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ABSTRACT: 

Coral reefs not only inhabiting millions of species that are primarily or completely associated with them, but also produce economic 

and cultural benefits to coastal societies around the world. In recent years, affected by climate change and human factors, coral reef 

ecosystem has been experiencing accelerated degradation. Coral reef monitoring activities are therefore required to assess the impact 

of adverse factors on corals and to track subsequent recovery or decline. The collection of image data has become a common approach 

in the field of underwater monitoring, but traditional coral image data analysis mainly has high time and labor costs. We need to 

investigate the spatial distribution of different coral populations in the study area through image segmentation methods to help 

oceanographers develop effective management and conservation strategies. In fact, deep learning has shown better prediction 

performance than traditional image processing or traditional machine learning algorithms in coral image segmentation tasks. Starting 

from classification of random point annotations, segmentation of sparsely labeled data, and segmentation of densely labeled data, this 

paper summarizes state-of-the-art techniques of segmentation in deep learning applied to underwater images. Then, we discuss the 

problems and challenges of CNN-based underwater image segmentation of coral reefs, and make corresponding solutions or possible 

directions for future. 

1. INTRODUCTION

As an important part of marine ecosystems, coral reefs provide 

habitat and sufficient nutrition for multiple organisms, they also 

produce enormous economic and cultural benefits to coastal 

societies around the world. However, direct and indirect 

anthropogenic pressures are being increasingly endured by coral 

reefs, including climate change, ocean acidification, overfishing 

and pollution. These stress factors work together to cause the 

large-scale degradation of coral reef ecosystems gradually. Status 

of Coral Reefs of the World 2020 report that 14 percent of the 

world's coral reefs were damaged between 2009 and 2018 (Souter 

D, 2021). Monitoring activities on coral reefs are required to 

assess the impact of adverse factors on corals and track 

subsequent recovery or decline in order to develop more effective 

management and conservation strategies to maintain the integrity 

and resilience of coral reef ecosystems (Obura et al., 2019). With 

the development of camera systems, image data collection has 

become a common approach in the field of underwater 

monitoring. Traditional analysis of coral image data has largely 

relied on experts with specialized knowledge, they distinguish 

corals by comparing morphological features. However, due to the 

repetitiveness of the labeling task and the required experience, 

this method has high time and labor costs, and there are certain 

degree of subjectivity of the level of recognition accuracy 

(Beijbom et al., 2015). How to knowledge mining efficiently and 

automatically from underwater video and image sequences is a 

new challenge. Because of the complex underwater imaging 

environment and lighting conditions, flaws in underwater images 

undoubtedly make the task of coral identification difficult: 1) The 
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energy loss of light propagating in water leads to low contrast and 

blurred texture of images. 2) The uneven spectral propagation 

causes color distortion in underwater imaging. 3) Impurities and 

suspended particles in water usually lead to large noise in 

underwater images. In addition, underwater images have 

complicated backgrounds. Varied benthic assemblages result 

significant change in different image backgrounds (Hedley et al., 

2016). For example, dead corals are covered in algae, similar to 

their surroundings, such as reefs. Free-swimming fish often block 

the target, making accurate identification of their features 

challenging.

Traditional computer vision techniques often capture visual 

features through textures, spots, or edges (Shihavuddin et al., 

2013; Mary et al., 2017). After enough features are extracted 

from the image, these features are able to generate the definition 

of each target class for the purpose of simple classification of 

different coral classes, such as SIFT, histogram, Local Binary 

Patterns (LBP), etc. Typically, traditional computer vision and 

machine learning algorithms employ pre-designed features and 

classifiers for image recognition, these features they extracted 

lack adaptability, and cannot be generalized to other classes or 

datasets (Mittal et al., 2022). Determining which features better 

describe the target class requires the researcher's own judgment 

because of coral ’ s numerous and complicated branches. In 

general, neither the speed nor the accuracy of traditional 

techniques can meet the needs of current coral reef monitoring 

tasks. 

