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ABSTRACT: 
 
The ultra-wideband (UWB)-based positioning has a wide internet of things applications such as smart medical and smart logistics, 
due to its high positioning accuracy. However, non-line-of-sight radio propagation degrades UWB positioning accuracy. The inertial 
measurement unit (IMU) can achieve positioning with high accuracy in a short time. In addition, the millimeter wave (mmWave) 
radar can work well in scenes such as fog, smoke, dust, and other small particles due to the longer wavelength of mmWave Radar, 
but the drift error of IMU and mmWave radar are all increased rapidly over time. This paper achieves the tight coupling of UWB and 
IMU, UWB and mmWave radar based on the extended Kalman filter, respectively. The field experiments were conducted based on a 
handheld platform in an indoor scene to evaluate and compare the performance of the fusion position systems; the experiment results 
demonstrated that the positioning accuracy by fusing UWB/IMU and UWB/mmWave was significantly higher than that of the 
positioning using a single sensor. 
 
 

1. INTRODUCTION  

High precision and robust positioning solutions play an 
indispensable role in the internet of things (IoT) applications 
such as intelligent transportation, logistics, medical care, and 
mobile robots. An essential prerequisite for the IoT is knowing 
the position of each object. For example, the first thing that 
needs to be solved when multiple mobile robots work together 
is the precise positioning of each mobile robot itself. Only then 
is it possible to execute other tasks such as path planning, 
decision-making, map construction, environment sensing, and 
collaborative work. The global navigation satellite system 
(GNSS) can provide high-precision positioning and navigation 
services for users in outdoor open areas, such as in the 
application of vehicle positioning and navigation (Zhu, Yang, 
Xu, Yang, & Zhou, 2022). However, the GNSS cannot provide 
navigation and positioning services in urban canyons, indoor 
and other GNSS denied environments. 
 
In recent years, the ultra-wideband (UWB) positioning has 
received extensive attention from academia and industry due to 
its high-precision positioning capability. The UWB becomes an 
effective positioning sensor in GNSS-denied environments. 
Since the Federal Communications Commission of the United 
States decided in 2002 to open for UWB to use the band from 
3.1 GHz to 10.6 GHz and 22 GHz to 29 GHz (Commission 
2002), UWB positioning technology has developed rapidly. It is 
robust against multipath interference and has great potential for 
high ranging accuracy(Fontana 2004). Under the line-of-sight 
(LOS) condition, UWB can achieve centimeter-level 
positioning accuracy due to its short pulse interval and high 
time resolution (Cheng and Zhou 2019). However, UWB is 
very susceptible to non-line-of-sight (NLOS) effects in complex 
environments such as indoors, leading to a sharp decline in 
positioning accuracy. Nevertheless, the UWB positioning error 
does not drift over time. 
 

The strap-down inertial navigation systems (SINSs) based on 
the inertial measurement unit (IMU) do not require base stations 
for navigation and positioning so it is flexible. Furthermore, 
with the rapid development of the low-cost micro-
electromechanical systems (MEMS) IMU, the performance of 
the SINS using the MEMS-IMUs has greatly improved and 
provides plentiful navigation information such as position, 
attitude, and speed. The MEMS-IMUs has become a mainstay 
in many positioning solutions. The SINS with the advantages of 
fast update frequency and high positioning accuracy in a short 
time (Zhuang et al. 2019), and therefore is widely used in 
mobile robot navigation (Iocchi and Pellegrini 2007), indoor 
pedestrian navigation(Zhuang et al. 2019), and for unmanned 
drones(You et al. 2020), but SINS errors accumulate rapidly 
over time. 
 
