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ABSTRACT: 

Position information is an important attribute in Internet-of-things (IoT) applications. WiFi fingerprinting has been frequently used 
in shopping malls due to its low cost and the capability to provide accurate localization results in indoor environments with 
significant multipath signal occlusion. However, the popularization of WiFi fingerprinting in shopping malls still faces a challenge, 
that is, the database needs to be collected and updated regularly. Therefore, establishing and updating the wireless positioning 
database efficiently and reliably is the key to the promotion of indoor positioning in shopping malls. In this paper, we use the team’s 
self-developed wearable navigation device (WearTrack) combined with post-processing to construct the database quickly and 
reliably. The procedure of database generation is organized and tested in a real shopping mall environment. Compared with the 
traditional database-generation method, the proposed method can improve the efficiency and maintain the robustness of database 
collection. Therefore, the method in this paper provides a feasible means for updating the positioning database in shopping malls. 
 
 

1. MANUSCRIPT 

Position information is an important attribute in 
Internet-of-things (IoT) applications. To acquire position data, it 
is necessary to use one or more types of positioning sensors 
(Mautz, 2012). One of the most widely-used positioning sensors 
is the low-cost wireless sensors (e.g., WiFi (Caso et al., 2016; 
Zou et al., 2017), BLE (Bluetooth Low Energy) (Faragher and 
Harle, 2015)). With these sensors, there are mainly two types of 
localization algorithms: geometric positioning (Schatzberg et al., 
2014) and fingerprinting (Panyov et al., 2014) (i.e., database 
matching). Geometric positioning is affected by environmental 
factors such as indoor multipath and signal occlusion, which 
decrease its accuracy inside modern buildings. In contrast, the 
performance of fingerprinting does not suffer from such 
degradations; thus, fingerprinting has been frequently used for 
indoor wireless positioning. 

At present, the WiFi wireless signal has been the main 
wireless positioning signal of fingerprint matching positioning 
technology in shopping malls. However, the popularization of 
WiFi fingerprinting in shopping malls still faces a challenge, 
that is, the database needs to be collected and updated regularly. 
The reason for this fact is that the distribution of WiFi signals 
may change due to various factors, such as the change in WiFi 
access points and the changes in the indoor environment, which 
will decrease the accuracy or even invalidate the database using 
(Li et al., 2020). Therefore, establishing and updating the 
wireless positioning database efficiently and reliably is the key 
to the promotion of indoor positioning in shopping malls.  

The indoor fingerprinting (database matching) can be roughly 
divided into two parts: training (i.e., database generation) and 
prediction (i.e. localization via real-time signal strength 
measurements and database). Because the fingerprinting 
accuracy is directly affected by the quality of the database, it is 
key to build a high-precision database.  

A basic wireless location database consists of two parts: 
reference points and wireless signal strength. The acquisition of 
the wireless signal strength (e.g., WiFi RSS (Received Signal 
Strength), BLE RSS) in the database is generally to cluster the 
signal strength measured by the same or similar reference points, 

implement outlier detection, and then calculate the statistics. 
Different from the RSS, the acquisition of the reference-point 
coordinates directly divided database generation methods into 
three categories: (1) Point-by-point collection method, which is 
the most commonly used method for database generation at 
present. The method selects reference points distributed in a 
grid pattern in the generated database area, and collects static 
wireless signal strengths in one or more directions at each 
reference point or collects dynamic wireless signal strengths by 
rotating in situ to complete the construction of the database. 
This method is simple and reliable, but using the method to 
construct a database requires more operations demand of the 
surveyor and need too much time and labor to finish it. (2) 
Dynamic collection method, which selects several landmark 
points in the database generation area, design the trajectory 
route passing through the landmark points, obtain the reference 
point and wireless positioning signal strength on a trajectory by 
integrating the landmark points and the assumption of the 
movement of the measurement personnel, compare the data on 
multiple dynamic trajectories through the reference, then fused 
the point positions to complete the construction of the database. 
This method is more efficient than point-by-point collection. 
However, the acquisition process needs to be completed 
according to the planned trajectory and has high demand of the 
surveyor whose operation determines the reliability of the data. 
(3) Crowdsourcing method, which uses the GNSS coordinates 
of users entering and exiting the room as landmark points, 
combines the dead reckoning results to generate reference 
points, and then completes the generation of the database. This 
method eliminates the requirement for human intervention and 
does not require additional collection work. However, due to the 
complexity of data sources, the reliability of this method is a 
challenge (Zhang et al., 2018). In this paper, we use the team’s 
self-developed wearable navigation device (WearTrack) 
combined with post-processing to construct the database 
quickly, reliably, and easily. The above methods are compared 
in Table 1. 

