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ABSTRACT:

The received signal strength (RSS) fingerprint based localization is a widely used technique for location estimation in the indoor
environment with the fifth generation (5G) wireless communication. However, the RSS feature is easily affected by the noise
and other variations of the propagation channel, thus limiting the localization accuracy. In this paper, we propose a multiple RSS
fingerprint based localization scheme in the reconfigurable intelligent surface (RIS) assisted system, where the RSS values under
different RIS configurations are leveraged as the fingerprints. However, it is challenging to set the favorable RIS configurations.
To tackle this challenge, we design an optimization method based on Cramér-Rao Lower Bound (CRLB) to derive the optimal RIS
configurations to achieve a robust and accurate location estimation, where the CRLB is minimized, and projected gradient descent
(PGD) method is applied to solve this optimization problem. After the fingerprints are collected, deep neural network (DNN)
is employed for location estimation. Simulation results reveal that the proposed scheme performs well in terms of localization
accuracy and stability.

1. INTRODUCTION

Location information for events, assets, and individuals, mostly
focusing on two dimensions so far, has triggered a multitude of
applications across different verticals, such as consumer, net-
working, industrial, health care, public safety, and emergency
response use cases. Thus, the localization issue especially the
indoor localization has aroused great interest [Zafari et al.,
2019].

To enable indoor location based services, various localization
techniques have been proposed, among which the fingerprint
localization technique based on received signal strength (RSS)
in the fifth generation (5G) wireless communication network
has gained much attention. Compared with Bluetooth and ra-
dio frequency identification (RFID), this 5G-based technique
can provide location information with existing 5G base stations
(BSs), thus avoiding the cost of deploying any extra equip-
ment. Moreover, different from other fingerprint based tech-
niques, RSS information can be easily collected for its low re-
quirements for hardware.

The RSS-based localization system usually contains two phases,
including the offline and the online phases [Wang et al., 2017].
In the first phase, a specific RSS value for each reference point
is recorded. And then, the user’s location information is es-
timated by matching the RSS fingerprint in the online phase.
However, in the uncontrollable radio environment, the RSS in-
formation cannot be customized, and the existence of adjacent
locations whose RSS values are similar to each other unavoid-
ably degrades the performance of the localization system.
∗ This work is supported by National Key Research and Develop-

ment Plan (No. 2016YFB0502202), NSFC projects (62171127,
61960206005, 61971136), Research Fund of National Mobile Com-
munications Research Laboratory.

Recently, reconfigurable intelligent surface (RIS) has been pro-
posed as a potential tool to actively change the signal propaga-
tion conditions [Zhang et al., 2020]. It is composed of many
subwavelength-scale elements with tunable electric response (i.e.,
phase shifts). By changing the configuration, the RIS is capable
of customizing the propagation radio environment in a desired
way, and therefore changing the reflected signals. This provides
a new way to alter the RSS fingerprint maps and reduce the sim-
ilarity of the RSS values corresponding to adjacent locations,
which can further improve the localization performance.

In this paper, we investigate the problem of fingerprint-based
indoor localization in RIS-assisted system for 5G NR network
and propose a novel localization scheme which utilizes the mul-
tiple RSS values under different RIS configurations as finger-
prints. However, such RIS configurations selection is of chal-
lenge due to a massive number of possible combinations of
phase shifts and the complicated relation between RIS config-
urations and the RSS fingerprint map. To address this chal-
lenge, we first model the channel based on the geometry for
Cramér-Rao Lower Bound (CRLB) calculation and then design
an optimization method based on CRLB to find the optimal RIS
configurations. Besides, the projected gradient descent (PGD)
method is utilized to solve this optimization problem. After the
fingerprints are collected, deep neural network (DNN) is ap-
plied for location estimation. Simulation results show that the
proposed scheme performs well and can achieve the localiza-
tion accuracy of 0.5m in the non-line of sight (NLOS) scenario.

2. SYSTEM MODEL

2.1 RIS-assisted Indoor Localization Scenario

Consider a typical RIS-assisted wireless communication sys-
tem, as shown in Fig. 1, which consists of one multiple-antenna

Z

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVI-3/W1-2022 
7th Intl. Conference on Ubiquitous Positioning, Indoor Navigation and Location-Based Services (UPINLBS 2022), 18–19 March 2022, Wuhan, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVI-3-W1-2022-287-2022 | © Author(s) 2022. CC BY 4.0 License. 287



BS, one single-antenna user equipment (UE) and one RIS. The
BS receives signals transmitted from the UE in the localiza-
tion area only through the link reflected by the RIS, while the
line-of-sight (LOS) link is blocked due to the existence of the
obstacle. We consider a two-dimensional (2D) scenario with
uniform linear arrays (ULAs) for both the antenna elements and
RIS elements, and the numbers of antenna elements at the BS
is M , while the number of RIS elements is N .

