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ABSTRACT: 

 

As indoor location-based services become increasingly essential to people's daily life, it is necessary to build a stable and accurate 

indoor pedestrian positioning system. The foot-mounted inertial navigation system can provide a short-term robust solution but suffer 

from error accumulation over time. To alleviate this issue, this paper proposes a pedestrian inertial navigation algorithm based on scene 

recognition to reduce the heading drift. Based on the hypothesis that corridors in buildings are generally narrow and straight and 

pedestrians have a high probability to walk in straight lines in corridors, we use a scene recognition model to assist foot-mounted INS. 

When the scene recognition model determines that the pedestrian is walking in a corridor, a straight-line constraint will be implemented 

to reduce the heading drift and improve the observability of the vertical gyroscope bias. Experiments show that the algorithm can 

effectively improve the navigation performance and the observability of vertical gyroscope bias when the sensor biases are significant. 

 

1. INTRODUCTION 

With the rapid development of science and technology, location-

based services in the indoor environment are increasingly 

indispensable to people's daily life. Social activities are no longer 

limited to familiar and fixed places. Especially in professional 

application fields such as fire rescue, electrical circuit, pipeline 

maintenance, etc., changes in the location of workers are 

important information, vital to the safety of life and property. 

Therefore, there is an urgent need for a stable and accurate indoor 

pedestrian navigation and positioning system. 

 

In an indoor environment where satellite signals cannot be 

received, inertial navigation is a common method for pedestrian 

navigation. In recent years, pedestrian localization methods 

based on inertial sensors (i.e., gyroscopes and accelerometers) 

have been widely studied due to their strong anti-interference 

ability. Most of the current research is based on low-cost inertial 

sensors. A typical solution is to fix inertial sensors on the foot 

and use the periodic static state of the foot to suppress the 

divergence of system errors, which is essentially a Zero Velocity 

Update aided Inertial Navigation System (ZUPT Aided INS). 

However, the z-axis gyroscope bias is a weakly-observable 

element in the ZUPT Aided INS algorithm; thus, many studies 

on foot-mounted INS focus on reducing the heading error and 

improving the observability of unobservable elements. 

 

To further improve the positioning accuracy and reduce the 

divergence of heading errors, other sources of information can be 

added to the foot-mounted inertial system. For example, wireless 

positioning methods are commonly used to assist inertial systems, 

such as WiFi (Biswas and Veloso, 2010), UWB (De Angelis et 

al., 2016), Bluetooth low energy (Faragher and Harle, 2015), etc. 

However, these methods need to deploy base stations in advance, 

increasing the workload and cost of the system. In contrast, vision 

sensors have lower costs and higher stability, which assist inertial 
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navigation systems well. Besides, with the rapid development of 

convolutional neural networks, researchers have begun to use 

vision sensors to perform scene recognition. One of the most 

famous datasets for scene recognition is the Places dataset (Zhou 

et al., 2018). With a large number of scene pictures and scene 

classifications, the Places dataset is the largest dataset with 

scenes as the core. Furthermore, with the rapid development of 

Convolutional Neural Networks (CNN), people have begun to 

use deep learning methods for scene recognition. Some CNN 

models trained on the Places dataset have already achieved good 

performance. 

 

This paper proposes a pedestrian inertial navigation algorithm 

based on scene recognition. In the process of walking, the inertial 

sensor is fixed on the foot; meanwhile, the pedestrian holds the 

mobile phone camera to record a video, which is used to identify 

the scene. To process the data, firstly, through the INS 

mechanization, the original output of the foot-mounted IMU can 

be converted to the attitude, velocity, and position of the device. 

Then, the zero-velocity state is detected and the ZUPT is applied 

to suppress the accumulation of pure INS positioning errors. Also, 

Heuristic Drift Reduction (HDR) is used to reduce the heading 

error divergence. Next, through the ResNet trained on the Places 

dataset, the scene can be identified according to the video 

recorded by the mobile phone camera. When pedestrians walk in 

long and narrow corridors, pedestrians have a high probability to 

walk in a straight line, so heading constraints can be added. 

Finally, the Extended Kalman Filter (EKF) is used to estimate the 

attitude, velocity, and position of the pedestrian navigation 

system. 

