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ABSTRACT: 

Wi-Fi fingerprint positioning is widely used because of its ready hardware and high accuracy. However, its application is considerably 

restricted by time-consuming and labor-intensive works of offline collection and irregular fluctuation of signals. To address the above 

problems, we proposed a novel method to deploy the Wi-Fi fingerprint database based on implicit crowdsourcing and improved the 

weighted k-nearest neighbor (WKNN) algorithm to eliminate the influence of neighbor mismatching and device heterogeneity. First, 

ordinary users continuously gather Wi-Fi information instead of collecting one point after another. Meanwhile, video surveillance 

cameras record users’ trajectories without any intervention and use monocular vision based on plane constraints to obtain users’ 

location at the moment of each scanning. At the localization phase, the morphology similarity distance instead of the Euclidean distance 

is used to measure the similarity of signals to solve the problem of device heterogeneity. Outlier detection is also utilized for a secondary 

selection of neighbor points. Finally, geometric and signal morphology similarity distances are used to determine the combined weight 

of all neighbors after the dimensionless treatment. Results of the experiments conducted in a real indoor environment show that the 

proposed strategy improves the efficiency of fingerprint collection and achieves higher positioning accuracy. 

1. INTRODUCTION

The outdoor location service has increasingly matured with the 

rapid development of the global navigation satellite systems 

(GNSS). However, GNSS fails to provide indoor positioning 

service due to signal obstruction and attenuation. On the contrary, 

indoor positioning is becoming important in people’s daily 

activities, such as shopping, parking, and health monitoring. 

Accordingly, many local and international scholars have 

conducted considerable research on indoor positioning. 

Numerous techniques have been proposed, such as 

Bluetooth(Zhou and Pollard 2006), geomagnetic 

localization(Subbu, et al. 2011), radio frequency identification 

(RFID)(Liu and Zhong 2018), ultra-wideband(Zapater and 

Kyamakya 2003), wireless local area network, computer 

vision(Wu, et al. 2017), visible light positioning(Lee, et al. 2012), 

and pedestrian dead reckoning (PDR) assisted by the accelerator 

and gyroscope(Kang and Han 2015). 

In this study, we mainly deal with the following challenges in 

Wi-Fi fingerprint positioning. The first and foremost challenge in 

deploying a Wi-Fi positioning system is building and updating 

the fingerprint database. At present, two main methods can be 

used to construct the fingerprint database: manually collecting 

received signal strength (RSS) samples on each reference point 

and crowdsourcing. Each method has its own strengths and 

weaknesses. The manual collection has higher accuracy than 

crowdsourcing. Although the density of fingerprint points 

considerably influences the localization accuracy of both 

methods, the former may be a more time-consuming and 

laborious process than the latter. Some scholars have even 

introduced the influence of direction into fingerprint point 

collection by collecting RSS data from all directions to reduce 

the influence of the human body(Bi, et al. 2018). Signal 

attenuation and change in environment require updating the 

fingerprint database constantly. These steps certainly increase the 

workload. Crowdsourcing improves data collection but cannot 

guarantee the quality of the collected data. This method faces the 

problem of device heterogeneity and the influence of varying 

signal environments. Signal fluctuation, which leads to 

mismatching during the selection of neighbor points, is another 

concern of this research. Averaging and filtering are two other 

common approaches used for access point (AP) selection(Kushki, 

et al. 2007) to abandon some unstable APs. 

The main contributions of this study are summarized as follows. 

(1) A novel method for constructing a Wi-Fi fingerprint database

via implicit crowdsourcing is proposed. Ordinary users

continuously collected Wi-Fi information, whereas video

cameras recorded users’ trajectories without any intervention.

Monocular vision based on plane constraints is used to obtain the

location of reference points rather than measuring the site and

designing the layout of reference points in advance. This

technique considerably improves the efficiency of fingerprint

collection. (2) An improved WKNN algorithm is proposed,

which includes using the morphology similarity distance,

secondary selection of neighbors by outlier detection, and weight

combination after mapping the geometric and RSS similarity

distances to the same range. The procedures are used to eliminate

the influence of neighbor mismatching and device heterogeneity.

