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ABSTRACT:  
 
In recent years, audio positioning technology has been more favoured because it is not only highly accurate but also universally 
applicable to the mass users. In line with this trend, a chip dedicated to indoor positioning, the Kepler A100, has been released lately, 
which ranges by estimating the arrival time of the audio chirp. As with radio ranging techniques, sound-based ranging methods is 
subject to significant observation errors due to Non-Line-Of-Sight (NLOS) or multi-path effects, while Pedestrian Dead Reckoning 
(PDR) based on inertial data have the disadvantage of error accumulation. Both make localization challenging. In this paper, the 
ranging performance of the Kepler A100 chip is evaluated and experiments are conducted in two typical indoor scenarios to verify the 
stability and sub-metre accuracy of the ranging results. Meanwhile, this paper implements an indoor positioning system combining 
audio chirp/Micro-Electro-Mechanical Systems (MEMS)/floor map based on particle filtering algorithm. A new mapping constraint 
method is applied in the system, which can effectively constrain the particles in a reasonable space. Experiments are conducted in two 
complex office environments and the results show that the error of the proposed algorithm is about 0.65m in 95% of cases, a reduction 
of more than 40% compared to only-PDR or only-audio. The effectiveness and stability of the method is demonstrated. 
 
 

1.  INTRODUCTION 

The architecture of the Internet of Things (IoT) can be divided 
into three layers: the sensing layer, the network layer, and the 
application layer (Puthal, 2016). For the perception layer, 
location awareness is indispensable and it also plays an important 
role in location-based services (LBS). With the advent of Global 
Navigation Satellite Systems (GNSS), location is readily 
available outdoors and performs excellently. However, due to the 
obstruction of buildings, it suffers from severe signal attenuation 
and degraded positioning performance. As a result, there is a 
huge market demand for providing reliable indoor positioning 
services, which has led to great interest in related theoretical 
research in both academic and industrial circles. 
Currently, available indoor location technologies e.g., Wi-Fi 
(Yan, 2021), Bluetooth (Zuo, 2018), Ultra-Wide Band (UWB) 
(Dabove, 2018), Pedestrian Dead Reckoning (PDR) (Chen, 
2021), Radio Frequency Identification (RFID) (Wu, 2019), 
Visible Light (Wang, 2018) etc. have been successfully applied 
in indoor scenarios. Because these technologies have their pros 
and cons, there is no universal positioning scheme that can be 
used in mostly indoor environments. Although Wi-Fi access 
points (APs) are almost ubiquitous in indoor scenes, the methods 
of inferring distance based on signal strength fading are always 
less accurate; besides, the most common positioning method of 
Wi-Fi and Bluetooth is fingerprinting, which is time-consuming 
and laborious for the construction and maintenance of 
fingerprints; and, the UWB system is currently only supported by 
iPhone 11, MIX 4 and Galaxy Note20 Ulta, and the system 
deployment cost is relatively high. A RFID system is composed 
of a scanner with an antenna, which queries the nearby RFID tags 
and transmits the data from the tag to the scanner by radio waves. 
It is generally used for short-range identification and 
communication because of its small scope. PDR is the common 
positioning approach used for sensor-embedded in smartphone. 
It’s low-cost, low-power-consuming, and interference-free, can 