RIS

BS UE
obstacle

���

���

×

Figure 1. RIS-assisted wireless communication system

Let H denote the two tandem channels (Hur ∈ CN×1 for the
first hop and Hrb ∈ CM×N for the second hop), which connect
the UE to the BS via the RIS. Thus, the entire channel H can
be formulated as

H = HrbΩHur, (1)

where Ω= diag
(
ejω1 , ejω2 , . . . , ejωN

)
∈ CN×N is the phase

control matrix at the RIS, which is a diagonal matrix with constant-
modulus entries in the diagonal. Then, the receive signal can be
expressed as

Y = HX + W = (HrbΩHur) X + W, (2)

where X is the transmitted signal and W is the noise.

2.2 Channel model based on geometric model

In this subsection, the channel is modeled based on the geo-
metry of the considered localization scenario. Assume that the
geometry of the localization area is known, then the channel
between the UE and the BS can be modeled by the geometry-
based channel modeling method (GCM) where Ray-tracing al-
gorithm and the Path Recovery algorithm is applied. The details
of GCM is described as follows.

Reflection, diffraction, transmission and scattering will occur
when the electromagnetic waves encounter different media. But
in general, the signal components except the direct and reflected
components are very weak. Therefore, We simplify the receive
signal into direct component and reflected component for con-
venience, where the direct component refers to the signal sent
directly from UE to BS, and the reflected component refers to
the signal reached BS after several reflections.

Firstlly, choose the center point in the localization area as the
path reference point(PRP), as shown in Fig 2, then the propaga-
tion paths between the PRP and the BS can be obtained by the
Ray-tracing algorithm since the locations of all the obstacles is

Indoor scenario

Localization area

PRP

Figure 2. Illustration of PRP

known. It is assumed that the signals transmitted by users in
adjacent locations have the same number of propagation paths,
and pass by the same reflection surfaces. Therefore, when the
localization region is limited, we can recover the paths between
the UE in any location and the BS based on the known paths
of PRP by employing the path recovery algorithm which lever-
ages the fact that the incident and reflection rays are symmetric
with respect to the normal. As shown in Fig. 3, the number of
paths L, the angle of arrival (AOA) Θ = [θ1, θ2, . . . , θL], the
angle of departure (AOD) Φ = [φ1, φ2, . . . , φL] and the path
length Γ = [γ1, γ2, . . . , γL] can be recovered as the output of
GCM, and they are expressed as the functions of the UE loca-
tion (x, y). Then, the far-field channel model can be established
based on L, Θ, Φ and Γ.

INPUT: geometry model and the PRP location

ray-tracing algorithm

path recovery algorithm

OUTPUT:                                                        \� �, � � �, � � �, � � �, � \\

Figure 3. The flow diagram of GCM

Path gain is dependent on the path length and the the number
of reflections [Wang and Zhang, 2021]. Assuming that the
reflection coefficients of all obstacle surfaces are the same, and
the path gain of the lth path is represented as

g(γl) = βrl ·
(

c

4πfγl

)
ej2πfγl/c, (3)

where β is the reflection coefficient, rl is the number of reflec-
tions occurred in the lth path and f is the carrier frequency,
respectively.

Let d denote the distance between antennas (or the RIS ele-
ments), and c is the speed of light. If the AOA or AOD is ϕ,
the phase shift between two adjacent antennas (or the RIS ele-
ments) caused by the AOA or AOD is e−j2πfd×sin(ϕ)/c. There-
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fore, the steering vector for both AOA and AOD is given by

α(ϕ) =
[
1, e−j2πfd×sin(ϕ)/c, . . . , e−j2π(M−1)fd×sin(ϕ)/c

]T
.

(4)

Let Lur and Lrb denote the path number of UE-RIS link and
RIS-BS link, respectively. Then Hur and Hrb can be modeled
as

Hur =
Lur∑
l=1

g(γl,ur)α (θl,ur)

Hrb =
Lrb∑
l=1

g(γl,rb)α (θl,rb)α (φl,rb),

(5)

where θl,rb, φl,rb and γl,rb are the AOA, AOD and path length
of the lth path between RIS and BS, respectively, while θl,ur
and γl,ur are the AOA and path length of the lth path between
UE and RIS.