The rest of the paper is organized as follows. Section 2 lists the

work of international and domestic academics in Wi-Fi indoor

fingerprint positioning. Section 3 presents the proposed new

method that involves two parts: fingerprint database construction

via implicit crowdsourcing, and the improved WKNN algorithm.

Section 4 provides the conducted experiments and presents the

results and brief analyses of these experiments. Section 5

elaborates the conclusions and future works.
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Domestic and foreign researchers have proposed many solutions 

to solve the problems in Wi-Fi indoor fingerprint positioning. A 

popular system called RADAR proposed by the Microsoft 

research team in 2000(Bahl and Padmanabhan 2000) used 

manual collection for data acquisition. Subsequently, many 

indoor positioning systems based on the RADAR prototype have 

been developed. An example is the Horus system proposed by 

Youssef (Youssef and Agrawala 2008). They improved the 

efficiency of fingerprint database construction by keeping a 

constant speed to achieve continuous collection and used road 

signs and maps to correct the position of the collector. The system 

remarkably reduces the labor cost but fails to estimate the 

position of the fingerprint point accurately. Gunawan (Gunawan, 

et al. 2012) used RFID to provide precise location coordinates for 

the collector. RFID improves the accuracy of the position of 

reference points but requires additional equipment. RFID can be 

directly used for positioning without superfluous work. 

Woodman (Woodman and Harle 2009) applied an inertial 

measurement unit (IMU) on the foot to estimate the position of 

the collector. Similarly, this method needs additional equipment 

and exhibits error accumulation. Some restrictions on pedestrian 

routes and walking manners are also necessary for its operation.  

In recent years, many international researchers have proposed 

methods to ease the work of RSS collection. Zou (Zou, et al. 2017) 

proposed WinIPS, a Wi-Fi-based non-intrusive IPS that enables 

automatic online radio map construction and adaptation, and 

introduced a novel Gaussian-based regression model to 

approximate the non-uniform RSS distribution of an indoor 

environment. Similarly, Yang (Yang, et al. 2012) and WU(Wu, 

et al. 2018) realized the automatic construction of a fingerprint 

map. These methods depend on the quality of the model, but no 

ideal model to simulate the signal propagation rule effectively in 

an indoor environment is available. Others have used 

crowdsourcing for RSS acquisition. For example, Hossain 

(Hossain and Soh 2015) and Wu (Wu, et al. 2012) used the data 

collected by ordinary users to construct a fingerprint database. 

This method reduces the workload but produces inaccurate 

positioning results. Zhuang (Zhuang, et al. 2015)  propose a 

method using multi-sensors in the smartphone to automatically 

generate the Wi-Fi database by crowdsourcing. However, the 

crowdsourced database has a relatively low location accuracy. 

Shen (Shen, et al. 2013) featured the changes in Wi-Fi signals 

during the user’s movement and used massive data of RSS to 

reconstruct the floor plan of the interior. The proposed strategy is 

suitable for fingerprint database construction. 

Some specific problems in Wi-Fi fingerprint localization have 

also been studied by researchers. The main problem is device 

heterogeneity. Song (Song and Wang 2017) adopted min–max 

normalization method to map the RSS values of all points to a 

uniform range [−1, 1]. This method provides a more useful 

comparison relationship than the absolute value of signal strength. 

Hossain (Hossain, et al. 2011) used signal strength difference to 

examine the results of the k-nearest neighbor(KNN) algorithm 

and found that using different mobile devices with heterogeneous 

hardware still achieves high accuracy. Dong (Dong, et al. 2009) 

presented a calibration-free solution for handling the signal 

strength variance between diverse devices. The key idea is to 

generate a radio map using signal strength differences between 

pairs of APs instead of absolute signal strength values. For device 

heterogeneity, some solutions are easily affected by a large signal 

jump, insufficiently reliable, and dependent on the differential 

equation model. Some parameters have been studied as well. 

Ozcelik (Özçelik and Dönmez 2017) evaluated the performance 

of KNN algorithm with different K values. Caso (Caso, et al. 

2015) also set dynamic K values to evaluate errors of different 

positioning algorithms. Chen (Chen, et al. 2014) analyzed the 

performance of different algorithms with the intensive 

deployment of APs. The results showed that the performance of 

different algorithms changes when the number of APs changes. 