achieve high accuracy in a short term; whereas, the precision 
degenerates severely for long-term navigation or positioning for 
the accumulation of error with time. Compared with Wi-Fi, 
Bluetooth or UWB, acoustic (Hoflinger, 2014) positioning is 
more universal due to the utilization of the built-in microphones 
in smartphones, and all smartphones have microphones. The 
sound signal not only covers a wide range, but also has high 
ranging accuracy. Besides, its lower propagation speed than the 
electromagnetic wave also makes time synchronization easier. 
And it's worth mentioning that the application of acoustic ranging 
to indoor positioning has been favoured by more and more 
scholars. 
To continuously improve the accuracy and pervasiveness of 
Indoor Positioning Systems (IPS), techniques on audio 
positioning and ranging have been extensively researched. 
Farrokhi et al. (2005) present an audible spread spectrum acoustic 
ranging system, where the signal is a linear frequency modulated 
(LFM) pulse (chirp). And experimental results demonstrate that 
an LFM pulse with 3 kHz bandwidth, centre frequency of 2 kHz, 
and chirp rate of 60 Hz/ms is better. Traditional signal processing 
methods usually rely on correct assumptions about the signal 
model and accurate estimation of time difference of arrival 
(TDoA), suffering from noise and reverberation distortions. Xiao 
et al. (2015) propose a learning-based approach to estimate 
direction of arrival (DoA) from microphone input. And, more the 
training data available, more accurate the estimation is. To 
overcome the difficult of extracting the first path signal in 
complex indoor environment, Zhang et al. (2018) propose a novel 
time of arrival (ToA) estimation method based on an iterative 
cleaning process, which eliminates the strongest multipath 
component at each iterative procedure with a band-elimination 
filter in fractional Fourier Domain (FrFD). Cao et al. (2020) 
present a novel algorithm detecting audio signal arrival time with 
coarse and fine searches. For the coarse search, a cosine theorem 
is used to extract audio data segments from the received signal, 
and for the fine search, the audio ToA is estimated with the 
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autocorrelation function of the waveform characteristic source 
signal. TDoA is one of the common methods for indoor 
positioning. However, when the device is in motion, the Doppler 
shift produces an additional error in TDoA, inducing degradation 
in the localization performance. Liu et al. (2020) propose an 
indoor localization system which overcomes the effects of the 
Doppler shift by the fusion of PDR and acoustic. 
Many acoustics-based solutions have emerged, indicating 
acoustics is one of the promising technologies for indoor precise 
positioning. However, in a complex indoor environment, the 
ranging results are still likely to be affected by gross errors under 
the non-line-of-sight propagation of audio signals, inevitably (Yu, 
2018). Based on the data from Micro-electromechanical Systems 
(MEMS), PDR tends to provide reliable displacement and 
heading information within a short time, but the error 
accumulation along with time needs to be prevented.  
To address these challenges, a combined audio chirp/ MEMS/ 
floor map system for indoor localization is proposed, in which 
the recently released Kepler A100 is used. The ranging 
performance of this chip is evaluated comprehensively. This 
paper also proposes a fusion method based on particle filtering 
algorithm to eliminate the severe ranging errors caused by NLOS 
and the cumulative errors caused by PDR. Also, to avoid 
unreasonable localisation results, the weight of the particles is 
adjusted by using a floor plan during the filtering process. The 
proposed positioning system is shown in Figure 1. 

 
Figure 1. The proposed positioning system  

The rest of this paper is organized as follows. Section II 
briefly introduces Kepler A100 and gives an overview of the 
selected hardware equipment in our indoor positioning system, 
including the designs of tag and anchors. Section III introduces 
the pedestrian dead reckoning algorithm, the particle filter-based 
fusion algorithm and the efficient map constraint method 
proposed in this paper. Section IV conducts extensive 
experiments to evaluate the ranging performance of Kepler A100, 
and validates the proposed system. Finally, the conclusions are 
summarized in Section V. 
 

2.  SYSTEM OVERVIEW 

2.1 Kepler A100 

A few months ago, a chip specially used for indoor positioning 
was released, which is called Kepler A100. It is referred to as 
A100 in the following description. A screen printing of the chip 
is shown in Figure 2. 

 
Figure 2. Kepler A100 

A100 can provide both Time Difference Of Arrival (TDOA) and 
Time of Flight (TOF) measurements by accurately estimating the 
time of arrival of audio chirps. That means distance information 
is estimated with knowing the speed of sound. The manufacturer 
estimates a real-time accuracy of ±50 cm in an ideal environment 
using a prescribed linear frequency modulation signal.  
A100 provides an interface for connecting a digital microphone, 
using the I2S standard protocol with a sampling rate of 48K. The 
external communication protocol, as with most sensor chips, is 
the standard I2C protocol. The external host microprocessor can 
configure the chip, e.g., the sound track, range mode and 
synchronization function. In the short-range mode, the distance 
between speakers should not exceed 17m, and the distance update 
rate is 2 Hz; while in the long-range mode, up to 50m can be 
supported, but the observation interval is extended to 1.1s. In 
addition, after the synchronization function of A100 is enabled, 
the host microprocessor needs to pull up the sync-pin of A100 
periodically to notify the sounding time of the horn, and then 
distance observation would be output. If it is disenabled, only 
distance differences can be obtained. Besides, three pins in A100 
are used to detect the running status of the chip. The toggles of 
these pins indicate that state of the chip is working properly, the 
audio data flow is normal, and sync-signal is successfully 
captured respectively, which are convenient for users to 
troubleshoot problems. 
An AM100 development kit was also provided with the release 
of the chip by the manufacturer. The kit contains an AM100 
development board and four matching speakers. In addition, the 
official also provides many basic projects to help users to quickly 
drive the A100 to obtain ranging information to meet their 
business needs. 
 