Nowadays, the field of deep learning has made significant 

progress in image processing, providing new methods for coral 
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image analysis. Image segmentation can automatically extract 

the most representative and salient semantic features from a large 

number of collected images, and understand the population and 

distribution of benthic communities in the study area. In fact, 

deep learning has shown better predictive performance than 

traditional image processing or traditional machine learning 

algorithms in coral image segmentation tasks (King et al., 2018). 

In this review, we mainly summarize deep learning techniques 

for underwater coral image segmentation. The following is 

divided into two parts: the first part discusses the segmentation 

method of coral images, then the second part looks forward to 

future research directions. 
 

2. UNDERWATER IMAGE SEGMENTATION 

2.1 Classification of Random Point Annotations 

In the early identification and classification and image processing 

of marine organisms, it was very time-consuming to achieve 

complete manual segmentation, therefore most benthic 

communities were annotated by random point sampling 

(Beijbom et al., 2012). The label of dataset image for network 

training input is to expand each annotated point into a square area 

around a point. Patch-based CNNs generate predictions for a 

single class for each patch. Following will present some 

approaches for coral image segmentation based on patch 

classification. 

The authors applied the pretrained VGG-Net to the coral reef 

classification task (Mahmood et al., 2016). The dataset is a subset 

of the Benthoz15 dataset (Bewley et al., 2015), with only two 

classes of corals and non-corals. For the training images input to 

the network, the authors introduce the idea of Spatial Pyramid 

Pooling (SPP) to extract patches with multiple scales centered on 

labeled pixels, which scales are 28×28, 224×224, and 448×448, 

respectively. This approach can improve classification accuracy 

and make the resulting features scale-invariant. The 

preprocessing step adopts color channel stretching. Experimental 

results show that the best performance is achieved with the 

training and test datasets consist of images from the same year. 

Performance degrades when employing experimental data across 

multiple years. Ultimately, to demonstrate that this study could 

investigate growth trends in coral populations, they generated 

coral coverage maps using the best performing classification 

network and calculated coverage percentage for each site and 

every year. 

Likewise, Beijbom et al chose a low-cost modified consumer 

camera FluorIS to capture wide-band wide-field-of-view 

fluorescence images (Beijbom et al., 2016). FluorIS can be used 

for underwater fluorescence imaging of green and red. The wide-

band components of the fluorescence spectra correspond to the 

emission spectra of green fluorescent protein (GFP) and 

chlorophyll-a, respectively. The combined fluorescence and 

reflectance image data has both high-contrast coral and provides 

background and information about non-fluorescent substrates. 

These reflectance and fluorescence image pairs, acquired by 

standard SLR and FluorIS cameras, were annotated by coral 

ecologists at 200 random point locations. Then they introduced a 

supervised automatic annotation algorithm based on a 

convolutional neural network (CNN) to automatically classify 

the five major coral genera. 

Compared with the traditional automatic annotation approach, 

there is no difference in the accuracy of training on the reflection 

image. However, when inputting FluorIS images, the proposed 

method based on the CNN is higher than the accuracy of 81.0% 

obtained by the traditional method, which achieves an accuracy 

of 85.5%. The CNNs were trained using only reflectance per 

pixel, reflectance and fluorescence mean, fluorescence only, and 

on 5-channel images. The results displayed that FlourIS image 

intensities were more effective than reflectance image intensities 

in distinguishing corals from non-corals, with the highest 

accuracy (90.5% ± 0.8%) achieved with a three-channel network 

that includes mean values of fluorescence and reflectance. 

Moreover, they also released the web-based point annotation 

platform CoralNet (Chen et al., 2021). 
González-Rivero et al. applied deep learning as a tool to support 

coral reef monitoring, employing a convolutional neural network 

architecture VGG-D 16 pretrained on the large dataset ImageNet 

to classify random point annotations (Gonzalez-Rivero et al., 

2020). The patch area cropped around each point is set to 

224*224 pixels to align with the predefined image input size of 

the VGG architecture. The authors use absolute error to represent 

the overall difference in abundance estimates for each label class 

between machines and observers. Among the major functional 

groups of underwater benthic organisms, the differences in error 

about abundance estimates were most significant between 

categories but smaller between study areas. Algae showed the 

greatest variation, with a 3%–5% error, followed by hard and soft 

corals. 

