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ABSTRACT: 

 

The demand for indoor localization has increased in fields such as indoor navigation, virtual reality and emergency response. 

Traditionally, hardware-based indoor positioning methods require a large number of devices to be deployed and require high 

maintenance costs. Vision-based localization methods offer a low-cost option for this purpose. Visual Localization has two typical 

pipeline: end-to-end study and traditional pose estimation based on PnP(Perspective- n-point). However, the quality of the retrieved 

images and 2D-3D correspondences is vital to the precision and recall of the traditional method. In this paper we try to partly overcome 

the mentioned drawback by eliminate the error retrieval images with multi-features, and we use several retrieved images to collect 

enough 2D-3D correspondences to improve the robustness against error input. We also filter the outliers during forming the 2D-3D 

correspondences with RANSAC and Lowe’s ratio test. As a supplement to the various indoor visual localization dataset production, 

we introduce a pipeline which can generate point clouds and mesh model via our integrated RGB-D cameras.  

 

 

1. INTRODUCTION 

LBS(Location Based Service) are now applied in everywhere in 

the daily life: automatic driving, augmented reality, smart cities, 

robotic navigation and so on. We can get GPS signal to know our 

location in outdoor environments easily. However, due to the 

shielding effect in indoor environment(e.g., ceilings, floors), it’s 

hard to receive GPS signal stable enough to perform localization. 

New positioning methods like Bluetooth(Zafari et al. 2019), Wi-

Fi(Yang and Shao, 2015), magnetic fields(Park and Myung, 2014) 

and ultra-wideband(Monica and Bergenti, 2019) are more and 

more employed in LBS application. These technology with their 

own specific advantages, however, are not suitable to some 

scenarios. Wi-Fi signals are not stable enough can be easily 

disturbed by the environment. Bluetooth can achieve high 

precision, but it is not stable and the range of it is limited. Ultra-

wideband requires a number of additional devices and high costs, 

and can be easily disturbed due to temperature factors. Using 

magnetic fields to perform localization requires frequent update 

and maintenance of the dataset. Visual localization (Selvaraju et 

al., 2020)  has a wide range of application and does not need to 

deploy additional facilities. This low-cost technology can also be 

rather accurate and robust. 

 

There are two leading method of visual localization currently. 

The first one relies on gaining correspondences of 2D keypoints 

in the query image and 3D points in the real world. To achieve 

this goal, local feature matching is applied between the query 

image and the dataset image(or image retrieval result). Then the 

pose estimation is based on the correspondences and rigorous 

geometric deviation. With a rather high precision, though, the 

traditional method largely relies on the inliers of the 2D-3D 

correspondences. Another state-of-art method is end-to-end 

study. It makes use of deep learning to train a network which 

could estimate pose directly, regardless of procedures like local 

feature matching, image retrieval and geometric deviation. This 

method also requires a large training dataset, so virtual views 

generated from 3D models can create rather big dataset(Acharya 

et al. ,2019).End-to-end study has a good performance when 

facing a relative big scene, but its precision still needs 

improvement. 

 

Hand-crafted features was popular in the past decades, and now 

more and more state-of-art research introduce features extracted 

by deep learning. Comparing to hand-crafted features, they have 

a good performance when trained for a specific scene or area, but 

most of them lack interpretability, which may not work when 

applied in a completely different scene. And hand-crafted 

features are also designed for certain usage, which means they 

have their own drawbacks in the same time.  

 

In this paper, we first want to introduce a repeatable framework 

based on RGB-D cameras, since the current researches mainly 

focus on specific section of visual localization. Secondly, we 

leverage several retrieved images rather than a single image, 

because error image retrieval result is fatal to the whole 

localization process and a single image is not stable enough. 

What’s more, a single image may can not offer enough 2D-3D 

correspondence inliers to perform pose estimation. However, the 

increasing number of images involved in local feature matching 

would definitely lead to additional time and computational costs, 

so we aim to determine the best number of retrieved image which 

can balance the precision and speed simultaneously. Thirdly, we 

employed some tricks to filter outliers in the local feature steps, 

such as Lowe’s ratio test(Lowe, 1999). Fourth, we make use of 

several hand-crafted features in image retrieval, trying to get 

more reliable results which would help get better precision. 

 

2. RELATED WORK 

Building a dataset is the initial task of image-based localization. 

