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ABSTRACT: 
 
Indoor positioning algorithms based on Wi-Fi or Bluetooth low energy (BLE) have been widely used for indoor navigation and 
Internet of Things (IoT) applications, due to their low cost. However, their positioning accuracy is between 2-5 meters, which is 
insufficient for many emerging applications requiring higher accuracy. New high-precision positioning technologies, such as light, 
acoustic, and Bluetooth Angle of Arrival (AoA)-based positioning systems, have been developed, and they can achieve decimeter-
level positioning accuracy. However, these high-precision positioning technologies suffer from high costs. In this paper, an adaptive 
smartphone hybrid indoor positioning solution incorporating heterogeneous sensors is proposed to achieve high accuracy and 
reliable localization. Multiple indoor scenes are identified and the quality of pedestrian movement is detected, thus enabling the 
adaptive estimation and adjustment of measurement noise and process noise in the filtering procedure. High-precision sensors (i.e. 
Bluetooth array, acoustic sensors and light sensors) are utilized in the proposed solution as controlling anchors to improve the 
positioning accuracy.  Low-cost sensors (i.e. Wi-Fi, BLE and inertial measurement unit (IMU) sensors), are integrated to achieve 
wide-area coverage.  An autonomous outlier detection method is developed to improve the positioning accuracy and reliability. 
Experimental results show that the proposed solution can achieve accuracy of 0.98 m in the test scenario. 
 
 

1. INTRODUCTION 

As one of the core technologies of artificial intelligence, indoor 
positioning will greatly improve people’s lives and bring 
significant commercial value (Davidson, 2017), (Li, 2021), 
(Harle, 2013). Since the various sensors inherited from 
smartphones, smartphone-based indoor positioning and 
navigation is ubiquitous and makes high commercial sense. 
Currently, Wi-Fi or Bluetooth low energy (BLE)-based methods 
are successfully applied to the masses. Due to the complexity of 
indoor environment and the fluctuation of wireless signals, they 
can typically only achieve a positioning accuracy of 2 to 5 
meters. High-precision indoor positioning better than 1 meter is 
becoming an urgent need. 
New high-precision technologies, such as light (Xie, 2018), 
acoustic (Cao, 2020) and Bluetooth AoA approaches (QUUPPA, 
2021), continue to emerge. They can achieve decimeter-level 
positioning accuracy, but have high application costs. Other 
high-precision positioning technologies, such as pseudo-
satellite (Huggins, 2009), ultra-wideband (Brovko, 2021) and 
5G (Huo, 2018), are gradually appearing in the market for 
indoor positioning. They can achieve centimeter to decimeter 
positioning accuracy in indoor environments. However, for the 
application of these high-precision positioning technologies, the 
facilities and equipment costs are correspondingly high, which 
will limit their wide application. 
Although there are many indoor positioning methods, there is 
no yet a technology that can effectively solve the indoor 
positioning problem considering the cost and reliability factors. 
Multi-sensor intelligent integration and positioning is the future 
trend of indoor positioning development (Yang, 2021). 
However, due to the complexity of indoor environments and the 
diversity of sensors built into smartphones, it remains a 
challenge to accommodate different sensor noises and different 

test scenarios in an integrated algorithm. Therefore, in this 
paper, we propose an adaptive hybrid indoor positioning 
solution for smartphones, which integrates different types of 
positioning sensors in off-the-shelf smartphones, to achieve 
robust and reliable indoor localization. 
The main contributions are summarized as follows. 
(1) An adaptive integration system based on multi-scene 
recognition and movement quality monitoring is proposed to 
realize adaptive estimation of measurement noise and adaptive 
adjustment of process noise in the filtering procedure. Outlier 
errors are detected and eliminated online to improve the 
accuracy and reliability of the integration system. 
 (2) The proposed hybrid indoor positioning solution exploits a 
limited number of high-precision positioning sensors as 
controlling anchors to enhance the accuracy of the hybrid 
solution, and utilizes low-precision but low- cost positioning 
sensors to cover a wide area. As a result, the hybrid solution is 
able to achieve the accuracy of 1 meter in a real location-based 
services space (e.g. an office building) 
(3) By exploiting the high-precision positioning sensors, the 
hybrid solution adaptively estimates gyro heading drift and 
personalized parameters of step length model in real time to 
enhance consistency for different pedestrian users. At the same 
time, the accuracy of the whole integration system is greatly 
improved. 
In order to verify the reliability of the described method, the 
proposed multi-sensor integration algorithm was validated in an 
office building. It utilizes the high-precision sensors as 
controlling anchors to improve the accuracy of the positioning 
system, and apply low-cost sensors to achieve the whole-floor 
localization. At the same time, the high-precision sensors allow 
correction of gyro heading drift and pedestrian step model 
errors in multi-sensor integration. Experimental results show 
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that the proposed method combined with heterogeneity sensors 
achieves better than 1 m positioning accuracy in test scenarios. 
The remainder of this paper is organized as follows. Section III 
describes the framework of the adaptive smartphone hybrid 
indoor positioning solution. Experiments are performed in 
Section IV. Finally, conclusions are summarized in Section V. 
 