On average, there was 97% high agreement between expert and 

automated observations. This consistency also exists at the 

community level. The authors compare the performance of 

machine and observer estimations in Australia, Central Indian 

Ocean, and Central Pacific Regions. The similarity between 

automated estimates of benthic composition and manual 

observations varied across taxonomic groups, ranging between 

84% and 94%. Provided the errors of network estimates are 

comparable to those by multiple observers, the estimated cost of 

single image annotation of $5.41 by experts is much higher 

compared to just $0.07 using machine learning. These results 

demonstrate the practicality of deep learning methods for 

underwater monitoring tasks, and its application in automatic 

image classification reduces costs while accelerating image 

analysis. In addition, they discussed the advantages of machine 

learning techniques to facilitate coral reef monitoring: combining 

underwater image monitoring with automatic image annotation 

greatly improves the efficiency of coral reef measurement and 

monitoring, and provides new ideas for future region 

management and data integration. 

  

2.2 Segmentation of Sparsely Labeled Data 

In the case of environmental monitoring of coral reefs, data 

labeling needs relevant expertise and is expensive. Therefore, 

datasets of benthic communities are mostly sparsely annotated, 

such as random point annotations. This approach assumes that 

the surrounding pixels of an annotated point are also of the same 

class, and makes the choice of patch size difficult: patches must 

be large enough to describe the structure of benthic organisms, 

but small enough to prevent other classes. Patch-based 

classification can only roughly discriminate objects in 

underwater images, it lacks per-pixel accuracy, and the result 

does not fit the coral region contours well. Enhancing sparse 

annotations can reduce the labeling work but acquire densely 

labeled segmentation data. 

(Aloso et al., 2017) proposed a CNN-based strategy for semantic 

segmentation of coral reef images with available sparsely labeled 

data. They recommended simple augmentation of ground-truth 

with superpixel approaches to generate approximate but dense 

labels. Moreover, they evaluated different combinations of 

fluorescence data and RGB image data. It was concluded that the 

best combination was a three-channel input through combining 

two channels of fluorescence images with the mean of the RGB 

channels. The network model adopted was a fine-tuned SegNet, 
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and used the cross-entropy loss with the median frequency 

balancing as the objective function for training to eliminate the 

impact of the difference in class sample numbers on the network. 

The encoder-decoder CNN model trained on both data types 

provides the highest average precision and recall for coral class. 

They also proposed a dense score based on superpixel labels that 

serves as a quality assessment for segmentation. Compared with 

patch-based classification methods, the overall accuracy of both 

are comparable, but superpixel-based methods produce more 

coral-like morphological characteristics in segmentation and 

follow object contours better. 

In order to balance the fitting accuracy of the single-level 

superpixel strategy and unlabeled region numbers, they proposed 

a multilevel superpixel segmentation Algorithm in (Alonso et al., 

2019), which iteratively applies superpixel segmentation, and 

gradually reducing iterate of each generated superpixels to obtain 

more accurate labels for per-pixel classification. 15 superpixels 

is used as the default setting for multi-level methods in most 

experiments because the accuracy starts to converge. It improves 

mIoU of 11% on the average by contrast with the previous single-

stage method. The modified cross-entropy loss, i.e. give more 

importance to pixels whose neighboring pixel predictions are not 

the same, which considering neighboring pixels without adding 

more computation. The authors compare three semantic 

segmentation models, Deeplab v3, Deeplab v3+, and symmetric 

Deeplab v3+. The results show that the symmetric architecture 

performs better, but increases inference time. Besides, CoralNet 

pretrained encoder they published is applied for all coral reef 

semantic segmentation models, and the proposed sparse label 

augmentation method is also applicable to other datasets in the 

non-coral field (Alonso et al., 2018). 