SfM(Structure-from-Motion) is widely used (Svarm et al., 2016) 

to build 3D model when the acquired data are unordered image 

series(mostly by crowdsourcing). But the accumulative error of 

SfM is fatal and SfM requires the images series to have certain 

overlap areas, so it raise requirements for data collection. Author 

Li(2020) used one of the most classic way to build 3D models: 

taking photos from station to station and using electronic total 
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station to get the station pose. Then they build 3D point clouds 

from multi-imagespatial forward intersection. RGB-D (Endres et 

al., 2014) camera is also applied in the data collection step, but in 

most research the station poses are collected in advance. 

 

In the earliest researches of image-based localization, query 

image is compared and matched with exactly the whole 

dataset((Robertson and Cipolla, 2004). With the expanding 

amount of data, this method is no longer suitable. Then the 

prototype of image retrieval is introduced into the field of image-

based localization to improve efficiency, such as vocabulary tree 

(Nistér and Stewénius, 2006), inverted file scoring (Philbin et al., 

2007). The idea of BoW(Bag of Words), originated from  natural 

language processing area, is also introduced into image 

retrieval(DBOW3, 2017). HF-Net(Sarlin et al., 2018), 

NetVLAD(Arandjelovic et al.., 2017) are both state-of-art 

algorithms to extract global descriptor. Zhang(2020) segment the 

whole scene into sub-spaces, and each sub- space is represented 

by an specific geo-tagged image, which also shows the idea of 

image retrieval. 

 

Though challenged by features extracted by deep learning 

method like Superpoint (Detone et al., 2017), hand-crafted 

features remain irreplaceable. SIFT(Lowe, 1999) is of scale 

invariance and rotate invariance, but the dimension of SIFT is too 

high, which increase the time cost of the algorithm. ORB, FAST 

and BRISK are relatively simple features, and they can meet the 

real-time requirements of some applications(e.g. SLAM). 

 

To obtain the pose, the most classic method is space 

resection(PnP) and optimized by bundle adjustment, but 2D-3D 

correspondences are necessary input of this algorithm. End-to-

end study skip the long procedure and learn poses from the 

prebuilt neural networks. PoseNet (Kendall et al., 2015) is a 

typical model to estimate pose directly, but the mechanism of the 

network remains a black box, which is the common problems of 

end-to-end study. Pixloc(Sarlin et al., 2021) overcome the 

precision issue of end-to-end study to some extent, and the gap 

between the performance of Pixloc and classic local feature 

matching method is getting smaller. 

 

3. METHODOLOGY 

To improve the precision of traditional visual localization method 

and serve as a supplement of the pipeline, we introduce a relative 

complete visual localization frameworks from data preparation to 

pose estimation. The pipeline is shown in the Figure 1. 

 

3.1 Data collection 

First of all, we want to generate data using our integrated RGB-

D cameras(GHO3D,Figure 2) instead of using a series of 

unordered images without other information, since that 

cumulative error is a vital drawback of the SfM algorithm. Our 

integrated RGB-D cameras consist of three Kinect RGB-D 

cameras with fixed relative poses. It could capture colour and 

depth images of three directions simultaneously, and rotate a 

horizon angle of 40 degrees automatically between two frames. 

 

To ensure the frames of the same number of each station have 

similar orientation(which improves the efficiency of the 

upcoming pose estimation procedure), the initial orientations of 

the device of each station is restricted. In need of co-visible areas 

between two consecutive stations, the distances between adjacent 

stations are also limited to 1m-2m. 

 

Secondly, we separate the colour images and calibrated depth 

images from the output data form of RGB-D camera. Then we 

generate 2D-3D correspondences of each image, and form point 

clouds(within the relative coordinate system of each station). 

Setting the first station as the initial station, we try to calculate 

the pose of each station within the coordinate system in which 

the initial station locates in origin. Starting from the initial station, 

local feature matching is carried out between the frames of the 

same sequence number between two consecutive station, and the 

point clouds in the co-visible area help perform space resection 

to retrieve the unknown pose of the station in our known 

coordinate system. As soon as the procedure is finished, we could 

get the poses of each station in the same coordinate system, and 

the point clouds could be merged by ICP, forming the 3D model 

of the whole scene. 
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Figure 1. Pipeline of our method 

 

And some 3D points in the point clouds would be removed due 

to the possible inaccuracy caused by the RGB-D camera issue. 