2.2 Design of Anchor 

The speaker in the development board is hemispherical in overall 
shape, as shown in Figure 3. The front is designed as a mesh to 
ensure that the sound can come out. There is a knob on the side 
that can adjust the loudness of the speaker. When the knob is 
turned to the maximum, the ear can clearly hear the sound when 
approaching to the speaker, and there is almost no sound at a 
distance of about 2m. There is a rod antenna behind the speaker, 
which is used to send and receive RF signals to ensure the time 
synchronization between the speakers. In this way, the sound can 
be broadcast in an orderly manner between the speakers. It can 
also be used to synchronize A100. The power supply interface is 
on the side of the speaker and supports 12V DC. 

 
Figure 3. Hemispherical speaker 

 
Figure 4. Time-frequency diagram processed in the smartphone 
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After the four speakers are powered on, a faint sound will soon 
be emitted. Figure 4 illustrates the time-frequency diagram 
processed in the smartphone. The four speakers send audio chirp 
signals in sequence. The first and third speaker send 23.5KHz-
20.5KHz chirps, and the 20.5KHz-23.5KHz chirps are sent by the 
2nd and 4th speaker. The interval between speakers is 200ms in 
turn, and the transmission period is 1.1s. 
 
2.3 Design of Tag 

As shown in Figure 5, the whole device consists of AM100 
development board and WT931 module connected by wires and 
fixed by soluble glue, where AM100 module occupies a 
relatively large area. AM100 module mainly includes the ranging 
chip, the processing unit, and the RF transceiver under the shield. 
Besides, the digital microphone and the ceramic antenna for 
Bluetooth is exposed on the outside of the module. On the bottom 
plate, there is an antenna for RF signals. For the inertial 
measurement unit (IMU), we choose the WT931 module from 
Wit-Motion, which integrates a high-precision gyroscope, an 
accelerometer, and a magnetometer. It adopts advanced digital 
filtering technology, which can effectively reduce measurement 
noise and improve measurement accuracy. 

 
Figure 5. The front appearance of the tag 

The overall structure of the tag is shown as Figure 6. Power is 
supplied to the development board through the type-c interface 
on the development board, and the host microprocessor. starts to 
work. First, the RF transceiver is configured through SPI, so that 
it accepts and receives radio frequency signals, and waits for the 
sync-packet from anchors. Next, WT931 module is initialized 
through UART, and the baud rate is 961200. The update rate of 
inertial data is set as 100Hz.Then through the I2C protocol, the 
initialization of A100 is completed setting the long-range mode 
and enabling the synchronization function. Finally, the host 
microprocessor calculates the positions of the tag according to all 
the data, and sends the results to the smartphone via Bluetooth. 

 

Figure 6. Overall structure of the tag 

 

3. METHOD 

The architecture of our proposed fusion algorithm combining 
audio chirp/MEMS/floor map based on particle filtering is shown 
in Figure 7. The inertial data is involved in the particle state 
update, while the range results from A100 are used to update the 
particle weights, which are also constrained by the map 
information. The relevant methods are described in detail in the 
following parts. 
 
3.1 Pedestrian Dead Reckoning 

PDR was first proposed by Levi and Judd in 1996, and it 
iteratively estimates step length and heading angle according to 
the IMU to compute a location. The PDR method mainly includes 
three aspects: step detection, step length estimation, and heading 
estimation. To detect gaits, common methods are peak detection 
(Jin, 2011), zero detection (Ayub, 2012), and autocorrelation 
detection (Rai, 2012). Considering both accuracy and complexity, 
peak detection method is adopted in this paper. And first of all, 
to obtain the acceleration of pedestrian movement without high-
frequency noise, the gravity component is removed, and a first-
order Butterworth low-pass filter with a 3 Hz cut-off frequency 
was used. 

 a  a g   (1) 

where a  is the output of accelerometer, and g  is the gravity 

vector.   is the modulo operation. The peak detection process 

in performed with (2) and (3). 
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 
  (3) 

where N   is the size of acceleration series, peak  and t  are the 

threshold of peak value and time difference between adjacent 
peaks, respectively. The smoothing results and peak detection 
results are shown in Figure 8, peaks of each step are marked as 
red circles. 