Sweatt (Sweatt, et al. 2015) implemented an AP placement 

algorithm to achieve single coverage and designed a k-coverage 

AP placement algorithm for minimizing the total number of APs 

in indoor positioning. 

 

2. SYSTEM COMPONENTS AND METHODS 

2.1 Components of the Proposed Positioning System 

Figure 1 shows the proposed positioning system that involves 

two main phases: offline collection and online positioning. In the 

offline phase, video surveillance cameras are utilized to record 

ordinary users’ trajectories. Then, the monocular vision based on 

plane constraint is used to calculate users’ coordinates at the 

moment of each scanning for constructing a fingerprint database 

rapidly without any intervention. The phase mainly includes 

camera calibration, moving target detection, and coordinate 

transformation, which is discussed in the next section in detail. 

Data collected by users who are at a slow pace are used due to 

the scan delay. In the positioning phase, an improved WKNN 

algorithm is proposed. Morphology similarity distance rather 

than the Euclidean distance is used to select neighbor points for 

eliminating the influence of device heterogeneity. Then, outlier 

detection is utilized for the secondary selection of neighbor 

points. Finally, geometric and signal morphology similarity 

distances are adopted to determine the combined weight after the 

dimensionless treatment. 

 
Figure 1. Components of the proposed positioning system. 
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2.2 Fingerprint Database Construction via Implicit 

Crowdsourcing 

The process of fingerprint database construction via implicit 

crowdsourcing involves three parts: camera calibration, moving 

target detection, and coordinate transformation. Figure 2 depicts 

the entire calculation process of the coordinates of a moving 

target. First, the calibration method of Zhang(Zhang and 

intelligence 2000) is used to acquire the extrinsic and intrinsic 

parameter matrixes of the camera and other parameters. Then, the 

moving target is detected in the picture extracted from video 

sequences to output the average pixel coordinates of the target. 

Finally, the rotation matrix and pixel coordinates are used to 

calculate the target’s coordinates in the world coordinate system. 

Figure 2. Calculation process of the coordinates of a moving target. 

2.3 Unifying the Times of Camera and Device 

Video surveillance cameras are used to record users’ trajectories. 

The devices held by users collect RSS information at the same 

time. The times of the camera and the device are unified to ensure 

that the location of users acquired by the video sequence 

corresponds to the RSS information. The time difference between 

the moment of mutation of the device location detected by the 

camera and the moment of a sudden change in the data acquired 

by the built-in sensor of the device is used to map these times to 

the same benchmark. 

The frame difference method is used to detect the moment of 

device movement. A gray change will appear when the location 

of the device changes. The difference in adjacent frame pictures 

is obtained. If the difference is beyond the threshold range, then 

the position of the device starts to change. The time of position 

changing can be obtained by combining the video start time and 

the frame rate. The change in the built-in sensor of the device can 

also be obtained. We can obtain another time of device position 

change by comparing the time differences between the device for 

collection and the video camera. The whole process is depicted 

in Figure 3. 

Δ𝐼(𝑥, 𝑦) = |𝐼𝑡(𝑥, 𝑦) − 𝐼𝑡−1(𝑥, 𝑦)| (1) 

where 𝐼𝑡(𝑥, 𝑦)  represents the value of an image at time t;

𝐼𝑡−1(𝑥, 𝑦) represents the value of an image at time t-1. If Δ𝐼(𝓍, 𝑦)
is approximately equal to 0 or is a small value, then the position 

of the device is not changed.  

Figure 3. Time relationship between the device and video surveillance camera. 
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2
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the RSS of 𝑗𝑡ℎ  AP at an unknown point; 𝑅𝑆𝑆𝑖𝑗  represents the

signal strength value of 𝑗th  AP at 𝑖th  fingerprint point; and n is 

the number of fingerprint points stored in the database. 

Figure 4 shows high similarity between two signal strength 

curves. The Euclidean distance is unsuitable for dealing with 

device heterogeneity. Thus, we use morphology similarity 

distance to replace the Euclidean distance. 

(a) 

(b) 

Figure 4. Different RSSs received by dissimilar devices: (a) 

Point a, (b) Point b. 