In this paper, the database generation and positioning process 
is organized and tested in a real shopping mall environment. 
Compared with the traditional indoor positioning database 
generation method, the proposed method uses the 
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motion-tracking results provided by WearTrack to generate the 
coordinates of the reference points in the database, which can 
greatly improve the database collection efficiency. Meanwhile, 
based on the constraints of a small number of control points and 
the robust performance of WearTrack, the reliability of 
reference points in the generated database can be guaranteed. 
Therefore, the method in this paper provides a feasible means 
for updating the positioning database in shopping malls. 

Table 1. Wireless Positioning Database Generation Method 

Generation 
method 

Reference 
point 

selection 
advantage Restrict 

Point-by-point Grid 
distribution 

Simple; 
Reliable 

Time-consuming 
Labor-consuming 

Dynamic Track 
selection 

Quickly; 
Efficient 

With movement 
restrictions, 
reliability 

depends on 
operation 

Crowdsourcing Track 
selection 

Eliminate 
human 

intervention 

Reliability 
challenges 

This paper Track 
selection 

Quickly; 
Reliable; 
Easy to 
operate 

Requires 
dedicated 
wearables  

few landmarks 
 

This article is arranged as follows. Chapter 2 is the 
methodology, which specifically introduces the methods of 
WearTrack, post-processing of positioning results, IndoorTrack, 
data clustering, and database generation. Chapter 3 is the 
experimental procedure. Chapter 4 is the experimental results. 
Finally, Chapter 5 is the conclusion. 

2. METHODOLOGY 

To quickly and reliably generate the WiFi database in the 
mall, we propose a method based on the combination of the 
team's self-developed wearable navigation device (WearTrack) 
and the self-developed mobile app (IndoorTracker) in this 
paper. 

 
Figure 1. Overall Technical Route 

We can obtain the user's real-time navigation status through 
the WearTrack and complete the generation of the reference 
true value of the navigation status through post-processing of 

the real-time navigation status data: the reference true value of 
track 1, the reference true value of track 2, ..., the reference true 
value of track n. Meantime, we obtain the shopping mall WiFi 
data on the users’ movement trajectories through IndoorTracker 
and construct the corresponding relationship between the 
real-time navigation status and the WiFi data. Afterward, we 
combine the navigation state reference data, WiFi data, and the 
corresponding relationship of the time scale to complete the 
data clustering. Finally, we use the RSSI (Received Signal 
Strength Indicator) statistical value vector on each reference 
point to generate the database. We can realize the real-time 
positioning of moving positions based on the constructed indoor 
positioning database of shopping malls. The overall technical 
route is shown in Figure 1. 

2.1 Wearable Real-time Positioning Device WearTrack 
The WearTrack module was comprised of a low-cost MEMS 

(Micro-Electro-Mechanical System) IMU, a power module, a 
low-energy Bluetooth module, a data storage module, and a 
general multi-protocol system-on-chip.   
The MEMS IMU includes a three-axis gyroscope and a 
three-axis accelerometer, which is convenient to obtain the 
real-time speed and attitude of the user, and then calculate the 
real-time position. The low-energy Bluetooth module is used for 
data communication and time synchronization between 
WearTrack and the smartphone. The module parameters of 
WearTrack are shown in Table 2. 

 
 Table 2. The Module Parameters of WearTrack 

Parameter Gyroscope  Accelerometer 
Data rate 200HZ 200HZ 
Dynamic range 2000◦/s 16g 
Bias instability  10◦/h 0.2mg 
White noise 0.24◦/ h  0.06m/s/ h  
Weight                  ≈50 g 
Size (no shell)             32×25×12 mm 

  The WearTrack module obtains the acceleration and specific 
force during the real-time motion of the user through the 
three-axis acceleration and three-axis gyroscope and can obtain 
the real-time inertial navigation result through calculation. The 
use of calculation coordinate is the navigation coordinate 
system (ie, n-frame) which is the north-east-down (NED) 
geographic coordinate system, and the device coordinate system 
(ie, b-frame) which is located at the geometric center of the 
IMU in WearTrack and the x, y, and z axes are the fronts, right, 
and down axes, respectively (Niu et al., 2021). It is computed 
from the attitude quaternion updating equation as follows in (1) 
and (2). 