2. FRAMEWORK OF THE ADAPTIVE HYBRID 
INDOOR POSITIONING SOLUTION 

With the development of science and technology, many indoor 
positioning technologies have emerged and used in practical 
applications. Due to the complexity of the indoor environment, 
there is no single method that can effectively solve all indoor 
positioning problems. Therefore, we propose an adaptive 
smartphone hybrid indoor positioning solution, which integrates 
various types of sensors, to achieve robust and reliable indoor 
positioning. It takes advantage of the complementary nature of 
different localization methods and considers how to adaptively 
integrate different sensor information. The detailed flowchart of 
the adaptive multi-sensor integration solution is shown in Fig. 1. 
In this positioning system, unscented Kalman filter (UKF) is 
used in the integration system to solve the pedestrian movement 
nonlinearity problem. Multi-type observation calibration is 
introduced into the positioning system to accommodate multiple 
types of measurement information. It integrates three types of 
observation data, including location, distance and angle. In 
order to implement an adaptive integration system, different 
indoor scenes are identified and pedestrian movement quality is 
reliably monitored. And the outliers of various measurements 
are detected and eliminated by the integration solution. Finally, 
a stable and adaptive multi-sensor integration solution is 
achieved. 
 
2.1 UKF-based Integration Algorithm 

The UKF is utilized to incorporate measurements of different 
sensors, as it is adapted to the estimation of nonlinear problems. 
It uses a deterministic sampling approach to accurately capture 
the posterior mean and covariance up to third order (Taylor 
series expansion) (Julier, 2004). For this UKF-based integration 
system, the state vector is designed as follows: 
 

[ ]θ= Tx e n v s b            (1) 

 
where e  and n  are local coordinates in the east and north 
direction, respectively. v  denotes the pedestrian speed and s  
denotes the scale factor of step length model to describe the 
heterogeneity of pedestrian steps. θ  and b  denote the 
pedestrian heading angle and the bias of the heading angular 
velocity, respectively.  
The time update equation can be expressed as follow: 
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where the subscript k  denotes the epoch, the superscript - and 
+ are the prediction and update of the state vector, respectively. 
∆v  and θ∆  are the increment of pedestrian’s speed and 
heading angle from the PDR algorithm (Yang, 2021). ∆t  is the 
time interval and 1,2,...,6=iw  is the process noise. 
The measurement update equation is as follows: 
 

( )−= +k kz h x l                              (3) 
 

where kz  is the measurement vector, ()h  is the nonlinear 
function between the state vector and the measurement vector, 
and l  is the measurement noise.  
The detailed solution process of UKF can be found in (Julier, 
2004). It is worth to mention that the initial velocity of the 
system is given by the PDR and the initial heading is obtained 
by the magnetometer. The errors in velocity and heading will 
converge after the integrated solution is stabilized. 
 
2.2 Multi-type Observation Models 

There are many different positioning methods for smartphone 
indoor positioning. The main types of positioning observations 
from different sensors include location, distance and angle. In 

 
Figure 1.  Flowchart of the adaptive multi-sensor integration solution. 
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details, Wi-Fi or Bluetooth fingerprinting methods provide 
location type observations, while the Bluetooth AoA system 
provides angle type observations. Audio-based localization 
techniques or radio-frequency signal ranging methods provide 
distance type observations. light-based methods can provide 
both distance and angle observations. They are sent into the 
UKF fusion solution for measurement updates. 

