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ABSTRACT: 

 

In this paper, we propose a Leader-Follower cooperative localization system for AGV group, which equipped with 

camera/IMU/UWB anchors as the Leader and IMU/UWB tags as the Follower. Firstly, we introduce the plane constraint with SE(2) 

into VIO to suppress drift in 2D motion; Secondly, the Follower receives the Leader's VIO pose and calculates the relative pose 

through the multiple groups of UWB ranging. The algorithm of Leader and Follower is decoupled, which means Leader can choose 

different self_localization technology to adapt to different scenario, such as LiDAR-Inertial Odometry(LIO), GNSS, etc. In the 

Follower, a tightly coupled graph optimization based algorithm to fuse UWB ranging and IMU is proposed to estimate its relative 

pose to the Leader. Lastly, extensive field experiment shows the system can realize omni-directional cooperative positioning in 

indoor and outdoor environments and the accuracy of collaborative positioning reaches centimeter level. 

 

 

1. INTRODUCTION AND RELATED WORK 

In the active field of robot localization, multi-robot cooperative 

localization(CL) in GNSS denied environments has always been 

an attractive research. Its purpose is to express the position and 

orientation of the robots in a common frame. The motivation of 

this research comes from swarm detection(Michael, 2013), 

collaborative mapping(Nguyen, 2017), formation 

control(Turpin, 2012) and so on. (Saeedi, 2016)gives a 

comprehensive review of multi-robot SLAM technologies and 

points out one most key issue: relative pose estimation. There 

are some sensors can get relative measurements, such as: 

cameras and LiDARs for common features, UWB for relative 

distances, etc.  

According to the type of sensor, AGVs cooperative localization 

can be divided into feature-basd(Danping ZOU, 2019) and 

range-based(Buehrer, 2018). (Dube, 2017)presented a 

cooperative localization framework of multiple AGV in 

buildings based on 3D LiDAR, which relies on inter-robot place 

recognition to estimate the relative pose between AGVs. Vision 

for Robotics Lab, ETH Zurich(Schmuck, 2021) proposes a 

centralized localization system, in which each node runs VIO 

and uploads the feature descriptor of the image to the central 

processor, and rely on the closed-loop detection algorithm to 

estimate the relative state between nodes. The impressive 

absolute trajectory error(ATE) smaller than 5cm is reported in 

this paper, which shows the strong advantage of VIO algorithm 

in cooperative localization. However, both schemes have some 

disadvantages. First, cameras or LiDAR are limited by the field 

of view(FOV) and cannot achieve omni-directional relative 

localization. Secondly, LiDAR and camera’ data occupy large 

network bandwidth and more computing power. (Xu, H, 2020) 

proposed a decentralized collaborative localization method. 

Each node calculates the relative pose through target detection 

and tracking. Although the limitation of FOV is overcome by 

using fisheye camera, there is still a problem of robustness in 

target tracking. 

Ranging based method has attracted many researchers. (Jung, 

2021) proposes a distributed cooperative location algorithm 

based on filtering, through the sharing of approximate 

covariance between AGVs. The ranging information comes 

from the fixed and calibrated UWB anchors, and the decimeter-

level positioning accuracy is reported in this paper. However, 

fixed UWB anchors are sometimes difficult to deploy in 

outdoor environments. There are some co-location work that 

integrates VIO+UWB and achieves high accuracy(Queralta, 

2021). A novel idea is to install UWB on different AGVs to 

form a mobile anchor system and get ranging information 

between agents. All AGVs need to be equipped with cameras, 

IMU and UWB. It is necessary to consider a simpler 

configuration, which is very important when the agent 

computing resources are limited. 

 

 

Figure 1. The frame definition of the Leader and Follower：

the world frame is W; the AGV base frame (IMU frame) is B; 

the camera frame is C; the UWB frame is U; the transformation 

of Leader and Follower is 
LFT . 

