.30 
z-axis 52234.97 52296.21 52291.93 

Table 2. The statistics of accelerometer calibration results. 

Gyroscope 0.05rad 0.1rad 0.5rad 
Convergence time (s) 
x-axis 7.69 6.07 4.71 
y-axis  7.69 7.29 4.62 
z-axis  10.48 10.52 15.21 
STD (deg/h) 
x-axis 41.99  27.86  13.41  
y-axis 8.85  9.53  30.81  
z-axis 79.45  36.77  126.17  
RMS (deg/h) 
x-axis 958.34  976.03  997.72  
y-axis 1195.71  1204.73  1171.31  
z-axis 1436.19  1519.52  1623.24  

Table 3. The statistics of gyro calibration results. 
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where the calibration results under the condition of 0.1 radii are 
better, and the calibration results are shown in Figures 9, 10. 
While maintaining a short convergence time, its standard 
deviation is also small. 

 
Figure 9. Accelerometer calibration results without heading 

information. 

 
Figure 10. Gyro calibration results without heading information. 

 
3.3.4 The standard deviation of the heading’s random 
error is 15 degrees 
This section uses the heading information with an error of 15 
degrees to implement the algorithm. Setting the 

( )sigma heading  to 0.1, 0.5, and 1 radius for experiments, and 
the statistical results of each group are shown in Table 4 and 
Table 5. 
 

Accelerometer 0.1rad 0.5rad 1rad 
Convergence time (s) 
x-axis  12.84  12.00  12.38  
y-axis  12.91  11.77  12.13  
z-axis  1.23  1.18  1.18  
STD (ug) 
x-axis 385.50  108.78  439.65  
y-axis 278.71  385.64  349.83  
z-axis 7808.99  7726.03  7759.88  
RMS (ug) 
x-axis 39680.13  40000.81  40157.37  
y-axis 49726.44  50082.75  50254.77  
z-axis 52212.89  52296.76  52262.17  

Table 4. The statistics of accelerometer calibration results. 

 

 

 

 

 

 

Gyroscope 0.1rad 0.5rad 1rad 
Convergence time (s) 
x-axis 6.30  9.01  11.69  
y-axis  7.96  10.73  11.69  
z-axis  10.27  15.94  19.14  
STD (deg/h) 
x-axis 5.99  13.83  47.74  
y-axis 9.60  23.62  44.97  
z-axis 242.56  54.35  37.73  
RMS (deg/h) 
x-axis 1004.05  1010.02  954.00  
y-axis 1208.20  1178.09  1156.12  
z-axis 1335.10  1480.66  1478.87  

Table 5. The statistics of gyro calibration results. 
where the calibration results under the condition of 0.5 radii are 
better, and the calibration results are shown in Figures 11,12. 
Although its convergence time is longer than 0.1 radii, the 
standard deviation of its vertical gyro is better than the other 
two cases. 

 
Figure 11. Accelerometer calibration results without heading 

information. 

 
Figure 12. Gyro calibration results without heading information. 

 
3.3.5 The standard deviation of the heading’s random 
error is 30 degrees 
This section uses the heading information with an error of 30 
degrees to implement the algorithm. Setting the 

( )sigma heading  to 0.1, 0.5, and 1 radius for experiments, and 
the statistical results of each group are shown in Table 6 and 
Table 7. 
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Accelerometer 0.1rad 0.5rad 1rad 
Convergence time (s) 
x-axis  11.95  12.34  12.33  
y-axis  11.71  12.30  12.32  
z-axis  1.24  1.22  1.20  
STD (ug) 
x-axis 314.03  216.57  285.61  
y-axis 995.10  454.22  248.75  
z-axis 7809.17  7761.72  7752.34  
RMS (ug) 
x-axis 40222.47  40043.70  39764.79  
y-axis 50892.49  49623.70  50205.01  
z-axis 52202.89 52273.13 52274.96  

Table 6. The statistics of accelerometer calibration results. 

Gyroscope 0.1rad 0.5rad 1rad 
Convergence time (s) 
x-axis  5.21 11.29 14.07 
y-axis  6.27 9.46 11.31 
z-axis  12.05 11.84 21.08 
STD (deg/h) 
x-axis 24.03  16.74  7.13  
y-axis 49.20  31.4  27.99  
z-axis 1153.20  419.30  75.13  
RMS (deg/h) 
x-axis 1006.58  983.74  994.11  
y-axis 1163.44  1230.68  1173.47  
z-axis 416.41  1906.37  1552.70  

Table 7. The statistics of gyro calibration results. 
where the calibration results under the condition of 1 radius are 
better, and the calibration results are shown in Figures 13,14. 
Although the convergence time of its gyro calibration results is 
longer than that of the other two cases, the standard deviation of 
its three-axis gyro is much lower than that of the other two 
cases.  