 

1( ) ( )
−

−
= = +P k

P
P k

e e
z l

n n
   

2 2
2( ) ( )− −= − + − +D k D k Dd e e n n l               (4) 

3arctanθ
−

−

−
= +

−
k A

A
k A

e e
l

n n
 

 
where Pz  represents the position measurement vector, Dd  

represents the distance measurement vector, θA  represents the 

azimuth measurement vector. 1,2,3=il  represents the 
corresponding measurement noises.  
The integration solution is achieved by fusing different sensors 
based on the UKF tight combination method. It is flexible for 
different types of observations and can be switched quickly in 
real-time positioning. 
 
2.3 Multi-scene Recognition 

There are many scenes in the indoor environment, which can 
usually be divided into three categories, i.e., wide area scenes 
(e.g., halls, lobbies and plants), office scenes and corridor 
scenes. Due to the diversity of indoor environments, each 
positioning signal, especially radio-frequency signal, is often 
subject to non-line of sight or multi-path interference. This 
leads to variability in the performance of the same positioning 
signal in different indoor scenes. In order to overcome the effect 
of indoor scene changes on localization, a multi-scene 
recognition approach is proposed in this section. This method 
combines the coarse position provided by Wi-Fi/BLE 
fingerprinting method and the pedestrian walking straight-line 
distance from PDR (Yang, 2021) to distinguish different indoor 
scenes in complex indoor environments. 
Specifically, when a pedestrian walks freely in an indoor 
environment, his or her fingerprinting result from Wi-Fi/BLE 
are automatically recorded. If several successive recorded 
fingerprinting results belong to the same scene, then the 
corresponding pedestrian is likely to be in that scene. In 
addition, the trajectory of pedestrians walking indoors is also 
related to the indoor scene. In room areas, pedestrians often 
need to walk a fixed track due to the public items in the room. 
In the corridor area, pedestrians need to walk a long straight 
track. Combining the straight-line distance traveled by 
pedestrians and the successive recorded fingerprinting results, 
the estimated scene id calculated as follows: 

 
The estimated scene =  

1 1

2 2

3 3

wide scene, wide scenes and ( )
office scene, office scenes and ( )

corrider scene, corrider scenes and ( )

∈ ≥ ≥
 ∈ ≥ ≥
 ∈ ≥ ≥







M

M

M

P D d T t
P D d T t
P D d T t

   (5) 
 

where MP  means M continuously recorded  fingerprinting 
location, D is the straight-line distance traveled by pedestrians 

from PDR algorithm, T is the stationary time of pedestrians. 
1,2,3=id  is the straight-line distance threshold and 1,2,3=it  is the 

stationary time threshold. These thresholds depend on the 
building map information. 
When several consecutive fingerprinting locations belong to the 
same scene and the pedestrian walks a certain straight line 
distance or is stationary for a period of time, the corresponding 
scene will be automatically recognized. 
  
2.4 Movement Quality Monitoring 

Smartphone-based multi-sensor integration systems mostly rely 
on PDR for location recursion. In practice, however, PDR is 
often affected by pedestrian movement. PDR step detection is 
prone to mis-judgment when pedestrians raise their arms up and 
down or switch smartphone postures while walking. The 
heading offset between the smartphone’s heading and the user’s 
direction of movement is susceptible to change when the 
pedestrian moves randomly. In order to improve the robustness 
of the PDR-based integration system, a movement quality 
monitoring method is proposed in this section. It mainly detects 
the continuity indicator of pedestrian walking and the dynamic 
indicator of the smartphone through the built-in sensors of the 
smartphone.  
Based on the smartphone horizontal angle change, we present a 
dynamic indicator indicatorA  for pedestrian motion: 

 

 2 2ω ω= +indicator e nA              (6) 
 

where ωe  and ωn  are angular velocities in the east and north 
directions, which are calculated from the heading estimation.  
Based on the characteristics of pedestrian walking periodicity, a 
continuity indicator indicatorB  for pedestrian movement is 
presented as follows: 

 
( , )=indicatorB DTW N M  

1 2( , ,..., )= tN tN tNnN a a a                      (7) 