 

 
Figure 7. Architecture of our proposed fusion algorithm combining audio chirp/MEMS/floor map based on particle filtering 
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Figure 8.  Acceleration smoothing and peak detection. 

 
Typical methods for step length estimation include static models 
(Pratama, 2012) and dynamic models (Chen, 2015). The 
Weinberg model (Weinberg, 2002)is used in this paper, and the 
step length is estimated as 

 4
max minkl K a a    (4) 

where maxa  is the maximum acceleration during the thk  step,  

mina  is the minimum, and K  is a constant parameter equal to 

0.41 in this paper 
For the heading of a gait, two methods can be used: gyroscope 
based and magnetometer based (Lan, 2015). The gyroscope-
based method is reliable only in a short time due to the 
accumulated measurement error of the gyroscope. The 
magnetometer-based method is subject to strong external 
magnetic interference. To improve heading accuracy more 
effectively, a heading estimation method with quasi-static and 
magnetic interference detection is derived from the 
Complementary Filter (CF). 
To avoid the singularity problem of Euler angle, the three-
dimensional attitude is expressed by the quaternion q . 

 0 1 2 3q q q i q j q k         (5)  

where  0,1, 2,3iq i   are real numbers, i , j , k  are 

imaginary units. Therefore, the attitude change rate is 
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where   is the quaternion product, q̂  is the normalization of q ,

 1 2 3, ,
T
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T

x y z       , x , y , z  

are outputs of the gyroscope. v
  q  is the skew symmetric 

matrix 
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To suppress drift error in (6), the Complementary Filter with 
quasi-static (8) and magnetic interference detection (9) is 
implemented. 

 a a g   (8) 

 m h m   (9) 

where a  and g  are defined the same as in (1), h is the 

magnetometer outputs, m is the earth magnetic field, a  and 

m  the thresholds. 
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where 
TT T   y a h ,  ˆC y  is the correction for the fusion 

of acceleration and magnetic, which is obtained through 
Levenberg-Marquardt. 

Hence, the attitude quaternion at thk  instance  

 1
ˆ ˆ

k k k t  q q q   (11) 

t  is the sampling interval. 
 
3.2 Particle Filter 

3.2.1 Particle filter based on the Bayesian Inference and the 
Monte Carlo method 

Particle filter (PF) is based on Bayesian inference, which 
provides mathematical machinery for a nonlinear system. 
Considering the uncertainty, it makes decisions according to the 
rational principle. In this positioning system, the fusion of 
MEMS /sound is described as a state model and a measurement 
model as follows: 
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1,
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k k k

k k k

X f X W
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



  (12) 

where kX  and kZ  are the system state vector and the 

measurement vector at kth  instance. kW  and kV  are the 

process noise and measurement noise, which obeying the 
Gaussian distribution with covariance matrix kQ  and kR , i.e., 

 0,k kW N Q  and  0,k kV N R .  f   is the nonlinear 

function reflects the relationship between the current and the 

previous state, while  h   is between the state and the 

measurement. 
To obtain an optimal estimation, the state estimation problem is 
converted to calculate the expectation of the posterior distribution, 

with an arbitrary function  g  , the expectation is  

      1: 1:| |k k k k k kE g X Z g X p X Z dX      (13) 

that is to compute the posterior probability density function (pdf)  

 1:|k kp X Z . The posterior PDF is derived from prior PDF 

 1: 1|k kp X Z   with the conditional probability formula and the 

total probability formula 
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where  1: 1|k kp Z Z   is the normalization constant,  

      1: 1 1: 1|k k k k k k kp Z Z p Z X p X Z dX     (15) 

and  k kp Z X  is the observation likelihood model. Assuming 

that the state transition obeys the first-order Markov process, the 
state kX  is determined only by 1kX  . The prior PDF 

 1: 1|k kp X Z   is updated as follow: 
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 (16) 
Since the system model is generally nonlinear and affected by 
non-Gaussian noise, there is of great difficulties on the solution 
of the prior PDF and the posterior PDF. Practically, in the Monte 

Carlo method, an importance distribution 
   1:|i
k k kx q X Z  

is used to update the weights by (17) and normalize by (18) 
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And form an approximation as follows: 