For example, points with depth over a certain threshold(10 m) 

may not be good enough. 

 

3.2 Image Retrieval with multi-features 

To get images with certain co-visible area is a vital issue to 

perform visual localization. Wrong retrieval results would cost 

additional computation time and may lead to the fail of pose 

estimation. In certain cases, the images of the whole dataset  

serve as candidates for local features matching, and the method 

ensure retrieval of the best images to some extent, but causes a 

long processing time and not proper for large dataset. In our 

method, based on DBOW3, we perform image retrieval with 

different features to obtain relative stable result. The pipeline is 

summarized as below: 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVI-3/W1-2022 
7th Intl. Conference on Ubiquitous Positioning, Indoor Navigation and Location-Based Services (UPINLBS 2022), 18–19 March 2022, Wuhan, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVI-3-W1-2022-37-2022 | © Author(s) 2022. CC BY 4.0 License.

 
38



 

  

Figure 2. Integrated RGB-D cameras(GHO3D) 

 

 

 

Figure 3. The procedure of generating a 3D model 

 

Visual Vocabulary Generation. We first gather all local 

features of the images in the dataset and use k-means(k-means 

clustering algorithm) to divide the features into k clusters, and 

repeat the procedure for the k clusters until we finally get a 

vocabulary tree with 𝑙 layers and each layer has 𝑘 nodes(𝑘, 𝑙 are 

parameters based on requirement). The nodes are the visual 

words, and typically we only use the nodes of the bottom layer as 

visual words.  

Similarity Calculation. Then we convert each images in the 

dataset into a vocabulary frequency vector. Considering that 

different features are not of the same importance, It should be 

distributed weights separately. TF-IDF(Term Frequency-Inverse 

Document Frequency) is widely used in this area. IDF(In Inverse 

Document Frequency) distributed higher weights to the words  

 

 

Figure 4. Structure of a vocabulary tree 

appear not that frequent in the dataset, and TF(Term Frequency) 

considers features appear in the query image frequently as 

important features. Supposed that the total number of the features 

in the dataset is 𝑛, and 𝑛𝑖 features could be clustered to word 𝑤𝑖, 

then the IDF for this word can be calculated as: 

𝐼𝐷𝐹𝑖 = 𝑙𝑜𝑔
𝑛

𝑛𝑖
,                                 (1) 

 

In respect of a certain image, suppose that there are 𝑛 features in 

total, and the word 𝑤𝑖 appears in the image 𝑛𝑖 times, then the TF 

for this word in the image is: 

 

𝑇𝐹𝑖 =
𝑛𝑖

𝑛
,                                       (2) 

 

And the weight 𝑝𝑖 for the word  𝑤𝑖 is the product of 𝐼𝐷𝐹𝑖 and 𝑇𝐹𝑖. 
The image can be convert into a vocabulary vector 𝑣 in the form 

of: 

 

𝑣 = [𝑓1 ∙ 𝑝1, 𝑓2 ∙ 𝑝2,⋯𝑓𝑛 ∙ 𝑝𝑛],                      (3) 

 

where 𝑓𝑖(𝑖=1,2⋯𝑛) is the frequency of each word of the vocabulary 

tree in the image, and 𝑝𝑖(𝑖=1,2⋯𝑛) is the corresponding weight. 𝑛 

is the total number of words in the dictionary(vocabulary tree). 

The similarity score is determined by the distance between the 

vocabulary vectors of two images. 

 

However, the performance of different features in image retrieval 

is various when applied scenes change. In order to obtain a rather 

stable result, we assign weights to the features type and, combine 

the similarity score of different feature types together, making 

use of multi-features to overcome the drawback of using single 

features. The weights are empirical distributed(decided by the 

recall of our test data). 

 

3.3 Pose Estimation with Advanced Filtering 

Generating and Filtering the 2D-3D Correspondences: We 

can get the rank and similarity scores of dataset images 

comparing to the query image, and we use top 𝑘  images to 

perform local matching instead of using a single one to avoid the 

influence of error image retrieval results. Lowe’s ratio test based 

on knn(k-nearest-neighbours) algorithm is also integrated into 

local feature matching to filter features too similar in the same 

image. For a feature 𝑝  in the query image, whether another 

feature in the other image is good enough to match it can be 

decided by: 

𝑑1 < 𝑘 ∗ 𝑑2,                                  (4) 

 

where 𝑑1, 𝑑2 is the distance between the top 2 matched features 

and feature 𝑝, and k is an empirical parameters, which is 0.8 in 
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Lowe’s test, but the recent research shows that value from 0.4 to 

0.6 would have better performance. Through this test, features 

which can not be significantly enough to separated from other 

features in the same image will be filtered, and these features may 

introduce disturbance in the following steps if not eliminated. 