 (1) 

                            (2)            

where ⊗  is the quaternion product operator; |||| ⋅ and 
T)(⋅ represent the magnitude function and the transpose 

function, respectively;  is the attitude quaternion relating 
the b frame to the n frame at time tk ; , with 

being the perceived angular rate; and  is the sampling 
interval. The corresponding attitude matrix can be obtained 
through the quaternion as shown in Equation 3. 
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(3) 

Then combined with the existing attitude matrix and specific 
force calculation, the real-time speed and position of the 
movement are obtained, as shown in Equation 4 and 5: 

            (4) 

            (5) 

Where g is the acceleration of gravity. 
To constrain the divergence of inertial navigation errors, the 

WearTrack performs the real-time zero velocity update (ZUPT), 
the zero angular velocity update (ZARU), the elevation 
constraint, straight-line constraints, etc. by judging the user's 
stance phase. Then, use the Kalman filter model to correct the 
error of the calculated real-time inertial navigation results which 
can obtain the accurate real-time navigation status, that is, the 
position, velocity, and attitude (Niu et al., 2021). The operation 
mode of WearTrack is shown in Figure 2: 

 
Figure 2. Operation Mode of WearTrack. 

2.2 Post-Processing of Positioning Results 
To improve the accuracy and reliability of the data to obtain 

the reference value of the navigation state, it is necessary to 
perform smooth operations on the past, current, and future 
navigation state observation information obtained through 
WearTrack. For linear and Gaussian systems, a commonly-used 
smoothing algorithm implemented within the KF framework is 
the Rauch-Tung-Striebel (RTS). Since WearTrack is modeled as 
a linear and Gaussian system, we use the RTS method to 
complete the post-processing of the navigation state information. 

The RTS method calculates the state matrix  and 
covariance matrix estimated by the Kalman filter model, as 

well as the predicted state matrix  and covariance 
matrix , which can obtain the smoothed state matrix and 
covariance matrix (Niu et al., 2021). The specific process is as 
follows.  

(1) Set initial parameters: ,  
(2) Traverse the loop calculation from N-1 to 1:   

,

 
Through the above calculation, we can transform the 

real-time navigation state obtained by WearTrack into the 
reference value of the navigation state.  

2.3 Smart Phone location APP IndoorTracker 
Through the self-developed smartphone app (IndoorTracker), 

users can collect the WiFi signal strength at every moment of 
the location in real-time and store it in the smartphone memory 
which can be directly exported for subsequent use. The 
IndoorTracker only needs users to press a few buttons during 
use to complete the collection of relevant data. Figure 3 shows 
the operation interface of IndoorTracker. 

 
(a)              (b) 

Figure 3. The Operation Interface of IndoorTracker, 
(a) Phone Page, (b) Foot Page 

The "Phone" page is mainly used for the collection of mobile 
phone sensor files and the record of passing landmarks. 
Through this page, we can start the collection of WiFi and 
inertial sensor data. The "Foot" page is mainly used for the 
binding of WearTrack devices, the acquisition of WearTrack 
data, and the real-time display of motion trajectories. Through 
this page, we can collect the IMU data. In addition, since the 
use of the self-developed IndoorTracker does not require any 
relevant professional knowledge, it is highly user-friendly in 
practical applications. 

2.4 Time Synchronization 
The WearTrack has a built-in low-cost sensor that can output 

the relative time corresponding to each IMU measurement value. 
Thus, there are two limitations: first, the lack of absolute time 
scale; second, the relative time scale will accumulate with the 
increase of use time. These two limitations will lead to time 
synchronization errors between the movement route information 
(real-time navigation status) obtained through WearTrack and 
the WiFi data collected through IndoorTracker. We can record 
and store the time-scale correspondence between WearTrack 
and IndoorTracker at each moment which is used for time 
synchronization when the database is generated. 

2.5 Data Clustering  
The accuracy of the positioning result is completely 

determined by the accuracy of the database construction, and 
the database accuracy is determined by the reference point and 
the RSS intensity of the reference point. The reference point in 
the database is fused by multiple navigation state reference 
trajectories. Because the reference value is relatively fixed with 
a precise coordinate value, the RSS value corresponding to the 
reference point determines the accuracy of the database and also 
determines the accuracy of positioning. The RSS value of the 
reference point is usually a final RSS value obtained by 
comprehensively considering the RSS values in the vicinity of 
the clustering reference point or all directions of the reference 
point.  