 

The pedestrian inertial navigation algorithm based on scene 

recognition has the following advantages: (1) Adding different 

constraints according to different scenarios can make inertial 

navigation constraints more reasonable and effective; (2) 
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Compared with wireless positioning methods such as UWB and 

WiFi which need to deploy base stations in advance, the scene 

recognition method only needs a camera and thus has a lower cost 

and higher flexibility. 

 

The rest of the paper is organized as follows. In Section 2, related 

work about foot-mounted inertial navigation systems and scene 

recognition is provided. In Section 3, the algorithm of pedestrian 

inertial navigation based on scene recognition is proposed. In 

Section 4, the experimental results are presented. Section 5 

summarizes the work and gives the conclusion. 

 

2. RELATED WORK 

2.1 Foot-Mounted Inertial Navigation 

The foot-mounted inertial navigation system was first proposed 

by Foxlin (Foxlin, 2005), with the inertial sensors tied to the feet 

to observe and estimate the motion of pedestrians. Considering 

the portability, the inertial sensors on the foot usually have 

smaller sizes and lower weight. Therefore, the performance of the 

inertial sensors is lower and the drifts are more significant. To 

limit the drifts of the foot-mounted inertial system, we can use an 

EKF with the ZUPT strategy, which is called INS-EKF-ZUPT 

(Jiménez et al., 2010), or IEZ for short. Once the strapdown INS 

mechanization is performed, the navigation information (position, 

velocity, and attitude) of the pedestrian is estimated; then, 

according to the output of the inertial sensors, the zero-velocity 

state is detected every time the pedestrian’s foot is on the floor, 

thus the ZUPT strategy can be introduced into the EKF to correct 

the navigation error.  

 

Although the IEZ method can correct the navigation error after 

each stride, the heading and its bias are non-observable variables, 

thus the foot-mounted inertial system with ZUPT alone will 

gradually gain horizontal position errors. Several methods can be 

used to limit the heading drift, such as Zero Angular Rate Update 

(ZARU) (Rajagopal, 2008), HDR (Borenstein et al., 2009), etc. 

ZARU is based on the hypothesis that the angular rate of the IMU 

is zero when it is stationary, but the pedestrian’s footstep is not 

entirely stationary when walking. HDR is based on the 

hypothesis that the pedestrian tends to walk in a straight line, so 

HDR will not work until the pedestrian walks in a fixed direction 

for a short while. Each method has its advantages and limitations.  

 

2.2 Scene Recognition 

Scene recognition is to define the place where the objects seat in 

the image, and assign semantic labels to the scene images. 

Different from object recognition, the task of scene recognition 

is more complex because the overall connection in the image 

needs to be taken into consideration, such as the background and 

spatial layout. Early scene recognition methods mainly used 

features to describe images, such as Scale-Invariant Feature 

Transform (SIFT), Generalized Search Trees (GiST), Histogram 

of Oriented Gridients (HOG), etc., which are simple to operate 

but lack semantic expression ability. Later, more recognition 

methods emerged and semantic information was added, such as 

Object Bank and Bag-of-Words. But it is difficult to further 

improve the recognition performance. Nowadays, with the rapid 

development of Convolutional Neural Networks (CNN), people 

have begun to use deep learning methods for scene recognition. 

 

In terms of deep learning for scene recognition, several 

representative scene-centric databases are ImageNet, Places, 

SUN, etc. Compared with the ImageNet and SUN, the Places 

dataset has the largest number of images to feed deep learning 

algorithms, and it is the most diverse of the three dataset (Zhou 

et al., 2018). With rich scene classifications and larger quantities 

of scene images, the Places dataset is the largest scene-centric 

image dataset. Therefore, the Places dataset is a suitable training 

set for scene recognition. 

 

According to Places dataset, four CNNs, AlexNet (Iandola et al., 

2016), GoogLeNet (Zhong et al., 2015), VGG (Sengupta et al., 

2019) and Residual Network (ResNet) (Tai et al., 2017), are 

trained on the Places dataset. The results show that VGG and 

ResNet have better performance in scene recognition, with a top-

1 accuracy rate of over 50 % and a top-5 accuracy rate of over 

80 %. Therefore, we can use the ResNet model trained on the 

Places dataset to perform scene recognition. 