    ( ) ( )
1: 1

|
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
    (19) 

where     is the Dirac function. As the number of particles N  

tends to infinity, the approximation will approach the true 
posteriori density. Generally, to avoid the weight of particles 
degenerating, the resample method is adopted to optimize. 
Finally, the state estimation of time k is performed as the average 
of particles: 

   1
/

N i
k ki

X X N


    (20) 

 
3.2.2 System Description 
The indoor positioning system proposed in this paper is 
formulated as a dynamic state estimation problem in the discrete-
time state-space domain. First, since we only consider ground 
targets, we choose to estimate the plane coordinates and heading 
of the target. Thus, the state vector can be represented as 

  Tk k k kX x y    (21) 

where  ,k kx y  is the coordinate of the target at thk   instance 

in a relative coordinate frame, and k  is the direction. 

The dynamic model describe the motion of the target from time 

 -1k  to k  is given as 
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  (22) 

where kl is the length of the displacement, kd is the change of 

heading, kl and k  are the corresponding measurement errors 

of kl  and kd , respectively, which obeying the Gaussian 

distribution with the standard deviation l  and  , i.e., 

 20,k ll N   and  20,k N   . 

In every cycle, the distance observations between the tag and 
every anchor are obtained by the audio chirp ranging technology 
of A100. The measurement vector is given as 

 1 2[    ]n T
k k k kZ Dis Dis Dis    (23) 

where  1,2, ,i
kDis i n   is the distance between the mobile 

target  ,k kx y  and thi  base station  ,i i
BS BSx y  is as follows: 
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where i
kDis  is the corresponding measurement noise following 

a Gaussian distribution  2
,0,i

k r iDis N  , and ,r i  is the 

distance standard deviation.  
The corresponding prior value of kZ  is estimated from thj  

particle 

 ,1 ,2 ,

Tpj pj pj pj
k k k k nZ Dis Dis Dis     (25) 

,
pj
k iDis is an estimated distance vector calculated by thi  base 

station and thj  particle, it is formulated as: 

 2 2
, ( ) ( )pj j i j i

k i k BS k BSDis x x y y      (26) 

With n  base stations, the observation noise covariance matrix 

kR  is expressed as 

  2 2 2
,1 ,2 ,k r r r nR diag         (27) 

The weights are updated with the Gaussian distribution 

    2

1
exp

2 2

pj
k kj

k
k k

Z Z

R R

    
  

w   (28) 

3.3 Modelling the floor plan as a group of points 

Map information is also very important for positioning. There are 
many areas of indoor space that cannot be crossed or accessed, 
such as walls, pillars, tables and other obstacles. It can be used to 
correct unreasonable positioning results. For particle filtering, it 
is also useful to reduce the number of particles for which weights 
need to be calculated, thereby reducing the amount of 
computation. Especially when approaching an obstacle, the 
observation signal is more likely to be affected by NLOS. 
Dividing the positioning area into two parts, the accessible and 
the inaccessible, is significant for practical applications. 

Many scholars have already proposed using map 
information to determine whether a particle crosses an obstacle 
during its movement, which requires modelling the map to obtain 
a surface or line describing the obstacle, and then determining 
whether it intersects or is tangent to the obstacle based on the line 
connecting the positions of the particle before and after its 
movement, which is very computationally intensive. In this paper, 
the map is divided into small areas, considered as one point after 
another, and the two-dimensional plane is transformed into a two-
dimensional matrix that represents accessibility by a simple 
binary value, such as 0 for unreachable and 1 for reachable.  

   ,AccessibiFloor lita yM y xp    (29) 

During the filtering, it can quickly find the accessibility value of 
the location based on the predicted point coordinates of the 
particle, determine whether the particle has stepped into an 
obstacle, and then and then implement the constraint of the map 
to the location as follows: 

  
   

 
    

0         

, 1

, 0

j j j
k

j

k

k j
k k

j kAccessibility x y

Accessibility x y







w
w  (30) 

 
4. EXPERIMENTAL VERIFICATION AND 

DISCUSSION 

A. RANGING PERFORMANCE 

In this part, the ranging performance of A100 over a long distance 
is evaluated. The experiments are conducted in two scenarios:
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(a)                                                                                                          (b)  

Figure 9.  Ranging experimental scenarios: (a) The corridor; (b) The underpass. 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Table 1. Evaluation of A100 ranging error. 

 

 
（a） 

 
（b） 

Figure 10. Positioning experimental scenarios: (a) The office; (b) The laboratory. 
 