This method requires that the RSS vector of each unknown point 

should be arranged in the same order as the fingerprint point it 

will be compared with. The equation of morphological similarity 

distance calculation is expressed as follows: 

𝐷𝑀𝑆𝐷(𝑃𝑖, 𝑃𝑗) = √∑  

𝑛

𝑚=1

(𝑅𝑆𝑆𝑖𝑚 − 𝑅𝑆𝑆𝑗𝑚)
2

× (2 −
|∑  𝑛

𝑚=1 (𝑅𝑆𝑆𝑖𝑚 − 𝑅𝑆𝑆𝑗𝑚)|

∑  𝑛
𝑚=1 |𝑅𝑆𝑆𝑖𝑚 − 𝑅𝑆𝑆𝑗𝑚|

) (3) 

where 𝑃𝑖 , 𝑃𝑗  represents the AP RSSI sequence of two points; and

𝑅𝑆𝑆𝑖𝑚, 𝑅𝑆𝑆𝑗𝑚 respectively represent the RSSI of 𝑖th  and 𝑗𝑡ℎ AP.

2.4.2 Outlier Detection for Secondary Selection of 

Neighbor Points 

The fluctuation in Wi-Fi signals is inevitable. As shown in Figure 

5, some mismatches are obtained when KNN or WKNN is used. 

To eliminate the influence of this problem, a secondary selection 

of neighbor points by means of outlier detection is proposed.  

First, the 𝑘th distance of each neighbor point is calculated after K 

neighbor points are acquired by morphological similarity 

distance calculation, and the k-distance neighborhood 𝑁𝑘(𝑝) of

each neighbor point is obtained. Second, the reach distance 

between neighbor points and other adjacent neighbor points is 

calculated. The 𝑘th  reach distance from point o to point p is 

defined as follows: 

reach−dist𝑘
(𝑝, 𝑜) = 𝑚𝑎𝑥{𝑑𝑘(𝑜), 𝑑(𝑝, 𝑜)} (4) 

where 𝑑𝑘(𝑜) represents the reach distance of point o and other

points and 𝑑(𝑝, 𝑜) is the distance between points p and o. 

Third, the local reachability density  𝑙𝑟𝑑𝑘(𝑝) of point p is

calculated as follows: 

lrd𝑘(𝑝) = 1/ (
∑  𝑜∈𝑁𝑘

 𝑟𝑒𝑎𝑐ℎ − 𝑑𝑖𝑠𝑡 𝑘(𝑝, 𝑜)

|𝑁𝑘(𝑝)|
) (5) 

Then, the local outlier factor of each neighbor point is obtained 

by the following equation: 

𝐿𝐿𝑂𝐹𝑘 ∣ (𝑝) =

∑𝑜∈𝑁𝑘

l r 𝑑𝑘 (𝑜)
l r 𝑑𝑘 (𝑝)

|𝑁𝑘(𝑝)|
=

∑  𝑜∈𝑁𝑘
l r 𝑑𝑘 (𝑜)

|𝑁𝑘(𝑝)|
/l r 𝑑𝑘 (𝑝)(6)

where 𝐿𝑂𝐹𝑘(𝑝) is the local outlier factor of point p.

Finally, the local outlier of every neighbor point is compared. If 

the ratio is greater than 1, then the density of p is less than that of 

its neighborhood, and point p may be an abnormal point. 

𝐾′neighbor points are obtained using this method.

Figure 5. Outlier detection. 

2.4.3 Weighting Combination 

The law of wireless signal transmission posits that a small RSS 

similarity distance between neighbor points and the unknown 

point indicates a close relationship between the geometric 

positions of the neighbor and the unknown point. Similarly, the 

center of the neighbor points after outlier detection is 

theoretically similar to that of the unknown point. Therefore, the 

distance between neighbor points and their center reflects its 

contribution to the position of the unknown point to a certain 

extent. A small distance between the neighbor point and the 

center of the neighbor points indicates a large contribution of the 

neighbor point to the position of the unknown point. Thus, we 

use geometric distance and signal morphology similarity 

distances to determine the combined weight after the 

dimensionless treatment.  