King et al. suggested an image annotation tool based on 

superpixel generation and computation of graph cuts in their 

research (King et al., 2018). Further, the annotation tool uses 

RGB histogram and Gabor filter features to measure region 

similarity and performs k-means clustering based on the 

similarity measure. The authors compare patch-based network 

models and semantic segmentation models. Then they performed 

normalization as a preprocessing step before the images are fed 

into the segmentation model. Experiments demonstrate that 

Resnet152 achieves the highest patch accuracy of 90.03%, and 

DeepLab v2 achieves the highest pixel accuracy of 67.7%. 

They also introduced stereo disparity in (King et al., 2019) to 

provide multi-view information: after the image was corrected 

using camera calibration parameters, a disparity map was created 

with a semi-global block matching-based disparity estimation 

algorithm, then they used an inpainting algorithm to interpolate 

missing disparity data. The resulting disparity map is fed into 

FCNN as an additional fourth channel concatenated with RGB 

channels. In addition, they also designed TwinNet, which is a 

stereo FCNN architecture, the basic architecture is the front-end 

of the Dilation8 architecture, and the input data is a stereo image 

pair, weights are shared in the backbone. The left and right 

outputs by Dilation8 are fed to different Siamese sub-networks, 

and the weights of the sub-modules are learned dividually. Then 

it is fed into a stereo module consisting of three convolutional 

layers, and its output is finally sent to the collapse module after 

concatenating the channel axes. The experiments compare the 

performance of a standard FCNN with three channels as input, 

FCNN with four channels as input, TwinNet with only left-view 

images as input, and TwinNet with stereo image pairs as input. 

The results show that the TwinNet architecture using stereo 

image pairs achieves the highest accuracy of 66.44% on 10 

categories. 

For the algorithm of generating dense labels, (Pierce et al., 2020) 

proposed an improved version of the multi-level superpixel 

segmentation (MSS) algorithm, namely Fast MSS, which can 

convert existing sparse labels into dense labels required for 

training FCN, and greatly reduce execution time for generating 

dense labels. Fast MSS modifies how to combine labels created 

during each iteration and adopts Fast-SLIC as the over-

segmentation algorithm. After each iteration, the class labels of 

the MSS propagated to adjacent pixels are stored in a 2D array, 

piling a 3D array of size (H x W x I), where I refers the total 

number of iterations. Starting from the array created in the first 

iteration, MSS joins each 2D array in the stack, and Fast-MSS 

makes dense labels by computing the statistical pattern of class 

labels on the 3-rd dimension of the stack. Fast-SLIC is optimized 

on the basis of  SLIC, such as color quantization, subsampling, 

parallelization and integer-based arithmetic. 

In (Raine et al., 2022), the authors propose a new point-label-

aware superpixel method for dense label generation, which uses 

a custom loss function to optimize the superpixel center position 

to maximize the similarity of pixels within each region , while 

reducing class labels containing conflicts. The loss function is 

weighted by the two loss terms: distortion loss and conflict loss. 

The distortion loss clusters similar pixels to generate superpixels 

that perfectly fit the coral boundaries. The weighted distortion 

loss is obtained by weighting the distance between each pixel 𝐹𝑝 

and the superpixel feature 𝑆𝑖 = [𝑇𝑖 , 𝑋𝑖]. 
 

ℒ𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛(𝑝) = ∑‖𝐹𝑝 − 𝑆𝑖‖
2

𝜇𝑝,𝑖

𝑖∈𝐼

(1) 

 

where the vector 𝐹𝑝 = [𝑇𝑝, 𝑋𝑝] consists of the output 𝑇𝑝 of the 

feature extractor and the scaled (𝑥, 𝑦) coordinates. They use the 

Superpixel Sampling Network (SSN) to extract dense feature 

vectors representing the area around each image pixel. The fuzzy 

membership 𝜇𝑝,𝑖 , which computes the normalized distance from 

a pixel to each superpixel. 