The millimeter wave (mmWave) radar is robust for the 
interference of fog, smoke, dust, and other small particles owing 
to the longer wavelength of mmWave (Lu, Rosa, et al. 2020). 
Thus, mmWave radar is more suitable for various hostile 
environments than optical cameras and LiDAR. Further, 
mmWave radar does not need to pre-deploy external facilities 
like the anchors in the environment, which is more flexible than 
those positioning methods that need deploy anchors such as 
WIFI, or UWB. At present, the fifth generation (5G) mobile 
communication has been deployed on a large scale. 5G 
introduces a series of new features, including signals with large 
bandwidth, ultra-dense networks and large-scale antenna arrays, 
which are feasible to  achieve sub-meter positioning accuarcy 
indoors (Chen et al. 2021). However, the method is still based 
on the base stations deployed beforehand.  
 
Although mmWave radar has its advantages, the point cloud 
data collected by mmWave radar is noisy and sparsity that 
results in low positioning accuracy. The mmWave radar 
achieves a positioning accuracy of about 2.5 m indoors based 
on deep learning (Lu, Saputra, et al. 2020). Notably, the drift 
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error of mmWave radar will increase rapidly with the distance 
of increased.  

Information fusion of UWB, IMU, and mmWave radar is a 
feasible means to obtain robust positioning solutions. Currently, 
a large number of articles have reported studies on the fusion of 
UWB and IMU using an extended Kalman filter (EKF). EKF 
can effectively realize the fusion of UWB and IMU positioning 
(Yao et al. 2017), which showed the fusion accuracy higher 
than that of the UWB and IMU alone. Feng et al. (Feng et al. 
2020) published work on loosely coupled UWB and IMU using 
the EKF, the positioning accuracy can be reached centimeter-
level in line-of-sight condition. In addition, the fusion cases of 
mmWave and IMU were reported to achieve the positioning of 
the ground robot (Lu, Saputra, et al. 2020),  and ego-velocity 
estimation in visually degraded environments (Kramer et al. 
2020). According to the reporting, the positioning accuracy of 
fusion of the mmWave and IMU can be reach accuracy at 
around 1 m.  
 
At present, to the best of our knowledge, the fusion of UWB 
and mmWave radar has not been reported. In this paper, we 
realized the fusion of UWB and mmWave radar by EKF tightly 
coupling. Moreover, we compared the fusion performance of 
the UWB and mmWave to that of the fusion of the UWB and 
IMU. The experiments were conducted based on a handheld 
platform in an indoor scenario to evaluate the effectiveness of 
our proposed methods, the experimental results show that our 
proposed methods not only can effectively suppress the NLOS 
stem from the UWB positioning but also reduce the mmWave 
and IMU drift error.  
 

2. METHODOLOGY 

In this section, we firstly present an overview of fusion 
positioning systems for the UWB and mmWave radar, UWB 
and IMU, respectively. The method for positioning using UWB 
and the SINS algorithm based on the IMU sensor and the data 
fusion model of the positioning system are introduced. 
 
2.1 System overview 

The two fusion positioning systems are achieved by EKF tightly 
coupling. The structure of the systems is shown in the block 
diagram in Figure 1 and Figure 2.  
 

 
 

Figure 1. Block diagram of the fusion positioning system of the 
UWB and mmWave using the EKF tightly coupling. 

According to Figure 1 and Figure 2, the fusion positioning 
systems are composed of three modules. In the fusion of UWB  
 

 
 

Figure 2. Block diagram of the fusion positioning system of the 
UWB and IMU using the EKF tightly coupling. 

and mmWave, the mmWave positioning subsystem is 
implemented using Cartographer (Hess et al. 2016), which is an 
excellent open-source algorithm; the UWB positioning 
subsystem uses the time of flight (TOF) to calculate the pseudo 
ranges between the UWB anchors and UWB tag; the fusion 
engine based on the EKF. The system error state model is the 
distance error between UWB anchors and tag. The system 
measurement model is the difference between the estimated 
ranges and pseudo ranges calculated by the TOF. The optimal 
state estimate after filtering will feedback the estimated range 
between the UWB anchors and mmWave radar as shown in 
Figure 1. The corrected range estimation is used to solve the 
final position information by least square. 
 