 

2.3 Integration 

To further improve the positioning accuracy of the foot-mounted 

inertial system and reduce the divergence of heading errors, other 

navigation information can be integrated with foot-mounted INS. 

For example, satellite navigation can directly provide position 

information and reduce the divergence of INS errors, but satellite 

signals are blocked in indoor environments; some wireless 

location methods commonly used in indoor positioning, such as 

WiFi, UWB, etc., need a pre-installed infrastructure, which 

increases the workload and cost of the system. In contrast, vision-

based navigation has low cost and high stability, which can assist 

inertial navigation systems well. 

 

3. METHODOLOGY 

As shown in Figure 1, the inertial navigation algorithm based on 

scene recognition is a fusion of an inertial module and a scene 

recognition module. The inertial module is comprised of an INS 

mechanization algorithm with ZUPT and HDR, while the scene 

recognition module determines whether the scene is a corridor. 

Information from two modules are fused by a filter. 

 

 

 

Figure 1. Main blocks in the inertial navigation algorithm based on scene recognition. 
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3.1 Foot-Mounted INS 

The foot-mounted INS provides continuous positioning results 

for pedestrian navigation. The state vector of the foot-mounted 

INS is 

 

𝐗 = [𝐫  𝐯  𝛗  𝐛𝑔  𝐛𝑎]
𝑇

(1) 

 

where 𝐫 is the position in North-East-Down (NED) geographic 

coordinate system; 𝐯 is the velocity; 𝛗 is the attitude; 𝐛𝑔 and 𝐛𝑎 

is the biases for the gyroscope and accelerometer, respectively. 

Each element in the state vector contains three elements, 

corresponding to three directions. 

 

The error state estimation of continuous-time systems of the 

strapdown inertial navigation system (Titterton et al., 2004) is 

 

{
 
 
 
 

 
 
 
 
𝛿�̇�𝑛 = −𝛚𝑒𝑛

𝑛 × 𝛿𝐫𝑛 + 𝛿𝛉 × 𝐯𝑛 + 𝛿𝐯𝑛

𝛿�̇�𝑛 = 𝐂𝑏
𝑛𝛿𝐟𝑏 + 𝐂𝑏

𝑛𝐟𝑏 ×𝛗 − (2𝛚𝑖𝑒
𝑛 +𝛚𝑒𝑛

𝑛 ) × 𝛿𝐯𝑛

+𝐯𝑛 × (2𝛚𝑖𝑒
𝑛 +𝛚𝑒𝑛

𝑛 ) + 𝛿𝐠𝑛

�̇� = −𝛚𝑖𝑛
𝑛 × 𝛗+ 𝛿𝛚𝑖𝑛

𝑛 − 𝐂𝑏
𝑛𝛿𝛚𝑖𝑏

𝑏

𝛿�̇�𝑔 = −
1

𝛕𝑔

𝛿�̇�𝑎 = −
1

𝛕𝑎

(2) 

 

or 

 

δ�̇�(𝑡) = 𝐅(𝑡)𝛿𝐗(𝑡) + 𝐆(𝑡)𝐰(𝑡) (3) 
 

The discretized form of the above model is 

 

δ𝐗𝑘 = 𝛟𝑘,𝑘−1δ𝐗𝑘−1 +∫ 𝛟𝑘,𝜏𝐆(𝜏)𝐰(𝜏)𝑑𝜏
𝑡𝑘

𝑡𝑘−1

(4) 

 

where 

 

𝛟𝑘,𝑘−1 = 𝑒
∫ 𝐅(𝜏)𝑑𝜏
𝑡𝑘
𝑡𝑘−1 ≈ 𝐈 + 𝐅(𝑡𝑘−1)Δ𝑡 (5) 

 

3.2 Zero Velocity Update (ZUPT) 

ZUPT can assit foot-mounted INS to decrease the velocity 

divergence of the positioning error. In pedestrian navigation, the 

zero-velocity state is generally determined from the period when 

the footsteps are still on the ground. Zero-velocity detection is 

generally based on the output of the gyroscope and accelerometer, 

and there are three common methods: Acceleration-Moving 

Variance Detector (AMV), Angular Rate Energy Detector (ARE), 

Acceleration-Magnitude Detector (AM) (Skog et al., 2010). In 

this paper, we use the first two zero-velocity detection methods. 