                        
(a)                                                                                                            (b) 

Figure 11. Trajectories estimated by different algorithms: (a) Test 1; (b) Test 2 

Scenario 
Facing-to-speakers  Back-to-speakers 

Ground 
Truth(m) 

Average 
Error(m) 

Max  
Error(m) 

RMSE 
(m) 

Detection 
Rate 

 Ground 
Truth(m) 

Average  
Error(m) 

Max  
Error(m) 

RMSE 
(m) 

Detection 
Rate 

C
or

ri
do

r 8.00  0.26  1.81  0.45  99.68%  8.00  0.22  0.92  0.32  96.51% 

16.00  0.19  1.45  0.40  100.00%  16.00  0.22  1.48  0.38  100.00% 

24.00  0.28  1.08  0.41  100.00%  24.00  0.77  2.07  0.97  93.02% 

32.00  0.36  1.21  0.50  100.00%  32.00  1.14  2.20  1.22  93.01% 

U
nd

er
pa

ss
 8.00  0.46  1.40  0.55  86.62%  8.00  0.57  1.88  0.62  95.72% 

16.00  0.06  1.59  0.40  99.84%  16.00  0.33  2.41  0.56  91.50% 

24.00  0.01  1.03  0.37  99.19%  24.00  0.58  2.47  0.69  90.90% 

32.00  0.16  0.39  0.25  99.36%  32.00  0.70  2.96  0.94  83.45% 
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one is an ideal quiet corridor about 33m without any interference 
shown in Figure 9a, the enclosed narrow structure prevents rapid 
attenuation of sound signals; and the other is a noisy underpass 
(8m*70m) with pedestrian activity shown in Figure 9b. In each 
set of experiments, speakers were placed at the end of the scene 
at a height of 1.5 meters. The development board with the same 
height measured distances at 8m, 16m, 24m and 32m, 
respectively. Connect the development board to the computer, 
collect and save about a minute of data through the serial port. In 
addition, to assess the impact of human occlusion, we collected 
two sets of data at each point, one is speaker-oriented, the other 
is back-to-speaker. 
As summarized in Table 1, in the corridor scene, the signal 
detection rate of A100 is close to 100 % at 8m, 16m, m, 24m, 
32m, during the test of speaker-oriented; the average error is 
about 0.3m, and the root mean square error (RMSE) is less than 
0.5m, which indicates that in the ideal environment, the 
attenuation of sound signal with distance is inconspicuous, and 
A100 obtain ranging information stably; while in the back-to-
speaker test, the direct path of the signal is blocked by the body, 
resulting in the detection rate decreases significantly. When 
A100 is close to the speaker, the strong signal is received, and the 
ranging accuracy is almost the same as the forward. While the 
distance increases to 32 m, the signal becomes weaker, coupled 
with occlusion, the average error is more than 1 m, and changes 
fiercely with a RMSE exceeding 1.2 m. But overall, the ranging 
performance is still very considerable. 
However, in the complex environment of underpass, where social 
activities are frequent, and environmental noise is larger, the 
overall signal detection rate and ranging accuracy are 
significantly decreased, and due to the interference of human 
flow, the average error has no obvious rule with the change of 
distance ( there is no control of human flow in the experimental 
process, and more people flow, more serious the occlusion of the 
signal is, resulting in the loss of ranging data or the degeneration 
of accuracy ). However, the ranging quality in the backward 
situation is significantly lower than that in the positive situation, 
and the detection rate is only 83.45 % at 32 m. The results 
indicate that the signal occlusion has a greater impact on the 
A100 audio chip ranging. 
 
B. SYSTEM LOCATION PERFORMANCE 

Through static experiments, we have glimpsed the ranging 
performance of A100. But in the actual positioning scene, most 
of the time the target is in motion, which will introduce the 
Doppler effect, making the chirp signal collected by the 
microphone offset, reducing the ranging accuracy. In addition, 
there are not only social activities in the environment, but also 
many furniture and facilities, making the propagation of sound 
more complex, which also cause deviation or even error in 
ranging. In order to achieve a more stable positioning system, this 
paper proposes a multi-source data fusion based on particle filter. 
The Kepler A100 is used to receive the chirp signal and estimate 
the distance between the target and the base station, while PDR 
based MEMS is used to calculate the moving step length and 
course of the target, and the map information of the positioning 
environment is used to adjust the weight of the particles. 
To verify the feasibility and effectiveness of the proposed 
solution, field experiments are carried out in two scenarios shown 
in Figure 10, one is the student laboratory; the other is the office 
of the enterprise. On one hand, the main feature of such scenarios 
is that facilities account for a large proportion of the area, while 
the passable area is narrow, and walking inside requires more 
turning, i.e., frequent changes in the state of motion, which 
aggravate the positioning scheme using PDR-only and the error 
accumulates faster. On the other hand, for the positioning scheme 