(𝑋center , 𝑌center , 𝑍center ) =
1

𝑘
∑  

𝑘

𝑖

(𝑋𝑖 , 𝑌𝑖 , 𝑍𝑖) (7) 

𝑙𝑖𝑐 = √(𝑋𝑖 − 𝑋center )
2 + (𝑌𝑖 − 𝑌center )

2 + (𝑍𝑖 − 𝑍center )
2 (8)

where (𝑋center , 𝑌center , 𝑍center )  are the centers of the neighbor

points; (𝑋𝑖 , 𝑌𝑖 , 𝑍𝑖) are the coordinates of 𝑖𝑡ℎ neighbor point.

The scaling factors of 𝑙𝑖 and 𝑑𝑖 are different. Thus, we must map

them to a uniform range using Equations (9) and (10). This step 

also reduces the influence of device heterogeneity to some extent. 

𝑙𝑖𝑐
′ = |

𝑙𝑖𝑐 − Mea n(𝑙1𝑐 , 𝑙2𝑐 … 𝑙𝑘′𝑐)

Std(𝑙1𝑐 , 𝑙2𝑐 … 𝑙𝑘′𝑐)
| (9) 
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𝑑𝑖
′ = |

𝑑𝑖 − Mea n(𝑑1 , 𝑑2 … 𝑑𝑘′)

Std(𝑑1, 𝑑2 … 𝑑𝑘′)
| (10) 

where Mean and Std represent the mean and variance value 

functions, respectively. 

Given the influence of two kinds of distance on the position of 

the unknown point, we combine the mapping values of these 

distances to determine the combined weight. The weight is 

described as follows: 

𝑝𝑖 =

1
𝑙𝑖𝑐

+
1
𝑑𝑖

∑  𝑘′

1
1
𝑙𝑖𝑐

+ ∑𝑘′

1
1
𝑑𝑖

(11) 

where 𝑝𝑖 denotes the influence weight of the 𝑖𝑡ℎ neighbor point

on the result of the location, and i =1, 2…k’. 

The last step is using the weighted mean to obtain the position of 

the unknown point. The weight is obtained by Equation (12), and 

the coordinates of the unknown point are acquired using the 

following equation:  

(𝑋̂, 𝑌̂, 𝑍̂) = ∑  

𝑘′

𝑖

𝑝𝑖(𝑋𝑖 , 𝑌𝑖 , 𝑍𝑖) (12) 

where(𝑋̂, 𝑌̂, 𝑍̂) are the final coordinates of an unknown point. 

3. EXPERIMENTS AND ANALYSIS

3.1 Trajectory Tracking of Ordinary Users via Video 

Surveillance Cameras 

We select 12 pictures for camera calibration. Figure 6 shows the 

camera calibration error of each picture. 

(a) 

(b) 

Figure 6. Camera calibration: (a) Pictures for camera 

calibration, (b) Camera calibration error of each picture. 

Given that two routes are chosen for collection, two intrinsic 

camera parameter matrixes, two extrinsic camera parameter 

matrixes, and two translation vectors will be obtained. Rotation 

matrixes are easily obtained as follows: 

[
3672.772 −906.635 6.556 30878841
620.375 −64.17 3093.362 6360397

0.319 −0.899 0.301 2713.113
], 

[
2474.458 −2576.91 986.863 6434200
−595.223 −480.03 2955.391 6464158

−0.240 −0.941 0.238 2403.941
] 

Users’ relative trajectories can be obtained rapidly using the 

parameters and rotation matrixes we calculated above and the 

results we acquired in the process of moving target detection.  

Figure 7 shows the relative path. 

Figure 7. Relative acquisition line of the collector. 

Then, the relative path is translated into the coordinate system we 

defined for positioning. Figure 8 shows the absolute path. 

Figure 8. True trajectory and the calculated path. 

The true coordinate of fingerprint points and the calculated 

coordinates are compared by monocular vision method based on 

plane constraints. As shown in Figure 9, the error of coordinates 

of most sampling points is less than 0.8 m. Thus, the method can 

be used to rapidly collect information for fingerprint database 

building and updating. 

Figure 9. Error of the calculated coordinates by monocular 

vision method based on plane constraints. 

3.2 Localization Experiments 
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experiments to illustrate the effectiveness of the proposed 

methods. 