The common RSS clustering methods include K-means 
clustering, agglomerative hierarchical clustering, etc. The 
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K-means clustering method is an unsupervised clustering 
method, which is relatively simple to implement and widely 
used. The K-means method is that for each reference point RSS, 
it is obtained by averaging the RSS values of the K points 
closest to the reference point. The agglomerative hierarchical 
clustering algorithm is a hierarchical clustering algorithm. For 
each reference point RSS, it is obtained by averaging the RSS 
values of the two closest location points to the reference point. 

2.6 Database Generation  
Calculate the number of each reference point and the number 

of RSS values in the RSSI vector, and output the data as a 
binary BIN file in the order of the number of reference points, 
the number of RSS values, the MAC address, the latitude, 
longitude, and elevation of all reference points, and the RSS 
vector of each reference point, to complete the construction of 
the database. 

3. EXPERIMENTS AND RESULTS  

The specific implementation of the proposed method is as 
follows. The first step is to obtain a map of the target area inside 
the shopping mall, followed by setting a small number of 
landmarks with known locations on the map. Afterward, a series 
of walking trajectories, which pass multiple landmarks, are 
designed to cover the target area. Next, a database collector 
wears WearTrack and starts IndoorTracker to collect motion 
information from WearTrack and WiFi information from the 
smartphone synchronously. During the data collection process, 
the timestamp is recorded in IndoorTracker when the collector 
passes a landmark. These timestamps and landmark locations 
will be used as the position constraints for forward-backward 
optimization of the WearTrack motion solution, so as to 
maintain its accuracy.  

 
Figure 4. The Overall Process of the Test Process 

After acquiring multiple test trajectories, such as those shown 
in Figure 6, use the bidirectional smoothing to convert the 
trajectories into the true value of the navigation state, which can 
obtain the corresponding reference point data. Then, use the 
development software to complete the time synchronization of 
the motion information (real-time navigation status) and the 
WiFi information and build the time scale corresponding 
relationship between the data. Afterward, complete the data 
clustering of the two types of data, and realize the construction 
of the database based on the clustered data. Finally, the 
generated database is imported into IndoorTracker to realize 
real-time positioning in the shopping mall. The process is 
shown in Figure 4. 

3.1 Experimental Site, Landmarks, and Exercise Routes 
The test site for this experiment was the 4th floor of a 

shopping mall near the school. The test site and test 
environment are shown in Figures 5 (a) and 5 (b). Then equally 
divide six points on the test field as the landmark points, as 
shown in Figure 5 (a).                              

 
(a) 

 
(b) 

Figure 5. Test Scenario, including (a) Mall Map & Landmarks 
(b) Mall Environment 

The coordinates of each landmark are shown in Table 3. 

Table 3. The Coordinates of Each Landmark. 

Landmarks num Latitude Longtitude 
1 ''' 60.443130。  ''' 47.0021114。  
2 ''' 15.443130。  ''' 46.0221114。  
3 ''' 12.443130。  ''' 34.0421114。  
4 ''' 12.433130。  ''' 53.0421114。  
5 ''' 49.433130。  ''' 35.0121114。  
6 ''' 36.433130。  ''' 27.0321114。  

Based on the selected landmark points, plan the movement 
route and trajectory of the collected data. In this experiment, a 
total of 6 movement routes are planned, of which 1~4 are the 
movement routes for building the database, as shown in Figure 
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6 (a), of which 5~6 are the movement routes for testing the 
database, as shown in Figure6 (b) 

 
(a) 

 
(b) 

Figure 6. The Movement Routes (a) Generate Database Routes 
(b) Test Database Routes 

The specific roadmap is shown in Table 4. 

Table 4. The Routes of Generating Database and Test Database 

Num Route Route property 
1 1->5->2->6->4 Generate Database 
2 2->5->6->3->4->1 Generate Database 
3 4->6->5->2->3 Generate Database 
4 3->4->5->2->1->5->6->3->4->6 Generate Database 
5 6->2->3->5->1 Test Database 
6 1->2->6->5->1 Test Database 

3.2 Test Equipment 
After arriving at the experimental site, turn on the WearTrack 

device and fix it on the heel of the right foot. Meanwhile, hold 
the mobile phone and open the IndoorTracker app, as shown in 
Figure 7. 

 
Figure 7. WearTrack and IndoorTracker 

3.3 Data Collection 
According to the planned route, go to the first landmark point 

and start data collection. Then, walk in the experimental site 
according to the planned route. When passing a landmark point, 
complete the dotting work. There is no clear regulation on the 
way of walking between landmarks, which can walk randomly. 
Finally, complete the final dotting at the final point. Repeat the 
above collection process to complete the collection of 4 
database generation routes and 2 test testing routes. 