The conflict loss only considers the labeled pixels, and ensures 

that only one class exists in each superpixel. The conflict loss 

sums the inner products of the fuzzy memberships of the conflict 

markers. To maximize the possibility that a superpixel region 

contains point labels, they output three results using three models 

with different hyperparameters, and combine the three ground 

truth masks by adopting a specific pattern at each pixel. The data 

augmentation on the UCSD Mosaics dataset includes random 

horizontal or vertical flips, gain, and gamma. In enhancing coral 

image labels, the superpixel point label perception method has a 

larger increase in accuracy and mIoU than CoralSeg, Fast 

Multilevel Algorithm and SSN, and also significantly improves 

computational speed of each image. 

(Yu et al., 2021) proposed an iterative strategy that only relies on 

sparse labels to generate pseudo-labels to improve coral image 

segmentation performance: First, use wide Residual Networks 

(WRN) which trained by sparse labels to extract features, then 

use Dirichlet assignment (LDA) with spatial coherence in 

network embeddings to infer class distributions on discrete 

features and generate pseudo-labels. Finally, train the network by 

adding some pseudo-labels inferred from prior knowledge to 

improve the learning of the model. Pseudo-labeled samples are 

weighted by sample and class. In the first stage of training, the 

objective function consists of supervised loss and mutual 

information constraint loss. The supervised loss is the cross-

entropy between the prediction of the labeled samples and their 

corresponding true label, the mutual information constraint loss 

is the mutual information between input space and latent feature 

space. In the second stage of training with pseudo-labels, the 

objective function adds the cross-entropy loss function between 

the predictions of unlabeled samples and their corresponding 

pseudo-labels. The results indicate that LDA with spatial 

coherence and training with weighted confidence samples has the 
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highest segmentation accuracy, with mIoU of 73.5%. Adding 

spatial information can improve performance, and considering 

the confidence level of pseudo-labels can improve the 

generalization ability of the network and reduce the bad effects 

of mistake pseudo-labels. If adding virtual adversarial training 

(VAT), it has the best performance of 75.1%. Yet this approach 

doesn't work well for classes with a low percentage of overall 

pixels. 

 

2.3 Segmentation of Densely Labeled Data 

As described, one of the factors limiting the accuracy of image 

segmentation is the lack of images classified by pixel-based 

labels, and the application of approximate labels will increase the 

error of network predictions (Pavoni et al., 2021a). How to 

efficiently obtain accurate ground truth always be a block to 

image segmentation performance.  

(Pavoni et al., 2021b) open-sourced TagLab, a semi-automatic 

labeling tool based on artificial intelligence (AI), which can 

accomplish pixel-level labeling of benthic organisms. With a 

wealth of data, they employed underwater ortho maps to segment 

benthic communities (Pavoni et al., 2019a). Regions were 

divided as training, validation, and test datasets by biologically-

inspired dataset partition methods, which weighted the calculated 

values of three ecological metrics describing the spatial patterns 

of benthic communities as similarity scores (S), selected with 

triplet of best S-values. To address the class imbalance problem, 

a simple oversampling strategy is also proposed based on the 

actual area coverage.  

Ortho-mosaic need to be divided into tiles by overlapping sliding 

windows into the input network due to memory constraints. Such 

a partition method will get different predicted class values on 

boundary of each tile, so there requires a reassembling strategy. 

They employed Bayesian fusion to obtain the final scores for 

smoother boundaries at tile connection. The network selects the 

pretrained CNN architecture Bayesian SegNet for semantic 

segmentation tasks. They also used a PyQt-based interactive 

validation tool to examine the classification of the network and 

correct wrong predictions, possibly exporting more correct labels 

to retrain the network (Pavoni et al., 2019b). Through these 

works, the new accuracy of the network is 96.7%. 

In (Pavoni et al., 2020), the dataset used in the study are manually 

labeled orthos of 10 plots from the 100 Island Challenge Project. 