We used KNN, WKNN, and improved WKNN algorithms to 

show the positioning effect. Among the algorithms, improved 

WKNN was divided into two different algorithms, namely, 

IWKNN1 and IWKNN2. IWKNN1 comprised the process of 

signal similarity calculation by morphological similarity distance, 

outlier detection, and combination weighting. IWKNN2 had the 

same process as IWKNN1, but the Euclidean distance replaced 

the morphological similarity distance. 

The first experiment was performed to demonstrate the improved 

effect of the proposed method on dealing with the problem of 

device heterogeneity. We used the HUAWEI pad to collect the 

information of fingerprint points and used OPPO and MEIZU 

smartphones to collect the information of unknown points. We 

selected 150 unknown points. Table 1 and Table 2 respectively 

show the results of four algorithms when using OPPO and 

MEIZU smartphones for positioning. Notably, IWKNN1 has a 

better effect and lower point mean, max, and min errors than 

other algorithms.  

Eigenvalues KNN WKNN IWKNN1 IWKNN2 

Mean error(m) 2.452 2.613 2.134 2.751 

Max error(m) 5.839 6.442 4.878 7.836 

Min error(m) 0.433 0.205 0.052 0.069 

Table 1. Positioning results when using OPPO smartphone. 

Eigenvalues KNN WKNN IWKNN1 IWKNN2 

Mean error(m) 3.535 3.449 3.243 3.405 

Max error(m) 7.031 7.092 7.970 7.299 

Min error(m) 0.379 0.432 0.100 0.226 

Table 2. Positioning results when using MEIZU smartphone. 

The CDF plots of error for the compared algorithms are shown in 

(b). Figure 10. Notably, IWKNN1 has higher accuracy than other 

algorithms. 

(a) 

(b) 

Figure 10. CDF plots of error for the compared algorithms: (a) 

Positioning results when using OPPO smartphone; (b) 

Positioning results when using MEIZU smartphone. 

The second experiment was conducted to verify the practicality 

of the proposed method for building and updating a fingerprint 

database via implicit crowdsourcing. Similarly, we conducted an 

experiment on two groups: one used the true coordinates of these 

fingerprint points, and the other used the calculated coordinates 

by video sequence. Table 3 and Table 4 respectively show the 

results of the two groups. Although some errors exist for each 

fingerprint point, the proposed method still keeps the same 

accuracy as the traditional method for collecting the information 

individually. Furthermore, the proposed method costs less time 

and human resources. 

Eigenvalues KNN WKNN IWKNN1 IWKNN2 

Mean error(m) 2.960 2.958 2.427 3.054 

Max error(m) 6.529 6.680 6.925 7.693 

Min error(m) 0.240 0.230 0.315 0.018 

Table 3. Positioning results when using the true coordinates of 

fingerprint points. 

Eigenvalues KNN WKNN IWKNN1 IWKNN2 

Mean error(m) 3.027 3.067 2.457 3.178 

Max error(m) 6.762 6.896 6.548 7.656 

Min error(m) 0.436 0.114 0.281 0.116 

Table 4. Positioning results when using the calculated 

coordinates of fingerprint points. 

The CDF plots of error for two groups are shown in Figure 11. 

Notably, the proposed method for fingerprint database has 

sufficient practicality. 
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(a)  (b) 

Figure 11. CDF plots of error for two groups: (a) Positioning results when using the true coordinates of fingerprint points; (b) 

Positioning results when using the calculated coordinates of fingerprint points. 

4. CONCLUSION AND FUTURE WORK

In this study, we have presented a rapid method to construct a 

Wi-Fi fingerprint database. This method improves the efficiency 

of fingerprint collection and the possibility of the collection by 

crowdsourcing. The improved WKNN can deal with the 

problems of device heterogeneity, signal fluctuation, and 

neighbour mismatching with high accuracy.  

In our future work, we will solve the problem of camera 

distortion and demonstrate the availability of the proposed 

method in a large area. When deployed in real and complicated 

indoor environments, the accuracy and stability of the system will 

be improved. Other technologies, such as PDR and 

geomagnetism-aided positioning, will also be integrated into the 

current system to improve the localization accuracy. 
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