When both AMV and ARE determine that the footsteps are 

stationary, the zero-velocity state can be determined, and then the 

ZUPT can be implemented, as shown in Figure 2. 

 

 

Figure 2. Main blocks in the zero-velocity detection. 

 

The principle of AMV is as follows 

 

𝑇𝐴𝑀𝑉 =
1

𝑁
∑‖𝐟𝑘

𝑏 − 𝐟�̅�‖
2

𝑁

𝑘=1

(6) 

 

The principle of ARE is as follows 

 

𝑇𝐴𝑅𝐸 =
1

𝑁
∑‖𝛚𝑖𝑏,𝑘

𝑏 ‖
2

𝑁

𝑘=1

(7) 

 

The measurement model of ZUPT is 

 
𝐳𝑘 = 𝐇𝛿𝐱𝑘|𝑘 + 𝐧𝑘 (8) 

 

𝐑𝑘 = 𝐸(𝐧𝑘𝐧𝑘
𝑇) (9) 

 

where 𝐳𝑘  is the velocity error measurements, 𝐇  is the 

measurement matrix, 𝐇 = [03×3 𝐼3×3 03×3 03×3 03×3] . 

𝐧𝑘 is the measurement noise, and 𝐑𝑘 is the covariance matrix.  

 

3.3 Heuristic Drift Reduction (HDR) 

HDR can assit foot-mounted INS to decrease the heading 

divergence of the positioning error and estimate the gyroscope 

bias. 

 

As a matter of fact, in indoor buildings, corridors and aisles are 

generally straight, so pedestrians are more inclined to walk in 

straight lines in indoor environments. Based on this hypothesis, 

Borestein et al. proposed the HDR algorithm (Borenstein et al., 

2009). When the pedestrian is walking in a straight line, the HDR 

algorithm can detect it, so that the gyroscope bias can be 

corrected to reduce the heading error. 

 

Different from how traditional HDR determines whether a 

pedestrian is walking in a straight line, in this paper we take a 

different approach: the algorithm judges by the direction of the 

pedestrian's trajectory, rather than the heading of the footsteps, as 

shown in Figure 3. When a pedestrian is walking in a straight line, 

the direction of adjacent footsteps will also change (around 1~2°), 

so the trajectory can better reflect the real direction.  

 

 

Figure 3. Comparison of heading orientation and trajectory 

orientation. Blue arrow is the heading orientation while red 

arrow is the trajectory orientation. 
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The orientation change is computed as: 

 

∆ 𝑘 =  𝑘 −  𝑘−1 (10) 
 

where  𝑘  is the direction of the foot at current sample 𝑘 

computed as  𝑘 =
𝐫𝑘(2)−𝐫𝑘−1(2)

𝐫𝑘(1)−𝐫𝑘−1(1)
, 𝐫𝑘  is the position in NED 

geographic coordinate system. 

 

When the pedestrian is walking in a straight line, the orientation 

change will be small (below a given threshold), then a 

measurement 𝑚𝑘 will be put into the EKF to correct the heading 

error; if the orientation change is larger than the given threshold, 

the pedestrian trajectory is not considered a straight line, and then 

no correction will be put into the EKF: 

 

𝑚𝑘 = {
∆ 𝑘   , |∆ 𝑘| ≤ 𝑡ℎ
   0    , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(11) 

 

 

3.4 Scene Recognition 

The scene recognition module determines whether the scene is a 

corridor, and then determines whether to add a heading constraint. 

 

Zhou et al. (Zhou et al., 2018) chose several popular CNN 

architectures and then trained them on the Places dataset to create 

CNN models. In this paper, we use the Places-ResNet model 

trained by Zhou et al. to carry out the scene-recognition 

experiment. A test picture is shown in Figure 4.  

 

During the data collection, the pedestrian needs to hold a cell 

phone for video recording. Then, the video is split into pictures 

frame-by-frame, and the pictures are put into the Places-ResNet 

model for scene recognition.  

 

 

Figure 4. A test picture for scene recognition. The top 5 

predictions and their probabilities are shown on the right. 