A 100-square-meter parcel was imaged with a Nikon d7000 

camera on each island, then they use Agisoft Metashape software 

to create a single continuous 3D model of each parcel. The dense 

cloud is then put into the Viscore platform to create an 

orthographic projection. The proposed oversampling strategy is 

to use Poisson disk sampling to select the center of the tile, and 

generate non-overlapping random samples not smaller than the 

specified minimum distance 2r through the Dart Throwing 

algorithm with class-related radius. The goal is to crop patches 

with different local densities. Similarly, they provide several 

image augmentation techniques: colorimetric enhancement 

(simulates changes associated with underwater image formation) 

and geometric enhancement (random rotation and translation), 

weight decay and batch normalization (subtracting each channel 

average). 

The network chooses the pre-trained DeepLab V3+. They 

compared performance of the four loss functions, Weighted 

Cross-Entropy, Generalized Dice loss, Focal Tversky and 

GDL+Boundary in terms of choosing the loss function. As can 

be seen that although the Focal Tversky loss proved to be the best 

loss for training coral segmentation models, it was unable to 

handle datasets with overly imbalanced proportions. Beside 

conducting experiments on the same area, they also applied the 

same model to other test areas to evaluate its generalization 

ability. The mIoU ranged from 0.69 to 0.97, with accuracy 

depending on species richness and abundance. 

In addition to introducing deep learning for coral image 

segmentation, some strategies for dealing with overall class 

imbalance and differences in class distribution among images are 

described in detail (Steffens et al., 2019). To balance the 

distributions of datasets, they created N fixed-size training and 

validation sets with randomly selected images, and applied 

cosine distances weighted by the overall class distribution to 

compare the train/validation distributions. The training input 

images are cropped at random square sizes, then scaled to a fixed 

size of 256*256, and randomly flipped vertically or horizontally. 

Data augmentation can enhance the robustness of the network 

model and prevent the network from overfitting. 

Correspondingly, DeeplabV3 also uses a weighted cross-entropy 

loss function based on the class distribution measurement. 
Mizuno et al.'s research focuses on how to efficiently and 

accurately estimate coral cover (Mizuno et al., 2020). They 

described the construction process of the 3D model in detail: First, 

use a towed optical camera array system (Speedy Sea Scanner) 

for data acquisition. Continuous still images were obtained from 

the video data, and 3-D point clouds were reconstructed from 

them using Agisoft Metashape, resulting in a large-scale 3-D 

structural model with a resolution of 0.01 m. The Structure from 

Motion technique is then employed to generate digital elevation 

models (DEMs) and 2-D orthophotos based on the 3-D structural 

model. Furthermore, they constructed a U-Net-based deep neural 

network for experiments. To evaluate the prediction results, they 

also used five-fold cross-validation. The results show that U-Net 

with color correction and data-augmentation preprocessing 

achieved the highest accuracy (0.910) and F-measure (0.772). 

They concluded that not only UNet may have better performance 

than pixel-level CNN, but it also has low computational cost. 

Finally, they constructed a predictive model using 200 images 

and the network structure with the best performance and 

estimated coral cover for the entire survey area, with the 

percentage of coral cover distributed between 0-35%. 

(Song et al., 2021) published the CoralS dataset for coral 

semantic segmentation, which includes spectral images at 

different wavelengths and RGB images of several coral species 

under different illuminations. Especially, they classified coral 

classes with modified DeepLab model DeeperLabC, 

distinguishing coral and non-coral areas. The DeeperLabC is 

shown in Figure 1. The structure of the DeeperLabC model 

includes encoder and decoder, and the adjusted pre-trained 

ResNet34 is used as the skeleton network. The channel-combined 

features are fed into the decoder, including low-level features that 

are further downsampled via convolution and Space2Depth 

operations, and high-level features extracted via Atrous Spatial 

Pyramid Pooling (ASPP). Feature maps are upsampled to the 

original size using depth-to-space and linear interpolation in the 

decoder. Image preprocessing is to crop and scale all RGB 

images, spectral images and labels into 512*512 single-channel 

images. And training set are randomly augmented, rotated, and 

flipped horizontally or vertically. A class activation map (CAM) 

module is added to the tail of the DeeperLabC model to visualize 

feature maps for semantic segmentation. Compared with FCN, 

UNet and DeepLabV3+, this way achieves the best performance 

with mIoU of 93.90%. 