  

Still there may be outliers, so we perform RANSAC(Random 

Sample Consensus) to retrieve the affine transformation of the 

two images, and we filter features which can not suit the 

transformation. Then, some features(2D) in the query image can 

be matched to features in the retrieved image, which have 

corresponding 3D points in our dataset. So the features in the 

query image can be corresponded with certain 3D points to 

estimate the pose. And this procedure would be repeated for each 

top 𝑘  images to get 2D-3D correspondences, irrespective of 

which image pairs they are obtained in. 

 

Obtain Pose. We apply the traditional RANSAC and 

PnP(Perspective-n-Point) algorithms to obtain the pose of query 

image. Still RANSAC are used to build a model fit most 2D-3D 

correspondences and filter outliers, and PnP can obtain pose 

without an initial pose as input. 

 

4. EXPERIMENTS 

4.1 Datasets 

We build the datasets by our integrated RGB-D cameras and our 

reconstruction pipeline. The datasets in the experiments consist  

of several indoor scenes: meeting rooms, factory and office. 

Table 1 shows the basic information of the datasets. It is worth 

mentioning that the factory is quite empty and textureless, while 

the other two scenes are covered with common items of indoor 

environment. We also take pictures by our integrated RGB-D 

cameras as query image, and the size of query image is about 1/3 

of the datasets. The vocabulary tree of our experiment has 5 

layers, and each father node has 10 son nodes, which means there 

are 10000 word in the dictionary. 

 

4.2 Performance of 3D Reconstruction 

To compare the 3D reconstruction effect of our pipeline with a 

traditional SfM one, we use the colour images and depth images 

as the input of our pipeline, while the colour images as a series 

of unordered images input of SfM. SURF serves as the features 

used in this step. The results are shown in Table 2.  

 

Scenes Area 

Number 

of 

images 

Example image 

Meeting 

rooms 
26*11 459 

 

Factory 28*25 648 

 

Office 19*16 162 

 
Table 1 Dataset Information 

 

 

 

 

 

 

  
 

Table 2. The upper row is 3D point clouds generated by our pipeline, and the lower row is the SfM result. The three scenes from left 

to right are: meeting rooms, factory and office. 
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(a)                                                                                                                (b) 

Figure 5  (a) shows the relationship between the time cost and the number of retrieved images, and (b) shows the relationship 

between the recall(%) and the number of retrieved images. We use the three mainstream distance and orientation threshold. 

 

 

The 3D model built through our pipeline is successful compared 

to a SfM method without optimization and additional pose 

information. Some parts of point clouds doesn’t merge correctly, 

because the distances between the stations when collecting data 

exceed the threshold. Lack of enough overlap areas between 

consecutive stations is the main cause of failure. 

 

4.3 Image Retrieval Optimization 

As we mentioned, several images retrieved are involved in the 

following pose estimation procedure. We aim to find the best 

number of retrieved images which could get the most 2D-3D 

correspondences inliers with relative low time costs. We use the 

datasets of the meeting rooms and the factory we collected to 

carry out this experiment(Figure 5). BRISK is the deployed 

feature in this experiment for its relatively fast speed and stability. 

With regard to the meeting rooms scene, the time cost is 

positively correlated with number of retrieved images. And there 

is not much fluctuation of the time cost of factory scene. And the 

recall of this scene remains low due to the textureless 

environment. If the retrieval results are not good enough, the 

whole image would be filtered during the local feature matching 

steps, so the additional time cost is not explicit. In Figure 5(b),  

the recall of meeting rooms scene reaches over 75% when using 

more than six retrieved images within the 5m and 10 degrees 

threshold. And the recall does not increase explicitly(even falls 

when using 8 retrieved images), because the top retrieved images 

are good enough for pose estimation, and the new entry retrieved 

image may not be of an positive influence. We can make a 

conclusion that using 7 retrieved images to perform the following 

pose estimation is the best way to balance speed and precision. 