 

3.5 Integration of Foot-mounted INS and Scene Recognition 

Figure 1 shows the main blocks in the pedestrian inertial 

navigation algorithm based on scene recognition. The parts in 

blue are how the constraints based on scene recognition work. 

When the scene recognition model determines that the 

environment where the pedestrian is walking is a corridor, a 

straight-line constraint will be implemented.  

 

After integrating all the error correction methods into the EKF, 

the measurement vector will be: 

 

𝐦𝑘 = [∆𝐯𝑘 ∆𝛗𝑘] (12) 
 

The measurement matrix will be a 4 by 15 matrix: 

 

𝐇 = [
𝟎3×3 𝐈3×3 𝟎3×3 𝟎3×3 𝟎3×3
𝟎1×3 𝟎1×3 [0 0 1] 𝟎1×3 𝟎1×3

] (13) 

 

4. EXPERIMENTS AND RESULTS 

4.1 Hardware 

The IMU we use is the WHU-WearTrack system, and it is 

mounted on the left foot, as shown in Figure 5. The entire system 

is only 3.7*3.2*2.0 cm in size and 50 grams in weight, and the 

IMU is sampled at 200 Hz. The camera we use for scene 

recognition is an iPhone 13 camera. 

 

 

Figure 5. IMU tied on the left foot. 

 

4.2 Experiment 

We test the algorithm inside the Xinghu Building of Wuhan 

University. When walking, the pedestrian needs to hold a cell 

phone for video recording, with the IMU mounted on the left foot.  

The real environment of the experiment is shown in Figure 6. 

 

 

Figure 6. Experiment environment. 

 

Since the algorithm is for a specific indoor environment with long 

corridors, the test environment is relatively simple. We select one 

set of data for display: the pedestrian walks through the narrow 

corridor four times, as well as going upstairs and downstairs. The 

Top-1: corridor (0.874)

Top-2: hospital room (0.043)

Top-3: elevator lobby (0.020)

Top-4: clean room (0.016)

Top-5: basement (0.011)
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length of the corridor is approximately 40 meters, and the entire 

experiment lasts more than 5 minutes. 

 

The whole experiment is divided into two parts: Experiment 1 

and Experiment 2. For convenience, INS-EKF-ZUPT is 

abbreviated as IEZ, scene recognition is abbreviated as SR. In 

Experiment 1, we use the raw data of the gyroscope and 

accelerometer to implement the algorithm and make a 

comparison of the positioning results of three modes (real 

trajectory, IEZ+HDR, IEZ+HDR+SR). Because WHU-

WearTrack already compensates for sensor biases according to 

the stationary time before pedestrian starts, different positioning 

modes have similar results. To better demonstrate the 

performance of the algorithm, we add biases to the sensor raw 

data in Experiment 2. 

 

(1) Experiment 1 

 

The horizontal positioning results of three modes (real trajectory, 

IEZ+HDR, IEZ+HDR+SR) are as shown in Figure 7. Vertical 

positioning results are ignored because the algorithm is for a 

specific indoor environment with long corridors, which only 

works horizontally. 

 

Figure 7. Horizontal positioning results (Experiment 1). 

 

 

Figure 8. Horizontal positioning errors (Experiment 1). 

 

In Figure 7, the positioning result of IEZ+HDR is close to the real 

trajectory, while the result of IEZ+HDR+SR has larger  deviation. 

The end point of IEZ+HDR+SR deviates from the real trajectory 

by around 2 meters. In Figure 8, the errors of IEZ+HDR are less 

than 0.5 meters, while the maximum positioning errors of 

IEZ+HDR+SR in North and East directions are both around 2 

meters. 

 

 
IEZ + HDR IEZ + HDR + SR 

East North East North 

Mean -0.1153 0.1123 -0.5868 -0.3920 

RMS 0.1893 0.1508 1.0558 0.5037 

STD 0.1501 0.1006 0.8777 0.3163 

Table 1. Horizontal positioning errors (Experiment 1). 

 

After more than 300 seconds of navigation, the RMS of the 

positioning error of IEZ+HDR+SR is less than 1.1 meters, but the 

performance is better without SR, with the RMS less than 0.2 

meters. 