In the fusion of UWB and IMU, the IMU positioning subsystem 
is implemented using a SINS algorithm, other modules are the 
same as the fusion of UWB and mmWave. In the SINS 
positioning subsystem, the real-time position, velocity, and 
attitude (PVA) of the IMU are obtained by the SINS algorithm 
under the given initial IMU PVA, acceleration, and gyroscope 
zero bias. The range between the UWB anchors and IMU can 
be estimated in real-time by using the anchor coordinates and 
the current IMU position. In the fusion engine, the system 
model is realized based on the SINS algorithm, and the 
difference between the estimated ranges and PRs is the 
measurement model. After that, the real-time estimated PVA 
error, acceleration, and gyroscope zero bias will be fed back to 
the SINS, and the final fusion result will be obtained through 
the error feedback method. 
 
2.2 UWB positioning based on the TOF 

The first step in UWB positioning is to measure the distance 
between the UWB anchors and the UWB tag, and then calculate 
the position of the UWB tag based on the measured distance. 
Common methods of distance measurement include the time of 
arrival (TOA) (Cetin et al. 2012; Wenyan et al. 2012; Choi, La, 
and Lee 2018), time difference of arrival (TDOA) (Choi, La, 
and Lee 2018; Cheng and Zhou 2019), and calculation based on 
TOF (Neirynck, Luk, and Mclaughlin 2016; Shi et al. 2019). In 
this paper, the TOF method is selected to calculate the distance 
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between anchors and tags, since the TOF method does not 
require anchors and tag clock synchronization, not like the TOA 
and TDOA; it is a simple and easy-to-operate method with high 
ranging accuracy. For the specific principle of TOF calculation 
distance, please refer to the research (Neirynck, Luk, and 
Mclaughlin 2016).  

 
After the distance between tag and anchor is obtained, the UWB 
tag position ( , ,tag tag tagX Y Z ) can be calculated by solving the 

nonlinear least-square problem (Gao et al. 2009; Yao et al. 2020) 
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where ( )1 1 1, ,X Y Z , ( )2 2 2, ,X Y Z  … ( ), ,m m mX Y Z    are the 

coordinates of the UWB anchors,  1d , 2d , … md  denote the 
distance calculated by TOF method. Linearizing the Equation (1) 
based on the Taylor formula at the initial 

value ( )0 0 0 , ,tag tag tagX Y Z , one can get:  
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where X̂  is the coordinate estimation of the UWB tag, 
A denotes the design matrix. Thus, the correction ∆X  can be 
calculated based on the least-squares residual squared sum 
minimum criterion as: 
 

( ) 1
A A AT T−

∆ =X y                              (6) 

The UWB tag estimated coordinate value X̂  can be obtained 
by adding the correction ∆X  and the initial value 0X . 
 

2.3 Strap-down inertial navigation systems 

The SINS algorithm is based on the classical Newtonian 
mechanical theory, using the specific force f and angular rate 
ω  integral provided by the IMU accelerometer and gyroscope 
to calculate the PVA of an object (P. Aggarwal 2010; Noureldin, 
Karamat, and Georgy 2013). The position, velocity, and attitude 
of the SINS mechanization update algorithm is as follows 
(Savage 1998; Noureldin, Karamat, and Georgy 2013; Niu et al. 
2021): 
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where ( )
( )Rn k

b k  is the direction cosine matrix (DCM) relating the 

body frame (i.e., b  frame) to the navigation frame (i.e., n  

frame) at k moment.  ( )
( )

1Rn k
n k−  is the DCM that accounts for n  

frame rotation relative to the inertial space from time k-1 to time 

k.  ( )
( )1Rb k

b k
−  is the DCM that accounts for b frame rotation 

relative to the inertial space from time k to time k-1.  n
kv  is the 

velocity in the n  frame,  dt  is the IMU sampling interval;  

,
n
f k∆v  is the specific force-velocity increment, / ,

n
g cor k∆v  is 

the velocity increment caused by the gravity and Coriolis force; 
n
kρ  is the position in the navigation frame ( n  frame) at k time. 