Although there are mature techniques for semantic segmentation 

of benthic communities, most of the existing annotation are 

related to specific tasks, such as coral reef classification and 

cover statistics tasks as summarized in this paper, and there is no 

general object classification dataset like ImageNet to facilitate 

large-scale training and benchmark evaluation of segmentation 

models. Therefore, (Islam et al., 2020a) proposed the first large-

scale dataset SUIM for general multi-object semantic segmentat- 
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Figure 1. The structure of DeeperLabC for  

single-channel coral segmentation. 

 

-ion of underwater scenes. It contains 1525 natural underwater 

images, corresponding ground truth and 110 images for test. The 

SUIM dataset considers the following eight object categories: 

fish (vertebrates), coral reefs (invertebrates), aquatic plants, 

wrecks/ruins, human divers, robots, and seafloor, annotated by 

humans. It also utilizes some data from large datasets of EUVP 

(Islam et al., 2020b), USR-248 (Islam et al., 2020c) and UFO-

120 (Islam et al., 2020d). Further, they proposed SUIM-Net, 

which follows an encoder-decoder architecture with optional 

hierarchical skip connections on its core building blocks, called 

residual skip block (RSB), which is shown in Figure 2. Skip 

connections are fed through intermediate convolutional layers 

when skip=0, and directly from the input when skip=1 for local 

residual learning. The network structure is shown in Figure 3: 

 
Figure 2. The  architecture of Residual Skip Block. 

 

 
Figure 3. The end-to-end  network architecture. 

 

Combining skip connections and residual learning, SUIM-Net 

not only is comparable to current state-of-the-art architectures, 

but also has a light-weight architecture for real-time inference. 

They use state-of-the-art network models and SUIM-Net to 

evaluate performance on the SUIM dataset through two tasks, 

semantic segmentation and single-channel saliency detection for 

five main class. The results indicate that UNet𝑅𝐺𝐵, FCN8𝑉𝐺𝐺  and 

DeepLabV3 generally perform the best in two tasks. The 

evaluation metrics F and mIoU scores of SUIM-Net are within 5% 

of their respective top scores. In fact, SUIM-Net has higher speed 

than other models, and its memory efficiency is more than 10 

times higher than the above three networks. In general, these 

important cases of the proposed SUIM dataset provide ideas for 

realizing real-time annotation and processing of underwater 

imagery, and also help to explore the feasibility of deep learning 

models for other specific application tasks. There is another study 

complementing DeepLabV3+ experiments on the SUIM dataset 

(Chicchon et al., 2022). 

 

2.4 Conclusion 

The deep learning based coral image segmentation methods are 

summarized in Table 1. Given the above, we overview a set of 

pipelines for analysing underwater coral images:  

Image Preprocessing. The processing of underwater images 

normally includes the following two points: image enhancement 

and image restoration. For images with color decay, an enhanced 

model of deep learning is used to improve image quality (Islam 

et al., 2020; Yang et al., 2021). It is also a popular practice to 

generate orthophotos from continuous video for subsequent 

studies on coral cover estimation. 

Image Annotation. At early stages, due to scarce resources, 

researchers usually chose the method of random point annotation 

to distinguish corals. To achieve higher annotation quality, there 

are related researches on generating dense labels from sparse 

labels. The current requirement for coral accuracy has led 

professionals to conduct pixel-wise annotation, with semi-

automatic annotation tools available. 

Segmentation Network. From patch-based classification 

networks to pixel-based segmentation networks, improvements 

in computing power of computer have enabled deeper network 

models to extract more semantic information. 

Application Research. After segmenting coral individuals 

automatically and precisely, researchers often apply it for 

estimating coral cover in study area, contributing to 

environmental protection.  