Another very important topic is the state estimation algorithm, 

which can be divided into filtering-based(Jazwinski,, 1970) and 

graph optimization based(Qin,T, 2019). Filtering-based method 

is recursive and sensitive to sensor time consistency, due to its 

first-order Markov process assumption. Graph optimization is a 
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batch optimization algorithm that usually maintains a sliding 

window(Demmel, 2021). This algorithm is widely used for 

robot state estimation and achieves excellent performance. In 

sliding window, all sensor data and the state are coupled in the 

form of cost function and solved by nonlinear optimization 

method, such as, GN or LM algorithm, so it's less strict about 

temporal consistency. Although, its cost of calculation is 

generally larger than the filtering method. There is common 

data delay in the communication network for multi-AGV 

system, so graph optimization algorithm is more suitable for 

multi-robot problem. 

In this paper, we propose a cooperative localization system for 

AGV group, which equipped with camera/IMU/UWB anchors 

as the Leader and IMU/ UWB tags as the Follower. Different 

from the centralized system, we solve the pose locally on each 

agent's processor. Visual-Inertial odometry(Qin, T, 2018) (VIO) 

is an excellent state estimation technology for single robot, 

which is mainly used for self-localization of Leader. However, 

in 2D motion scene, IMU usually produces large cumulative 

error in Z axis due to insufficient excitation. We add the plane 

constraint(Zheng, F, 2019) to the original VIO pose to suppress 

the cumulative error. This is a soft constraint that fully takes 

into account the fluctuations of the ground. Unlike their work, 

we do not parameterize the pose on SE(2), but directly on SE(3), 

which allows us to directly use the results of VIO. In order to 

ensure the robustness of the system and successful initialization, 

four UWB anchors are equipped on the Leader. Assuming that 

the UWB anchors are rigidly connected to AGV body, which 

eliminates the restriction of fixed anchors(Li, J, 2018). 

Followers calculate the relative pose to Leader through UWB 

ranging(Nguyen, 2018), equip at least 2 UWB tags to ensure the 

observability of the orientation and use IMU for state 

propagation. Then, we propose a tightly coupled graph 

optimization algorithm to realize the relative localization 

between Leader and Followers. UWB and IMU provide ranging 

factor and preintegration(Forster, 2015) factor respectively. 

It should be emphasized that, unlike VIO+UWB methods above, 

there is no camera on Followers, which can greatly reduce the 

amount of computation and hardware resources, and simpler 

configuration brings greater challenges to our systems and 

algorithms. 

As mentioned above, the existing AGV cooperative localization 

methods have some shortcomings: UWB-based methods 

generally rely on fixed anchors and have low accuracy; 

VIO+UWB based anchor-free methods have higher accuracy, 

but no consider simpler configuration. The method proposed in 

this paper adopts a simpler configuration and achieves 

centimeter-level positioning accuracy. The graph optimization 

algorithm of tightly coupled UWB+IMU is the main highlight 

of this paper. We summarize the contributions of this paper as 

follows: 

(1) A Leader-Follower cooperative localization system based 

on VIO+UWB is proposed for AGV group. We adopt a simpler 

configuration and suppress the drift of VIO through plane 

constraints. 

(2) On the Follower, a tightly coupled localization algorithm 

based on graph optimization is proposed, which fuses the UWB 

ranging factor and the IMU pre-integration factor. 

(3)  Extensive real-world experiments show the advanced nature 

of our system, reaching centimeter-level accuracy in line-of-

sight environments. 

The remainder of this paper is organized as follows. 2 describes 

the meaning of the symbols used in this paper, and 3 describes  

proposed system and algorithm, including sensor time 

synchronization, Leader and Followers localization algorithms. 

Experiments are described in detail in Section 4, including 

Leader and AGV group localization experiments. and analysis 

of positioning errors. Finally, we analyze the experimental data 

and make a conclusion. 

 

2. PRELIMINARIES 

Throughout this manuscript, 
ABT denotes the transformation that 

maps the coordinates in any frame  A  to  B .
ABR and 

ABp denote the rotation and translation respectively. 