 

Figure 7, Figure 8, and Table 1 show that the algorithm based on 

scene recognition may not improve the results, and may even 

have a negative effect. However, WearTrack itself has already 

corrected the gyroscope bias, and it’s not clear how the 

positioning results are affected by SR. Therefore, we carried out 

Experiment 2. 

 

 

Figure 9. Estimation of gyro bias (Experiment 1) 

 

The results in Figure 9 show that the algorithm based on scene 

recognition can improve the observability of vertical gyroscope 

bias. After using scene recognition, the correction of the vertical 

gyroscope bias (z-axis) is more frequent. Because WearTrack 

itself has already corrected the gyroscope bias, the effectiveness 

of scene recognition in correcting gyroscope bias are unclear. 

Results in Experiment 2 are more convincing.  

 

(2) Experiment 2 

 

In many cases, the IMU used for pedestrian navigation does not 

perform as well as WHU-WearTrack, and the pedestrians do not 

have the patience to stand still for a few seconds before starting 

to compensate the sensor biases. Therefore, we add biases to the 

sensor raw data to further test the performance of the algorithm 

based on scene recognition. The gyroscope biases in X, Y and Z 

axis was set to 0.5 rad/s. 
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Figure 10. Horizontal positioning results (Experiment 2). 

 

 

Figure 11. Horizontal positioning errors (Experiment 2). 

 

In Figure 10, the positioning result of IEZ+HDR has a larger 

deviation from the real trajectory, while the result of 

IEZ+HDR+SR is closer to the real trajectory. In Figure 11, the 

errors of IEZ+HDR are more than 20 meters, while the maximum 

positioning errors of IEZ+HDR+SR are less than 10 meters. 

 

 IEZ + HDR IEZ + HDR + SR 

East North East North 

Mean 0.7297 0.2202 -1.3807 -0.1730 

RMS 6.8157 9.0210 2.5507 1.2325 

STD 6.7765 9.0183 2.1447 1.2203 

Table 2. Horizontal positioning errors (Experiment 2). 

 

After adding gyroscope biases, the RMS of the positioning errors 

of IEZ+HDR and IEZ+HDR+SR both increase, but the RMS of 

IEZ+HDR has greater increase. As for IEZ+HDR, the RMS of 

errors increases from less than 0.2 meters to more 6 meters; as 

for IEZ+HDR+SR, the RMS of errors increases from around 1 

meter to around 2 meter. In Experiment 2, after using SR, the 

RMS and STD of horizontal directions are reduced by over 50 %. 

 

Figure 10, Figure 11, and Table 2 show that the algorithm based 

on scene recognition can improve the positioning results when 

the IMU has significant sensor biases. After using the algorithm, 

the positioning errors of horizontal directions are reduced by over 

50 %.  

 

 

Figure 12. Estimation of gyro bias (Experiment 2) 

 

Similar to Experiment 1, the results in Figure 12 show that the 

correction of the vertical gyroscope bias (z-axis) is more frequent 

after using scene recognition. After the gyroscope biases in X, Y 

and Z axis is set to 0.5 rad/s, the difference between the 

positioning results of IEZ+HDR and IEZ+HDR+SR is more 

obvious, which indicates that the algorithm can improve the 

observability of the vertical gyroscope bias.  

 

5. CONCLUSION 

We proposed a pedestrian inertial navigation algorithm based on 

scene recognition to reduce the heading drift and improve the 

observability of vertical gyroscope bias. The scene recognition 

module only needs to identify whether the scene is a corridor, so 

the studies are restricted to a horizontal plane. When the scene 

recognition module determines that the pedestrian is walking in 

a corridor, a straight-line constraint will be implemented.  

 

We compared the positioning results before and after using the 

algorithm. Experiments show that the algorithm can better 

improve the positioning results when the IMU has significant 

sensor biases, and it can improve the observability of z-axis 

gyroscope bias. Especially when the IMU used for pedestrian 

navigation has sensors with low-performance, or when the 

pedestrians do not have the patience to stand still for a few 

seconds before starting to compensate the sensor biases, the 

algorithm can better improve the positioning results.  

 

For future work, more scene options can be added to the scene 

recognition module, such as staircase, elevator, etc. In addition to 

heading constraints, height constraints can also be added to the 

foot-mounted INS. These approaches should help scene 

recognition better assist pedestrian inertial navigation. 
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