2.3 RSS model

During the localization phase, the RSS measured by the BS will
be compared with the RSS fingerprints in the database. Let Ỹk

denote the receive signal when RIS is configured as Ωk, then
the RSS measured under the configuration Ωk can be expressed
as [Zhang et al., 2021]

s̃k = 10 lg
∣∣Ỹk

∣∣2. (6)

We use the channel response modeled by GCM to calculate the
predicted mean RSS, which is only used for the RIS configur-
ations selection. Leveraging the channel model in (5), the pre-
dicted mean RSS µk under the configuration Ωk can be derived
as

µk = 10 lg |(HrbΩkHur)X|2

= 10 lg

∣∣∣∣∣
(
Lrb∑
l=1

g(γl,rb)α (θl,rb)α (φl,rb)

×Ωk

Lur∑
l=1

g(γl,ur)α (θl,ur)

)
X

∣∣∣∣∣
2

.

(7)

3. THE PROPOSED SCHEME

3.1 System architecture

In this paper, we aim to improve the localization accuracy by
developing a RSS fingerprint based indoor localization system
which utilizes the RIS to create multiple RSS fingerprints. The
overall localization system architecture is shown in Fig. 4,
which can be divided into two phases, including the RIS con-
figuration selection phase and localization phase.

3.1.1 RIS configuration selection phase In the proposed
RIS based localization scheme, the RSS values under different
RIS configurations are selected as the fingerprints. The RIS has
the potential to change the signal propagation conditions, and
the phase shift of each elements in the RIS is alterable. By
adjusting the RIS configuration, the RSS in BS will be changed

calculate the CRLB based on the
geometric model

objective function

optimal RIS configurations

multiple-RSS fingerprints 
collection

DNN training

localization algorithm

location estimation

test dataset

RIS configuration selection phase

Localization phase

online

offline

PGD

Figure 4. Localization architecture of the proposed localization
scheme

significantly, and a sequence of RSS signatures under different
phase shifts can be created for each location.

However, it is challenging to set the phase shift of each ele-
ment for a higher localization accuracy. Therefore, we design
an optimization method based on CRLB to find the favorable
RIS configurations to achieve a robust and accurate location es-
timation. The optimal RIS configurations are selected by min-
imizing the CRLB in the PRP, and projected gradient descent
(PGD) method is applied to solve the optimization problem.
After determining the optimal RIS configurations, the multiple
RSS values under the optimal RIS configurations can be recor-
ded as fingerprints and stored in the training database.

3.1.2 Localization Phase The localization phase can fur-
ther be divided into two stages, including the offline training
stage and online positioning stage. The main work in the off-
line stage is to train the machine learning framework based on
the training database. In the online stage, the measured multiple
RSS values are used to estimate the location of the test points.

In this phase, we employ a DNN regression algorithm to ex-
tract features based on the fingerprint database. After training,
the RSS values under the preset RIS configurations of the un-
known location is fed into the trained DNN, which outputs the
estimated location coordinate.

3.2 CRLB

In this subsection, the expression of the CRLB for the multiple
RSS based localization is derived. Suppose that the RSS val-
ues under K different RIS configurations are selected as finger-
print features, and let the set {Ω1,Ω2, . . . ,ΩK}denote the K
configuration matrices. The distribution of RSS under the RIS
configuration Ωk can be approximated by the Gaussian distri-
bution. Assuming that the UE locates in P = [x, y], the joint
probability density of the K RSS values under different RIS
configurations can be expressed as

p(S; P) =

K∏
k=1

1√
2πσ

exp

[
−sk − µk(P)

2σ2

]
, (8)
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where S = [s1, s2, . . . , sK ] is the observed RSS matrix, σ is the
standard deviation and µk(P) is the predicted mean RSS which
is presented in (7).

The lower bound is given in terms of the Fisher Information
Matrix (FIM) [Werner et al., 2016]. If p(s; P) denotes the prob-
ability density function (p.d.f.) of observations s conditioned
on P, the score function is defined as the gradient of its log-
likelihood, that is,

U (P) = ∇ ln p (s; P) =
∂

∂P
ln p (s; P) . (9)

The FIM J(P ) is the variance of this score function, and can be
expressed as

J (P) = E

{[
∂ ln p (s; P)

∂P

]2}
. (10)

If p(s;P ) belongs to the exponential family, it can be derived
as

J (P) = −E
{
∂U (P)

∂P

}
. (11)

The CRLB is the inverse of FIM and can be calculated as

Covθ(θ̂) ≥ {J(θ)}−1. (12)

The FIM is given by,

J (P) =

[
Jxx (P) Jxy (P)
Jyx (P) Jyy (P)

]
, (13)

where

Jxx = 1
σ2

K∑
k=1

(
∂µk
∂x

)2
Jyy = 1

σ2

K∑
k=1

(
∂µk
∂y

)2

Jxy = Jyx = 1
σ2

K∑
k=1

(
∂µk
∂x
· ∂µk
∂y

)
.