SO(3)R  and 3p R . The expected state estimation based on 

current measurement is 

χ . Considering time domain,  Ai

X  

denotes frame  A  of AGV X at instant t. Lie algebras follow 

the same naming pattern. The frame used in this paper is shown 

in Figure 1. 

we define the state of each agent as  . It is equivalent to 

 0 1, , nx x x  where, n is the size of the window, and 

 , , , , , [0, ]k t t t a w k n= x p v q b b , respectively denote 

position, speed, orientation in the world frame and IMU bias. 

 

3. LEADER-FOLLOWER COOPERATIVE 

LOCALIZATION SYSTEM AND ALGORITHM 

We divide the AGV group into a Leader and several Followers. 

The Leader installed four UWB anchors and a stereo VI sensor. 

The coordinates of UWB relative to the AGV body are 

calibrated in advance. Leader establishes a common reference 

frame(world frame) for all agents. The Follower installed UWB 

tags on the front and rear of AGV, and installed IMU in the 

middle of the AGV body, which is used for pre-integration 

between two UWB ranging. Figure 1 shows the installation of 

the sensors on AGV. 

Communication between agents relies on WiFi. The Leader 

broadcasts the improved VIO pose. On the Followers, UWB 

ranging and IMU input to relative state estimator, and converts  

to the Leader's frame (world frame).The detailed system 

framework is shown in Figure 2. 

 

 
Figure 2. Framework of Leader-Follower cooperative 

localization system. The Leader runs VIO for self_localization, 

assuming that there is a rigid connection between UWB anchors 

and AGV body, and broadcasts the pose through WiFi. The 

Follower run the tightly coupled graph optimization algorithm 

for relative state estimation. 
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On each Follower, we define the maximum posterior estimation

（MPE） problem of the system, and the estimated state is and 

Follower’s state and the pose of Leader. That is, the final 

objective function to be solved is: 
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where z  represents the sensor measurement and ( )r  denotes 

the residual function. As shown in (1), the Leader's pose has 

been optimized on all agents, and we take the average of all 

results as the Leader's final pose. 
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m is the number of agents. 

 

3.1 Data synchronization 

The system needs to synchronize data from three different types: 

VIO, UWB, and IMU. They have different frequencies: VIO 

has the lowest frequency; IMU has the highest frequency. Time 

synchronization of these data is a challenging problem. To 

maximize the utilization of all sensor data, we propose a UWB-

centric approach to data synchronization. See Figure 3. We 

adopt first-order linear interpolation between VIO and UWB. It 

is assumed that the Leader is moving at uniform speed during 

t , usually it is less than 0.05s. We preintegrate the IMU data 

between two UWB ranging. 

 

 
Figure 3. We use first-order linear interpolation between VIO 

and UWB and preintegrate the IMU between UWB ranging. 

 

3.2 Leader: self_localization based on VIO with Planar 

Constraints 

AGVs move on a two-dimensional plane, which means that 

there is no excitation source in the Z-axis direction, and it 

results in drift in the Z-axis, which can be coupled to the 

position of the UWB anchors and affect the localization 

performance of the system. Therefore, we propose a SE(2)-

constraint to suppress the drift in Z-axis. 

It should be noted that we did not add the deterministic SE(2)-

constraint, because considering the undulation of the outdoor 

ground. We added this constraint to VIO’s pose in SE(3), 

instead of parameterizing it with SE(2). This allows us to 

directly utilize the output of the VIO. 

we assume that AGV moves in a 2D plane, so its pose can be 

expressed as se(3) in Lie algebra: 

 

   3 1 20,0, , , ,0 (3),
T

w v v se =  (3) 

 

Where 
3w is related to the yaw angle of AGV and  

1 2,v v represents the position on the plane. Then we construct a 

residual and defined as a nonlinear least squares problem: 

 

  1( ) L

s WBexp   −=r T   (4.1) 

  2* argminL

LWB

WB s=
T

rT   (4.2) 

 

Where exp( )•  represents the exponential mapping from se(3) 

to SE(3). The covariance matrix of this observation can be 

expressed as: 

  
2 2 2

1 1 1
diag , , , , ,

w v v

  
  

 
 =  

 

  (5)

   

  is close to 0, and   is related to the pose covariance of the 

VIO. Assuming that the UWB anchors on the Leader is rigidly 

connected to the body, the UWB anchors’ position in the world 

frame can be expressed as： 

 

  
L L L L vioWU WB WB B U

= + +p p R p   (6) 

 

vio is white Gaussian noise. 