A detailed derivation of the SINS algorithm can be found in 
(Savage 1998; P. Aggarwal 2010; Noureldin, Karamat, and 
Georgy 2013; Groves and Paul 2015; Niu et al. 2021). 
 
2.4 The data fusion model of the positioning system 

The system error state model of fusion system of the UWB and 
mmWave can be written as follows 
 

1 2 3 4d d d dδ δ δ δ δ=   X                         (8) 

where theδ X  denotes the distance error between the UWB tag 
and anchors. The state transition matrix Fk  is the identity 
matrix diag (1, 1, 1, 1) in this case. 
 
The system error state model of fusion system of the UWB and 
IMU can be written as follows 
 

TT T T T T            a gδ δ δ δ δ δ =  X ρ v φ b b            (9) 

where ρ , v , φ , ab  and gb  are the PVA, accelerometer 

biases, and gyroscope biases. 
 
Hence, the linearized state-space system model of the discrete-
time process is 

15
1 F Gk k k k kδ δ+ = + ∈X X ω                      (10)  

where 1kδ +X  is the predicted error state vector,  kδ X  is the 

previous error state at time k,  kω  is the process noise with the 
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covariance matrix ( )T
kQk kE= ω ω , and Fk  denotes the state 

transition matrix,  Gk  denotes the noise driving matrix.  
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where I and 0  represent the 3× 3 identity matrix and 3× 3 
zero matrices, respectively. 
 
The measurement models of fusion system of the UWB and 
mmWave can be written as follows 
 

 , 1, 2, ,mm m
n n

Wavek m m M= − − =  Z P P d        (13) 
 

where M  is the number of currently available UWB anchors,   

( ) 1, 2, ,n
m m M= P  is the coordinates of the UWB anchors 

in the navigation coordinate, n
mmWaveP  is the mmWave radar 

position in n  frame at k  time,  md  is the distance between 
UWB tag and anchor calculated by TOF. 
 
The measurement models of the fusion system the UWB and 
IMU can be expressed as follows 
 

 , 1, 2, ,n n
k m imu m m M= − − =  Z P P d      (14) 

 
where  ,

n
imu kP  is the IMU position in n  frame at k  time. 

By linearizing equation (14), the measurement equation can be 
written 

Hk k k kδ= +Z X v                                 (15) 

the Hk  is the Jacobian matrix, which is obtained as  
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The detail about EKF algorithms can be found in the 
literature(Feng et al. 2020).  
 

3. EXPERIMENT AND RESULT 

In this section, we conduct experiments in an indoor 
scene to evaluate the effectiveness of the proposed 
methods. 

 
3.1 Test site 

A meeting room with NLOS conditions due to many tables and 
chairs was selected as an experimental scene to test the 
proposed method as shown in Figure 3.  
 

 
 

Figure 3. Experimental scene with NLOS conditions. 

The equipment used in the experiment is shown in Figure 4. A 
handheld platform that was equipped with a series of 
experiment devices such as the UWB tag, mmWave radar and a 
Leica GRZ4 360° prism was used to conduct the experiment. 
The on-board computing unit was an Intel NUC computer.  The 
UWB tag was equipped with MPU-6500 low-cost MEMS IMU.  
The ground truths were collected using a Leica TS60 total 
station and a GRZ4 360°prism fixed on handheld platform. The 
GRZ4 360° prism delivers an overall accuracy of 2-5 
millimetres.  
 

 
 

Figure 4. The experiment equipment. 