 
Figure 13. Accelerometer calibration results without heading 

information. 

 
Figure 14. Gyro calibration results without heading information. 

 
3.3.6 The standard deviation of the heading’s random 
error is 60 degrees 
This section uses the heading information with an error of 60 
degrees to implement the algorithm. Setting the 

( )sigma heading  to 0.5, 1, and 1.5 radii for experiments, and 
the statistical results of each group are shown in Table 8 and 
Table 9. 
 

Accelerometer 0.5rad 1rad 1.5rad 
Convergence time (s) 
x-axis  16.24  11.88  12.12  
y-axis  13.11  12.30  11.67  
z-axis  1.19  1.24  1.23  
STD (ug) 
x-axis 668.22  584.47  472.42  
y-axis 223.03  367.47  895.79  
z-axis 7845.26  7720.60  7842.60  
RMS (ug) 
x-axis 39336.50  40508.72  40446.31  
y-axis 49787.46  49674.38  50758.60  
z-axis 52170.97  52311.00  52169.93  

Table 8. The statistics of accelerometer calibration results. 

Gyroscope 0.5rad 1rad 1.5rad 
Convergence time (s) 
x-axis  9.59  12.30  11.35  
y-axis  8.25  10.49  11.04  
z-axis  15.56  16.03  15.81  
STD (deg/h) 
x-axis 10.74  27.55  45.54  
y-axis 29.27  48.38  65.62  
z-axis 790.61  121.77  366.55  
RMS (deg/h) 
x-axis 997.31  1026.32  956.57  
y-axis 1225.06  1247.58  1136.04  
z-axis 2282.86  1574.92  1812.69  

Table 9. The statistics of gyro calibration results. 
where the calibration results under the condition of 1 radius are 
better, and the calibration results are shown in Figures 15, 16. 
 

 
Figure 15. Accelerometer calibration results without heading 

information. 
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Figure 16. Gyro calibration results without heading information. 
 

4. CONCLUSION 

According to the results of ten groups of experimental data in 
section 3, the conclusion is as below: 
(1) Due to the weak observability, the calibration result of the 

vertical gyro does not converge. After adding the heading 
information for constraints, the complete IMU bias error 
result can be obtained, which shows the feasibility of this 
algorithm. According to the statistical characteristics in 
section 3.3.1, the average value of the standard deviation of 
the x-axis and y-axis accelerometer’s biases are 385.752 ug 
and 424.616 ug, and the average value of the standard 
deviation of the gyro’s biases are 23.5502 deg/h, 31.6084 
deg/h, and 292.6624 deg/h which have good precision. 

(2) Although the addition of heading information makes up for 
the shortcomings of the existing calibration algorithms, the 
selection of ( )sigma heading  is also a relatively important 
issue. When the random errors of heading information are 5 
degrees, 15 degrees, 30 degrees, and 60 degrees, 
respectively, the corresponding optimal ( )sigma heading  
values are 0.1 radii, 0.5 radii, 1 radius, and 1 radius. It 
provides a reference for the fusion of heading information 
from different sensors in the follow-up research. 

(3) When the accuracy of the heading information is higher, the 
calibration results of the vertical gyro converge faster. In 
section 3.3.3, when ( )sigma heading  is selected as 0.05 
radii and 0.1 radii, the vertical gyro data begins to converge 
within 0.5s after the start of the rotation, but with the 
increase of heading information error, the convergence time 
also increases. In section 3.3.6, the convergence time is 
greater than 15s. 

(4) In the data acquisition designed in this paper, only the 
rotation of the z-axis is performed, the x-axis and the y-axis 
have no motion, and the corresponding scale factor error 
does not affect the respective results. For the z-axis, the 
standard deviation of the accelerometer has a static error of 
about 7000 ug. The reason may be as follows, the scale 
factors error is compensated for the biases error of the z-
axis, and the scale factors error of the z-axis cannot be well 
estimated and constrained. The algorithm or data acquisition 
method needs to be improved in the future to avoid the 
recurrence of this situation in actual use. 
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