(14)

If Var
(
P̂
)
K

denotes the variance of the location estimation,
from the CRLB property, we have,

Var
(
P̂
)
K
≥ Jxx + Jyy
|J (x, y)| , (15)

where |J(x, y)| = Jxx · Jyy − Jxy · Jyx. Then, the CRLB can
be expressed as

CK = σ2

K∑
k=1

(
∂µk
∂x

)2
+

K∑
k=1

(
∂µk
∂y

)2

[
K∑
k=1

(
∂µk
∂x

)2] · [ K∑
k=1

(
∂µk
∂y

)2
]
−
[
K∑
k=1

(
∂µk
∂x
· ∂µk
∂y

)]2 .
(16)

3.3 RIS Configuration Settings

In this paper, we aim to optimize the RIS configurations by min-
imizing the CRLB in the PRP. To describe the optimization al-

gorithm, we firstly define the following set as

Ψ =
{
T ∈ RN×N |0 ≤ ti,j < 2π, i, j = 1, 2, ..., N

}
. (17)

Let (xp, yp) denote the location of the PRP. Accordingly, the
optimization problem can be formulated as

minimize
Ωk

F (Ω1,Ω2, . . . ,ΩK) = CK(xp, yp)

subject to Ωk ∈ Ψ (k = 1, 2, . . . ,K),
(18)

where Ωk= diag
(
ejωk,1 , ejωk,2 , . . . , ejωk,N

)
is the kth RIS phase

control matrix and ωk,n is the phase shift of the nth RIS element
in Ωk.

Then we use PGD for optimization [Perovi et al., 2021]. It is
clear that Ψ is the feasible set of (15). Let ΞΨ (b) denote the
projection from a matrix b onto the set Ψ.

Algorithm 1 Projected Gradient Descent Method
Input: ε
Output: Ω1,opt,Ω2,opt, . . . ,ΩK,opt

1: Objective Function: F (Ω1,Ω2, . . . ,ΩK) = CK(xp, yp)
2: Initialization: set Ω1,0,Ω2,0, . . . ,ΩK,0

3: i = 1
4: repeat
5: calculate the gradient ∇F as the iteration direction
6: update the step length λi by linear search
7: Ωk,i = Ωk,i−1 − λi · ∂F

∂Ωk,i−1
, k = 1, 2, . . . ,K

8: Ωk,i = ΞΨ (Ωk,i), k = 1, 2, . . . ,K
9: i = i+ 1

10: until ‖∇F (Ω1,i−1,Ω2,i−1, . . . ,ΩK,i−1)‖ < ε

The optimization algorithm is provided in Algorithm 1 and the
main idea behind PGD is as follows. Firstly, start from the
arbitrary initial values Ω1,0,Ω2,0, . . . ,ΩK,0. The parameter
Ωk is changed in each iteration in the direction of the gradi-
ent∇F (Ω1,Ω2, . . . ,ΩK). The size of this move is determined
by the step size λi which is set by linear search method. As a
result of this step, the resulting updated configuration matrices
may lie outside of the feasible set. Therefore, before the next
iteration, we project the newly computed matrices Ωk,i, (k =
1, 2, . . . ,K), onto Ψ, respectively. The iteration stops when the
objective function converges. The objective function is said to
converge when ‖∇F‖ < ε, where ε is the convergence bound.

3.4 Localization Phase

In the training stage, the fingerprints are recorded at each sampl-
ing location in the area of interest. We use theK RSS values un-
der the selected optimal RIS configurations as fingerprints. Let
S̃ = [s̃1, s̃2, . . . , s̃K ] denote the set of these K measured RSS
values, and the form of the fingerprint at each point is shown in
TABLE I.

Table 1. Form of the multiple RSS fingerprint database
feature label

s̃1 s̃2 · · · s̃K x y

The DNN is then trained based on the fingerprints of all the
sampling locations labeled with their coordinates. We train the
DNN model to determine the structure of this network and the
weights and biases of the neurons. The final DNN model is
presented in Fig. 5.
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Figure 5. Structure of DNN

1. Structure of DNN: We employ a fully connected DNN to
fulfill the task of localization with beam amplitude finger-
prints. The DNN model has 4 fully connected hidden lay-
ers, plus one input layer, and one output layer. Each hidden
layer has 32 neurons. The input to the DNN model is the
fingerprints, and the output of the DNN model is location
coordinate (x, y).