 

3.3 Follower: graph optimization based UWB + IMU tight 

coupling localization 

For each Follower, we solve the multi-observation-based 

maximum likelihood estimation(MLE) problem (1) in a sliding 

window, which can be modeled as a factor graph; UWB 

provides ranging factors and IMU provides preintegration 

factors. The detailed factor graph model is shown in Figure 4.  

 

 
Figure 4. Factor graph model of Follower. UWB provides 

ranging factors and IMU provides preintegration factors. 

 

3.3.1 UWB factor 

UWB is a potential ranging technology, which is very suitable 

for robot localization. The ranging error in the line-of-sight 

environment is within 10cm. Besides, each UWB device can be 

assigned a unique ID, which makes it easy to distinguish 

different robots. We used the TW-TOF protocol, for it does not 

require strict time synchronization between UWB devices.  

Considering the distance between Leader and Followers, the 

UWB measurement can be modeled as: 

 

 ) ( ) (L L L

L F

F F FWB WB

uwbwu wu

uwbB U WB WB B U

d 

= + − +

= − +

+p R p p

p

R p

p
  (7) 

 

Further UWB residual can be expressed as: 
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( ) ( ) (, )L L L F F Fuwb WB WB B U WB WB B U
d + −= − +p R p p R pr z χ  

                (8) 

We have obtained LWU
p from (6), and 

uwb  is Gaussian 

noise with zero mean. The initial value of  
FB U

p  is get by 

trilateration. Although distance-based localization can 

obtain closed-form solutions through trilateration 

algorithms, nonlinear optimization methods can achieve 

higher accuracy through multiple iterative calculations. In 

addition, the optimized method can also estimate the 

orientation of the robot, which cannot be calculated by 

trilateration. 

 
3.3.2 IMU factor 

The IMU raw data is angular velocity and linear acceleration 

with noise, which includes the Earth's gravity component. We 

ignore the rotation of the earth. IMU measurements can be 

modeled as: 

 

  t

t

t t a a

t t w w

= + +

= + +

a a b n

ω ω b n

   (9) 

 

Where 
ta  and 

tω  denote the angular velocity and linear 

acceleration of the output of IMU, 
ta and 

tω denote true value, 

and
ab , 

wb are the bias of IMU. The noise 
an and 

wn are 

assumed to be zero-mean Gaussian distributed. 

In engineering, the frequency of the IMU is usually higher than 

that of the UWB, and the IMU preintegration[19] method is 

used to aggregate multiple measurements into one. For inertial 

measurements in the time interval  1,k kt t +
, the derived 

measurements are calculated as: 
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{ , , }α β γ encapsulates the relative position, velocity and rotation 

information between two UWB ranging. Finally, the residual 

and system state can be expressed as: 
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4. EXPERIMENT 

In this section, we did two experiments. The first experimental 

scenario is the Leader localization experiment to verify the 

suppression of VIO drift by the plane-constraint. We adopt the 

state-of-the-art stereo inertial odometry(Qin, 2019). In the 

second experiment, we show the co-location of three AGVs to 

verify the effectiveness of the proposed system and algorithm. 

RTK is used as the ground truth in the experiment, because the 

positioning error of RTK outdoors is less than 3cm. 

In the experiments, we adopt the configuration shown in Figure 

5. On the Leader, realsenseD435i VI kit provide stereo + IMU; 

UWB model using DW1000; RTK using G200; processor is 

NVIDIA jeston AGX. On Followers, using the same UWB and 

IMU is using CH110.  