 

Since the hand-crafted features have their own limitations, we 

combined them in the image retrieval step. We also try to verify 

if  using multiple features in image retrieval steps would have 

better performance than single feature. We experiment on SIFT, 

ORB and BRISK, and they are distributed different weights. We 

compare the recall of multi-feature image retrieval with single 

feature in the meeting room dataset. Table 3 shows the 

comparison. 

 

BRISK has the best performance of recall within the 0.25 meters 

and 2 degrees threshold, comparing with ORB and SIFT. And the 

average time cost of one image is 1.46 second, so we use BRISK 

in most visual localization experiment we carry out. Image 

retrieval based on multi-features provides more reliable results, 

so there would be more inliers of 2D-3D correspondences, which 

improve the localization performance. However, the time cost of 

this method is rather high, because image retrieval of different 

features is carried out instead of the classic single one. Though it 

reaches high precision, which feature strategy to choose is still 

based on the requirement of scene and experiment. 

 

 0.25m,2° 0.5m,5° 5m,10° Time 

cost 

per 

image 

SIFT 48.4% 57.5% 65.4% 5.43s 

ORB 37.3% 40.5% 56.9% 0.59s 

BRISK 50.3% 52.3% 60.1% 1.46s 

Multi-

feature 

60.8% 68.0% 74.5% 18.2s 

Table 3 The recall and time cost of different features. 

 

 

4.4 Outliers Filtering 

 0.25m,2° 0.5m,5° 5m,10° Time 

cost 

per 

image 

No filtering 12.4% 14.4% 29.4% 4.22s 

With Lowe’s 

ratio test(0.4) 

51.0% 53.6% 58.8% 2.36s 

With Lowe’s 

ratio test(0.5) 

54.9% 58.8% 66.7% 2.27s 

With Lowe’s 

ratio test(0.6) 

64.1% 67.3% 75.2% 2.31s 

With Lowe’s 

ratio test(0.8) 

66.7% 69.3% 74.5% 2.54s 

Find homography 

by RANSAC 

62.1% 64.1% 69.9% 2.90s 

RANSAC+ ratio 

test(0.4) 

45.8% 49.2% 57.5% 2.22s 

RANSAC+ ratio 

test(0.5) 

51.6% 54.9% 64.1% 2.23s 

RANSAC+ ratio 

test(0.6) 

55.6% 61.4% 67.3% 2.30s 

RANSAC+ ratio 

test(0.8) 

59.5% 64.9% 73.2% 2.73s 

Table 4 The recall and time cost of different outliers filtering 

strategy. 
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In this experiment we deployed Lowe's ratio test with different 

ratio and RANSAC to filter outliers of the homography, as shown 

in Table 4 We use BRISK feature and 7 retrieved images per 

query image in this experiment. The dataset is the meeting rooms. 

 

The time cost fluctuates a little each time we carry out the 

experiment due to the random sampling procedure of RANSAC. 

Both RANSAC(in local feature matching step) and ratio test 

could improve the precision and accelerate localization, because 

too much outliers will cause the RANSAC algorithms(in pose 

estimation) fail to converge. And with the ratio increasing, the 

recall is higher. Reasons are that the ratio test is filtering the 

outliers and some of the inliers simultaneously. If the number of 

2D-3D correspondences is less than a certain threshold, PnP will 

fail to estimate a fine pose. The combination of two filtering 

strategy performs worse than single strategy due to the same 

reason. 

 

5. CONCLUSION 

In this paper, we introduced a full pipeline of visual localization 

from data preparation to pose estimation. We used RGB-D 

cameras integrated and programmed by ourselves to take color 

and depth images. Then we build 3D models based on the 

collected data through our method, and the models can be 

successfully reconstructed if followed our restriction of data 

collecting. Then we found out the best retrieved images number(7) 

which could balance the speed and precision, and applied it in our 

multi-features experiment. We distributed different weights for 

features and used image retrieval results based on the similarity 

scores and weights of several features. Though it may cost more 

time using multi-feature, the estimated pose is more precise than 

using single feature. We also added RANSAC algorithms to find 

homography of two matched images. This trick would help filter 

2D matched keypoints which does not corresponded with the 

affine transformation. Lowe’s test with different ratio is also 

compared with our tricks, and apply one of them is enough to 

improve the precision of localization, since applying too many 

filtering strategies will reduce the number of 2D-3D 

correspondences. Lack of enough correspondences will cause the 

failure of pose estimation, too. 
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