2. Activation Function: The activation function introduces
nonlinearity into DNN and is an important factor in per-
formance. We choose Rectified Linear Units (ReLU) as
the activation function, which is expressed as

ReLU(x) = max(0, x) (19)

3. Loss Function: We use the error loss function based on
back propagation to train the weights and biases of the
neurons. The loss function is employed to measure the
difference between the ground truth and the output of the
DNN model, which we define as the mean distance error

floss =
1

κ

κ∑
i=1

√
(x̂i − xi)2 + (ŷi − yi)2 (20)

where κ is the batch size, (xi, yi) and (x̂i, ŷi) represent
the true and the estimated coordinates of sample i, re-
spectively. By minimizing the value of floss, the neuron
weights and biases are updated with adaptive moment es-
timation (Adam) algorithm, until the value of floss con-
verges.

During training, the multiple RSS fingerprints of all the refer-
ence points are fed into the DNN in batches to train the weights
and biases of the neurons. Then, weights and biases are stored
as constants of the DNN model for online stage. During loc-
alization, the CSI fingerprints of the target point is fed into the
trained DNN, which outputs the location coordinate (x, y).

4. SIMULATION RESULTS

Simulation is performed in the test site with size 50m2. As
shown in Fig. 6, the BS is equipped at (0m, 3m), and the RIS is
equipped at (5m, 5m). The area of interest is a 3m×3m work-
shop, which is marked in the blue dotted box. All the obstacle
surfaces in this scene are assumed to be smooth reflective sur-
faces with the same reflection coefficient β = 0.8. The BS is
equipped with 4 antennas (M = 4) and the RIS consists of 6
elements (N = 6), and both of them are arranged in ULA. We
use 5G New Radio (NR) signals generating according to the
3GPP standards as transmit signals.

5.0 m

5
.0

 m

5.0 m

3.0 m

3
.0

 m

PRP

RIS

BS

Figure 6. Layout of the simulation

We first provide the effectiveness of the optimization algorithm.
It can be observed from Fig. 7 that the CRLB of the PRP
decreases quickly, and can get convergence after several iter-
ations. The convergence value with K = 3 is less than the case
with K = 2, consistent with the fact that the increase of fin-
gerprint dimension can improve the localization performance,
which is shown in Fig. 8. In addition, it is noted that the value
of the objective function can attain about 0.11 with K = 3 and
SNR = 30dB.

1 5 10 15 20 25

Number of Iterations

10-1

100

101

C
R

LB

K=2, SNR=5dB
K=2, SNR=10dB
K=2, SNR=20dB
K=2, SNR=30dB
K=3, SNR=5dB
K=3, SNR=10dB
K=3, SNR=20dB
K=3, SNR=30dB

Figure 7. The convergence behaviour of the PGD algorithm

To evaluate the performance of the proposed localization scheme,
we give the performance obtained by three schemes: the con-
ventional RSS scheme without RIS, the multiple-RSS scheme
with random RIS configurations, and the multiple-RSS scheme
with the optimal RIS configurations. In the conventional RSS
scheme, the RSS without RIS is used as fingerprint and the loc-
alization error is about 0.61m in this scenario when SNR=10dB.
In the scheme with random RIS configurations, the mean loc-
alization error is about 0.55m when K = 3 and 0.57m when
K = 2. Our scheme based on the optimal RIS configurations
decided by PGD significantly outperforms the first two schemes
and the mean localization error can reach 0.46m with K = 3
and SNR=10dB. Moreover, when SNR increases, the position-
ing performance of our proposed scheme will also become bet-
ter. Particularly, the localization error can reach 0.16m when
k = 3 and SNR = 10dB.

5. CONCLUSION

In this paper, an intelligent RIS-assisted localization scheme is
proposed, which is based on the multiple RSS fingerprints and
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Figure 8. Localization performance

DNN. We use the multiple RSS values under different RIS con-
figurations as fingerprints, and design an optimization method
based on CRLB to find the optimal RIS configurations. Be-
sides, DNN regression network is trained for localization. The
performance of the localization method is evaluated in certain
scenario. Simulation results show that the proposed scheme is
able to achieve a robust and accurate location estimation, which
is about 0.5m in the NLOS scenario. The proposed localiza-
tion scheme is a strong candidate for the 5G and future wireless
communication systems.
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