 
3.2 Result and discussion 

The experiment was conducted in an indoor scene to evaluate 
the effectiveness of the proposed methods. The path length of 
the experimental test was about 35m, and the experimental  
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Figure 5. The positioning trajectories of different methods 

 
positioning trajectories of the four algorithms are shown in 
Figure 5. As shown in Figure 5, the UWB positioning display 
mutations in local areas due to NLOS, e.g., the black dots far 
away from all other UWB measurement positions in the up left 
corner. The EKF tight coupling of UWB and IMU can 
effectively suppress the adverse effects of NLOS, making the 
fused trajectory closer to the ground truth. The trajectory of 
mmWave radar drifted as the path length increased. After using 
UWB and mmWave radar fusion, it can be seen that the fused 
trajectory was closer to the ground truth. This shows that the 
fusion algorithm is effective. The distance information of UWB 
were used to correct the position calculated by mmWave radar 
and effectively achieved the fusion positioning. 
 
The positioning errors of the four positioning methods were 
shown in Figure 6. 
 

0 10 20 30 40 50 60 70 80 90

Time (s)

0

0.5

1

1.5

2

2.5

3

Po
si

tio
ni

ng
 E

rr
or

 (m
)

UWB
mmWave
UWB+IMU
UWB+mmWave

 
 

Figure 6. The positioning error of the different positioning 
methods 

 
According to the Figure 6, there are a few outliers in UWB 
positioning due to NLOS. The fusion positioning of the UWB 
and IMU effectively eliminated the outliers and improved the 
positioning accuracy. Compared with UWB, the positioning 
error of mmWave radar was larger, and the maximum value 
exceeded 1.5m. The maximum value was less than 0.8m after 
the fusion of UWB and mmWave, and the fusion positioning 
error of UWB and mmWave was significantly reduced. 
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Figure 7. The CDFs of different positioning methods 
 
The cumulative distribution function (CDFs) of positioning 
errors corresponding to the trajectories in Figure 5 are shown in 
Figure 7. According to the Figure, the 90% error of the 
mmWave and UWB+mmWave were 0.67m and 1.439m, 
respectively, which reduced by 53.44% errors after fusing the 
UWB and mmWave. 
 
The maximum, mean, and root mean square (RMS) errors were 
used to evaluate the positioning accuracy. Figure 8 showed the 
statistics of the different positioning methods. The maximum 
error of the UWB, mmWave, UWB+IMU, and UWB+mmWave 
were 2.972m, 1.779m, 0.407m, and 0.970m, respectively. The 
RMS, mean and maximum error of the UWB were significantly 
reduced after fusing the UWB and IMU. Similarly, the fusion of 
UWB and mmWave can also effectively improve positioning 
accuracy of the mmWave. The RMS error of the UWB, 
mmWave, UWB+IMU, and UWB+mmWave were 1.18m, 
0.905m, 0.195m and 0.443m, respectively, which reduced by 
83.47% and 51.05% errors after fusing the UWB and IMU, 
UWB and mmWave, respectively. 
  

 
 

Figure 8. The error statistics of the different positioning 
methods 

 
The boxplot of the positioning errors of various methods are 
shown in Figure 9. It can be seen from Figure 9 that the 
positioning accuracy of the fusion has been improved after 
fusing of IMU and UWB, especially for the elimination of the 
UWB positioning outliers. The fusion of the UWB and 
mmWave can effectively improve the mmWave positioning 
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accuracy. The experimental results show that the proposed 
method can effectively realize the fusion of UWB and mmWave, 
UWB and IMU, respectively. 
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Figure 9. The positioning error of the different positioning 

method 

 

4. CONCLUSION 

Tightly coupling of UWB and mmWave radar, and UWB and 
IMU were achieved based on EKF in this paper, respectively. 
The experiments have demonstrated that our proposed methods 
not only effectively suppress the error accumulation of the IMU 
and mmWave, but also resist the adverse impact of the non-line-
of-sight radio propagation of the UWB positioning. The RMS 
error of the UWB, mmWave, UWB+IMU, and UWB+mmWave 
reduced by 83.47% and 51.05% errors after fusing the UWB 
and IMU, UWB and mmWave, respectively. The 90% error of 
the mmWave and UWB+mmWave were 0.67m and 1.439m, 
respectively, which reduced by 53.44% errors after fusing the 
UWB and mmWave. 
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