 

 
Figure 5. Sensor configuration of AGV group 

 

4.1 Plane Constraint Effectiveness Experiment 

In order to suppress the drift (mainly in the Z axis) of the 

Leader's motion in the 2D plane, we add the SE(2)-plane 

constraint to its VIO trajectory (4.1). We did extensive outdoor 

experiments for Leader. We use RTK to provide drift-free 

reference values. As shown in Figure 6. 

 
Figure 6. Comparation with and without planar constraints. 

RTK  provided  drift-free reference values. 
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Figure 7. Components of three trajectories in coordinate axes. 

 

 

Figure. 7 shows that the SE(2)-constraint effectively suppresses 

the 50% drift in the Z axis. It is a soft constraint, so it retains the 

oscillation on the Z axis, which is mainly caused by ground 

fluctuations or vibration of the AGV body. 

 

4.2 AGV group Real-world Experiment 

In the outdoor scene, we did three AGVs co-location 

experiments. They consist of a Leader and two Followers. To 

ensure time synchronization between AGVs, we use 

Network Time Protocol (NTP), and each Follower is referenced 

to the Leader's clock. The Leader kept low speed to move the 

UWB anchors slowly. Followers are distributed on both sides of 

the Leader and maintain a good line-of-sight environment. We 

install RTK on each AGV to record the real trajectory as ground 

truth. Figure 8 shows the trajectories of all AGVs. (Only focus 

on 2D trajectories).  

 
 

Figure 8. Co-localization experiment of three AGVs, including a Leader and two Followers. The origin of world frame is the starting 

point of Leader. We zoomed in on the details to better show the experimental results. 

 

 
Figure 9.  The trajectory of the AGVs group on the axes, in which the Followers’ Z-axis data is normalized to 0.

The co-location experiment was carried out in a rectangular area 

with area of 140 m2. Followers are distributed on both sides of 

the Leader and perform a spiral circular motion, which includes 

translation and rotation. Meanwhile, a point to note in 

experiments is that, Leader needs to move slowly because the 

position of UWB anchors is critical to the localization of AGVs. 
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The trajectory length of the AGVs exceeded 210 m. The 

Followers’ position occasionally fluctuates for two reasons. 

One is that the UWB tag and AGV body are not rigidly 

connected when rotating at high angular velocity. The second is 

the inevitable non-line-of-sight(NLOS) measurement error. For 

a more detailed study, we analyzed the data of AGVs on the X 

and Y axis. Because all UWB and camera are at the same height 

in the experiment, we don't pay attention to the Followers’ Z-

axis data and normalize it to 0. ( See Figure 9.) 

We used the evo tool(MichaelGrupp, 2017) to align the AGVs’ 

trajectory with the ground truth provided by RTK, and 

calculated RMSE and Maximum error of position for all 

AGVs. See Table 1. 

 

AGV RMSE /m Max error /m 

Leader 0.069 0.17 

Follower1 0.078 0.31 

Flollower2 0.095 0.39 

Average 0.082  

Table 1. The RMSE and Maximum error of position for 

AGVs. 

From Table 1, it can be inferred that the proposed co-location 

system and algorithm have good performance. All AGVs’ 

positioning error have reached the centimeter-level. Compared 

with VIO+UWB-based methods, we achieve the same state-of-

the-art results under simpler configuration conditions. The 

NLOS error of UWB ranging in the experiment results in the 

Follower's Max error being greater than that of the Leader. 

 

5. CONCLUSION 

In this paper, we propose a Leader-Follower cooperative 

localization system and algorithm. This approach does not 

require a centralized processor. Each agent solves the global 

pose locally. We suppress the drift of VIO in the Z axis by 

plane-constraint and propose a co-localization algorithm based 

on graph optimization. Experiments show that the algorithm 

achieves centimeter-level positioning accuracy on the AGVs 

group. It shows competitive performance in positioning 

accuracy. This system is expected to be applied to multi-robot 

tasks such as group collaborative detection, collaborative 

mapping, and rescue. In the future, the non-line-of-sight error of 

UWB will be fully considered and the robustness of the system 

will be improved.  
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