 

3. DISCUSSION AND CONCLUSION 

We provided a comprehensive survey of the recent development 

in coral reefs monitoring using deep learning techniques, 

including classification at random point annotation, semantic 

segmentation of sparsely labels and semantic segmentation of 

densely labels. We presented a comprehensive performance and 

advantage of various methods in each field. Nonetheless, Coral 

image segmentation still faces unprecedented and important 

challenges, and there are many issues that need further thinking 

and research. Below, we outline some outstanding issues and 

identify potential research directions. 

 

3.1 Coral Growth Trends and Coverage 

Most studies at this stage focus on monitoring the overall 

coverage of coral reefs in a study area, ignoring each coral genus. 

Even though classifications of multiple categories were carried 

out in the study, there was no further analysis and estimation of 

each species. The dominant species in each marine region are 

different, and the coverage of different coral reef genus needs to 

be considered, which can better assess the ecology and resilience 

of coral reefs. In the future, the segmentation of coral images will 

improve towards the direction of multi-class segmentation, and 

how to deal with the class imbalance of different coral species is 

also a point issue in the future. The growth of corals can be 

considered from multiple perspectives such as coral size, coral 

color, and growth environment, which requires pixel-wise 

labeling of corals in different instance areas, that is, instance 

segmentation. 

 

3.2 Insufficient Training Data in Corals 

Sufficient data is the key for training CNN models for underwater 

image classification. Due to the high time and equipment cost of 

situ survey, the automatic acquisition of underwater images will 

be completed by unmanned underwater vehicles in the future. 

While preparing the ground truth of the dataset still requires 

manual annotation of human experts, and preparing the remote 
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Method[Refer.] Data augmentation Feature extractor Loss Contribution 

Classification of 

Random Point 

Annotations 

Mahmood et al. - VGG - Estimating coral cover 

Beijbom et al. - CNN - Combines RGB and fluorescence images 

González-Rivero et al. - VGG-D 16 - Measuring machine and observer error 

Segmentation of 

Sparsely Labeled Data 

Aloso et al. - Fine-tuned SegNet Weighted Augmenting sparse labels with superpixels. 

Aloso et al.  - Weighted Augmenting sparse labels with multi-level superpixels. 

King et al. √ - - Comparing patch-based and pixel-wise models. 

King et al. - TwinNet - Design a network that takes stereo images as input. 

Pierce et al. √ - - Fast-MSS. 

Raine et al. √ SSN Hybrid A new point-label-aware superpixel method. 

Yu et al. - WRN  Iterative strategy for generating pseudo-labels. 

Segmentation of 

Densely Labeled Data 

Pavoni et al. √ Bayesian SegNet Weighted Biologically-inspired dataset partition methods.. 

Pavoni et al. √ DeepLab V3+ Hybrid Poisson Disk Oversampling Strategy. 

Steffens et al. √ DeeplabV3 Weighted Techniques to deal with class imbalance. 

Mizuno et al. √ UNet - Efficient and accurate estimation of coral cover. 

Song et al. √ DeeperLabC - New single-channel segmentation network. 

Islam et al. √ SUIM-Net - Lightweight segmentation network and general dataset. 

Table 1. Summary of coal image segmentation methods. 

 

sensing dataset of orthophotos also takes more time. How to 

develop a large amount of labeled data on the basis of reducing 

labor cost is a serious challenge. However, some research is 

devoted to image enhancement techniques that address 

insufficient training data, they are insufficient when applied to 

complex or large deep learning models. Large-scale datasets of 

coral imagery need the attention of the global coral conservation 

community, and they may drive ecological experts or researchers 

studying underwater robotics to develop a generic pixel-wise 

labeling dataset for underwater coral reefs scenes. 

 

3.3 Network Design 

From the current research, it can be seen that most deep learning-

based coral image segmentation research focuses more on the 

accuracy rather than on the time efficiency. At the same time, few 

reasearch specifically design a lightweight network model with 

applicability and mobility in the field of underwater benthic 

communities. Future research may design a coral-specific 

network model that can be employed not only in automatic 

annotation and coral cover estimation, but also embedded in 

visual-based unmanned underwater vehicles for real-time data 

collection and identification. 
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