1 2( , ,..., )= tM tM tMmM a a a  
2 2 2
, , ,= + +ti x ti y ti z tia acc acc acc  

 
where N means the acceleration sequence of the previous stride, 
M means the acceleration sequence of the current stride. DTW 
is the dynamic time warping algorithm (Jambhale, 2014) that 
can effectively express the shape similarity of acceleration data 
of two strides. xacc , yacc  and zacc  are the measurements 
around three axes of the acceleration. t  is the time variable. 
Combining the dynamic indicator indicatorA  and the continuity 

indicator indicatorB , the quality indicator of pedestrian movement 
is obtained, which is expressed as follows: 

 
 0= ⋅ ⋅indicator indicator indicatorM A B M                  (8) 

 
where indicatorM  is the movement quality indicator, 0M  is the 
empirical factor. 
When indicatorM  is less than a pre-defined threshold, the 
pedestrian walking quality is considered reliable. The quality 
indicator of pedestrian movement will be used to adaptively 
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adjust the processing noise of the multi-sensor integration 
system, thus implementing an adaptive filtering procedure. 
 
2.5 Adaptive Dynamic & Measurement Model 

Due to the complexity of indoor environments, the 
localization performance of smartphone sensors varies in 
different indoor scenes. Due to the variability of smartphone 
devices, the measurement error of the built-in sensors on 
different smartphone varies and is difficult to determine in 
advance. To tackle this problem, an adaptive integration system 
based on multi-scene recognition and movement quality 
monitoring is proposed in this section. It consists of two main 
components, namely the adaptive estimation measurement noise 
matrix R and the adaptive adjustment process noise matrix Q. 

For the adaptive estimation of the measurement noise matrix  
R , it is based on a sequence of innovations collected from the 
previous positioning results. When the indoor scene is 
identified as a certain scene from multi-scene recognition and 
the pedestrian walking quality is reliable, the innovation vector 
of the filtering system is calculated as follows: 

 
 α −= − ⋅k k kz H x   (9) 
 
where αk  is the innovation vector, kz  is the measurement 

vector, H  is the measurement design matrix, −
kx  is the 

predicted vector after time update, k is the epoch. 
The covariance matrix of the innovation vector is calculated 

as follows: 
 

 α
−= + ⋅ ⋅

k

T
k kA R H P H   (10) 

 
where αk

A  is the covariance noise matrix of αk  , kR  is the 

covariance noise matrix of kz  and −
kP  is the covariance noise 

matrix of −
kx  . 

In order to obtain the covariance matrix of the measurements, 
equation (10) is modified as follows: 

 
 α

−= − ⋅ ⋅
k

T
k kR A H P H  (11) 

 
where the innovation covariance matrix αk

A  can be computed 

by averaging inside a estimation window: 
 

 
1

1
α α α

= − +
= ∑k

k T
k ki k m

A
m

 (12) 

 
where m  is the window size, αk  is the innovation vector 

obtained from equation (9). It is worth noting that the kR  value 
will not be updated when the indoor scene changes or the 
quality of pedestrian movement is unreliable. 
For the adaptive adjustment process noise matrix Q, it relies on 
the quality monitoring of pedestrian movement. Therefore, the 
process noise matrix is adaptively adjusted using the quality 
indicator of pedestrian movement indicatorM , which is expressed 
as follows: 
 
 0= ⋅k indicatorQ M Q  (13) 

 
where 0Q  is the initial system process noise of the multi-sensor 

integration solution and kQ  is the process noise matrix at the 
epoch k. The system process noise will increase when the 
pedestrian movement is unstable or discontinuous. Once the 
pedestrian movement quality is stable, the integration solution 
will converge. In turn, the reliability and robustness of the 
solution is enhanced. 
Combining equations (11) and (13), adaptive estimation of the 
measurement noise matrix and adaptive adjustment of the 
process noise matrix are obtained. Eventually, an adaptive 
multi-sensor integration system is achieved. 
 
2.6 Autonomous Outlier Detection 

Due to the complexity of the indoor environment, outliers 
caused by multipath or signal noise are common in real-time 
positioning. Since different types of localization sensors are 
incorporated in the integration solution, it is necessary to apply 
autonomous outlier detection.  
Combining equation (10), we obtain the innovation covariance 
matrix αk

A . And the new innovation vector αk  are calculated 

by equation (9). When a new innovation measurement is out the 
confidence interval, it is considered as an outlier, which can be 
expressed as follows: 

 

 ' '3 αα > ⋅
kk A  (14) 

 
where 'αk  is the new innovation measurement, '

αk
A  is the 

innovation covariance value.  
The measurement update of the integration system will not 
proceed and the innovation vector will not be updated until no 
outliers are detected. This will reliable detect outlier errors 
online in the integration system. In turn, the stability of the 
multi-sensor integration system is enhanced. 
 