using signal ranging, there are desks and chairs close to the height 
of the hand-held tag, resulting in the multi-path of the signal more 
obvious and complex, and more prone to NLOS. 
For demonstrating the performance of the proposed positioning 
system more intuitively, the trajectories obtained by various 
schemes are visualized, as shown in Figure 11. The ground truth 
is marked with the green dotted line, and the turning points in the 
movement are marked with the green solid block represents. In 
the experiment, we carry a development board that integrates an 
IMU and a A100, and walk along the reference trajectory from 
one point. Every time we reach at a green block, the course is 
changed once. After all the paths are completed, we backtrack to 
the starting point along the path, and finally repeat the process, 
i.e., the whole path took two rounds. The blue trajectory is the 
result of the PDR trajectory that recursively from a starting point. 
The trajectory is smooth, and similar to the real at the beginning, 
but drifts severely; and as time goes by, the positioning result is 
gradually far away from the actual. And the yellow mark 
indicates the results of the least squares (LS) method. It is shown 
that most points are distributed around the real path, while a few 
points are obviously unreasonable, going into the table or flying 
out of the wall. Finally, the results of the proposed algorithm are 
represented by the dotted line of magenta. It can be clearly seen 
that there are very few positioning points into the unreachable 
area, which benefits from map information constraint. Moreover, 
compared with the results of LS method, the fusion result is more 
suitable for the real path, profits from the short-term relative 
displacement provided by PDR, weakens the gross error caused 
by NLOS in some degree and makes the trajectory smoother. 

 
Figure 12. Positioning error CDF of different algorithms. 

 

Indicator 
Office  Laboratory 

PDR LS Fusion  PDR LS Fusion 

Max(m) 10.11  4.69  1.33   6.89  2.47  1.12  
Average(m) 3.20  0.46  0.25   1.49  0.41  0.27  
Median(m) 2.70  0.30  0.20   1.30  0.33  0.23  

STD(m) 2.47  0.61  0.20   1.22  0.36  0.21  
CDF-68%(m) 4.20  0.50  0.30   1.90  0.50  0.40  
CDF-95%(m) 8.50  1.40  0.60   3.30  1.20  0.70  

Table 2. Error statics of different positioning algorithms. 
 
Figure 12 shows the cumulative distribution function (CDF) of 
localization errors of these three methods. The smooth curves and 
the curves with triangles represent the results of the laboratory 
and the office, respectively. It indicates that the accuracy of PF 
or LS does not change much in different environments; however, 
the PDR result in the office is significantly larger than that in the 
laboratory. We speculate that the PDR drifts more severely in the 
office due to the larger scope and the longer test time. 
As summarized in Table 2, the 95% positioning error of PF in 
both tests are less than 1 m (0.60m for the office, and 0.7m for 
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the laboratory), which is a reduction of more than 78.7% over 
PDR (5.03 m), 41.6% over LS. Additionally, the error of PF 
changes most stably in any scenario a standard deviation of about  
0.2m, and the maximum is better than 1.5 m. The results illustrate 
that the proposed PF based on sound/PDR/floor map achieves 
approximately 0.65 m during 95% of the time. This outperforms 
solutions PDR-only-based and sound-only-based. 
 

5. CONCLUSION 

This paper presents an integrated audio chirp/MEMS/map system 
for indoor localisation. The audio chirp is received by the Kepler 
A100 chip and we evaluate the ranging performance of the A100 
in two typical indoor environments. The results show a signal 
detection rate of over 80% and a ranging accuracy of sub-metre. 
The sensor fusion algorithm is derived from a particle filter with 
a map constant approach. The filter predicts the state vector from 
the PDR and updates it with distance observations from the A100. 
During important sampling, particles are restricted to accessible 
regions with map information. Experiments were conducted in 
two complex scenarios and the results show that the proposed 
system has a 95% error of 0.65 m, which is at least 40% lower 
than the error of a single PDR and a single sound, demonstrating 
the efficiency and stability of the system. 
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