3.4 Data Processing 
Introduce the real-time navigation status data collected by 

WearTrack and the WiFi data collected by IndoorTracker in the 
database routes 1 to 4 to the computer, build the time scale 
corresponding relationship of the two types of data, and 
complete the time synchronization of the two types of data. 
According to the time when each motion track passes through 
the landmark point and the longitude, latitude, and elevation 
coordinates of the landmark, the real-time navigation status data 
is bi-directionally smoothed to obtain the reference real value 
data of the navigation status. Traverse the existing Wi-Fi data, 
and complete the summary of the Mac addresses in all Wi-Fi 
data. Based on the WiFi data and the Mac address, the Mac 
address is used as the registration data to complete the 
aggregation of the WiFi data at the same time. By fusing 
multiple navigation state reference trajectories, the reference 
point coordinates are obtained from them, as shown in Figure 8. 
The RSS value corresponding to each Mac address at the 
approximate location of each reference point is averaged and 
taken as the signal strength of the reference point, namely 
{reference point: RSSI vector}. 

 
Figure 8. Display of Each Reference Point 

3.5 Database Generation 
Complete the numerical conversion of the Mac addresses in 

the WiFi, calculate the number of each reference point and the 
number of RSS values in the RSSI vector. Output the data as a 
binary BIN file in the order of the number of reference points, 
the number of RSS values, the MAC address, the latitude, 
longitude, and elevation of all reference points, and the RSS 
vector of each reference point, to complete the construction of 
the database. 

3.6 Positioning Result 
To verify the availability of the generated database, import 

the real-time navigation status data collected by WearTrack in 
test routes 1 and 2 and the WiFi data collected by IndoorTracker 
in test routes 1 and 2  into the computer. Use the 3.4 methods 
to post-processing the real-time navigation status data collected 
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by WearTrack, which will obtain the reference value of the 
navigation trajectory. At the same time, based on the database 
generated by using the 3.5 methods, use the fingerprint 
identification and positioning method (Haeberlen, 2004) to 
obtain the database matching motion trajectory, as shown in 
Figure 9. 

 
   （a） 

 
     （b） 

Figure 9. WiFi Positioning Results and Reference Truth. (a) 
and (b) are the data of testing routes 1 and 2 respectively  

Perform the time-interpolation between the reference value 
and the real-time WiFi positioning value of the navigation track 
of the test track routes 1 and 2, and calculate the difference 
between the two positions as the positioning error time series 
and statistical results are shown in Figure 10 and Table 5, 
respectively. 

 
(a) 

 
   (b) 

Figure 10. The Time Series of the Difference between the 
WiFi Positioning Results and the Position Reference Truth. (a) 
and (b) are the Results of Experimental Routes 1 and 2 
respectively 

Table 5. The Statistical Value of Positioning Error 
Traj Mean (m)    STD (m) RMS (m) MAX (m) 

1 5.53 4.49 7.13 20.54 
2 5.251 3.970 6.58 19.97 

Total 5.35 4.16 6.78 20.54 

    The area of the test site, the time spent in the experiment, 
and the positioning accuracy are shown in Table 6. 

Table 6. Test Site Area, Experiment Time, Positioning 
Accuracy 

Experimental Site Area 2m9576  
Time of Determining the Experimental 

Site, Landmarks, Routes 3min 

Time of Wearing the acquisition device 2min 
Time of Collecting Data 30min 
Time of Processing Data 5min 

Time of Generate Database 5min 
Positioning Accuracy 6.78m 

 

4 CONCLUSION 

In this paper, we measured the database generation and 
positioning performance in the actual shopping mall 
environment. Compare the motion trajectory positioning 
generated by our method with the actual motion trajectory 
positioning, the STD value is 4.16 m, the RMS value is 6.78 m, 
and the maximum difference value is about 20.54 m. The 
positioning results are similar to the real results, but there are 
differences in some areas. We also can do some other 
restrictions to make the positioning results more accurate. 

Compared with the traditional indoor positioning database 
generation method, the method in this paper uses the navigation 
results provided by WearTrack to generate the reference points 
to generate the database. The data acquisition time of this 
method is about 35 min and the database generation time is 
about 5 min, which can promote the database collection and 
generation efficiency higher than the traditional indoor 
positioning database generation and positioning method. On the 
other hand, The method which is based on the constraints of a 
small number of control points will guarantee the reliability of 
reference points in the database. Therefore, the method in this 
paper provides a feasible means for updating the mall database. 
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We will integrate and standardize the database generation 
process, evaluate the database accuracy and improve the 
database reliability in the future. 
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