3. EXPERIMENTS 

Several walking tests were conducted in an office building at 
Wuhan university. It was used for the experiments to test the 
localization performance of different sensor combinations, as 
shown in Fig. 2, where the yellow area indicated the QUUPPA 
coverage area, and the green area indicated the light sensor 
localization coverage area. This building covered a variety of 
indoor scenes, such as, corridors, rooms, halls, etc. In both 
scenarios, the coverage area of the high-precision devices was 
about 250 m2, which was about 1/4 of the whole area. Real-time 
tests were conducted using a Samsung S10 smartphone, whose 
IMU sensor frequencies were set to 50 Hz. The reference 
trajectory was based on a LiDAR-based handheld simultaneous 
localization and mapping (SLAM) device, as shown in Fig. 3, 
which was capable of centimeter-level positioning accuracy. 
We perform the indoor positioning testing in a typical indoor 
space to verify the positioning accuracy of the proposed 
solution. The testing area layout and the deployment of high-
precision sensors are shown as Fig. 2. This space is fully 
covered with Wi-Fi signals. 
In this scenario, the main scenes include halls, corridors and 
rooms. The tester walked out of the main hall equipped with 
light devices with a Samsung S10 smartphone. Then he reached 
the other areas of Scenario A. Light sensors, Bluetooth AoA 
system (i.e., QUUPPA system), Wi-Fi and PDR were involved 
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in the real-time multi-sensor integration algorithm throughout 
the testing process. Plots a, b, c, and d of Fig. 4 depict the light 
localization results, QUUPPA localization results, Wi-Fi 
fingerprinting results, and multi-sensor integration localization 
results, respectively. The corresponding position cumulative 
error distribution is shown in Fig. 5. As depicted in Figs. 5, the 
positioning accuracy of the light sensor and QUUPPA is high, 
reaching 0.33 m (1σ ) and 0.75 m (1σ ), respectively. However, 
their positioning coverage area is small, covering only the main 
hall and elevator lobby areas. The Wi-Fi fingerprinting solution 
covers all areas of the scenario, but its positioning accuracy is 
not high, about 3.66 m (1 σ ). The proposed multi-sensor 
integration solution combines the advantages of both high and 
low precision sensors to achieve an accuracy of 0.98 m (1σ ) 
over the entire test area. The maximum positioning errors for 
these four solutions are 0.67, 2.05, 10.01 and 2.86 m, 
respectively. The reliability of the proposed solution is 
improved. 
 

4. CONCLUSIONS 

This work proposed an adaptive smartphone hybrid indoor 
positioning solution incorporating heterogenous sensors to 
improve the accuracy and wide-area availability of indoor 
positioning. Combining the knowledge of multi-scene 
recognition and movement quality monitoring, measurement 
noise and process noise are adaptive estimated and adjusted in 
the filtering procedure, and improve the reliability of the 
integration solution with multiple sensors. The method of 
autonomous outlier detection is proposed to increase the 
robustness of the integration solution. By analyzing the 
positioning characteristics of different positioning sensors, this 
approach effectively exploits high-precision sensors as 
controlling anchors and combines low-precision but low-cost 

sensors to achieve enhanced positioning accuracy of better than 
1 meter and wide-range coverage. 
In several experiments, the overall positioning accuracy of the 
proposed hybrid indoor solution is greatly improved, from 3.66 
m to 0.98m. In future work, we will apply the proposed method 
to other location-based internet of things applications, such as 
wearable devices, health monitoring and smart hospitals. 
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Figure 2.  A typical office building equipped with acoustic, 
light and QUUPPA devices. The low-cost Wi-Fi is fully 
covered in this scenario. 

 
Figure 3.  A handheld SLAM positioning device. 
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Figure 4. Walking tests of the entire floor in the scenario. (a) Trajectories of the reference and the light solution. (b) Trajectories of the 
reference and the QUUPPA solution. (c) Trajectories of the reference and the Wi-Fi fingerprinting solution. (d) Trajectories of the reference 
and the multi-sensor fusion solution. 
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