
FAST ROBUST ARITHMETICS FOR GEOMETRIC ALGORITHMS AND
APPLICATIONS TO GIS

Tinko Bartelsa,∗, Vissarion Fisikopoulos b

a Technical University of Berlin, Germany - t.bartels@tu-berlin.de b Oracle, Greece - vissarion.fysikopoulos@oracle.com

KEY WORDS: Spatial Predicates, Delaunay Triangulation, Floating-Point, Robustness, Triangulated Irregular Network.

ABSTRACT:

Geometric predicates are used in many GIS algorithms, such as the construction of Delaunay Triangulations for Triangulated Ir-
regular Networks (TIN) or geospatial predicates. With floating-point arithmetic, these computations can incur roundoff errors that
may lead to incorrect results and inconsistencies, causing computations to fail. This issue has been addressed using a combination
of exact arithmetics for robustness and floating-point filters to mitigate the computational cost of exact computations. The imple-
mentation of exact computations and floating-point filters can be a difficult task, and code generation tools have been proposed
to address this. We present a new C++ meta-programming framework for the generation of fast, robust predicates for arbitrary
geometric predicates based on polynomial expressions. We show examples of how this approach produces correct results for GIS
data sets that could lead to incorrect predicate results for naive implementations. We also show benchmark results that demonstrate
that our implementation can compete with state-of-the-art solutions.

1. INTRODUCTION

Basic geometric predicates, such as computing the orientation
of a triangle or testing if a point is inside a circle, are at the core
of many computational geometry algorithms such as convex
hull and Delaunay triangulation. Interestingly, those predicates
also appear in geospatial computations such as topological spa-
tial relations that determine the relationship among geometries.
Those operations are fundamental in many GIS applications.
On the other hand, computing with floating-point arithmetic,
these computations can incur roundoff errors that may lead to
incorrect results and inconsistencies, causing computations to
fail (Kettner et al., 2004).

Among other applications, Delaunay triangulations are import-
ant for the construction of Triangulated Irregular Networks
(TIN). TINs are used in GIS applications to represent terrains
in Digital Elevation Models and to produce Digital Surface
Models or Digital Terrain Models, as discussed in (Li et al.,
2005). Predicate failures in the underlying Delaunay triangula-
tion may lead to issues with the mesh quality and cause crashes
due to invalid triangulations or failure to terminate, as discussed
in (Shewchuk, 1997). The issue of predicate robustness is there-
fore not limited to use cases with high precision requirements.

Robust geometric predicates can also be used in spatial pre-
dicates to guarantee correct results for floating-point geomet-
ries. Spatial predicates are used to determine the relationship
between geometries and have applications in spatial databases
and GIS applications. Examples of such predicates include in-
tersects, crosses, touches, or within. Using non-robust spatial
predicates, for example, a point that lies close to the shared
edge of two triangles can be found to be within both or neither
of them, which is not only incorrect but also violates basic as-
sumptions on partitioned spaces.

Switching to exact computations can guarantee correct results
but is very slow for practical purposes. To improve perform-
ance, these computations are made adaptive in the sense that
∗ Corresponding author

exact arithmetic is only performed if a priori error estimates can
not guarantee correctness for the faster, approximate computa-
tions. In other words, the expensive computations are filtered
out by using those error estimates.

Now, the main question is how difficult it is to compute those
error estimates. There are several approaches that provide a
trade-off in efficiency and accuracy of error estimation. The
three main types of filters are (almost) static, semi-static and
dynamic. In the first case, the error is pre-computed very effi-
ciently using a priori bounds on the input but attains very low
accuracy. In semi-static filters, the error estimation depends on
the input. They are still a bit slower than static filters and im-
prove a bit on the accuracy and require no a priori bounds on
the input. The slowest and more accurate are the dynamic fil-
ters that use floating-point interval arithmetic to better control
the error and achieve fewer filter failures.

Previous work. Many techniques have been proposed in the
past for efficient and robust arithmetic. In his seminal pa-
per (Shewchuk, 1997), Shewchuk introduced robust, adapt-
ive implementations for orientation-, incircle- and insphere-
predicates that can be used, for example, in the construction
of Delaunay triangulations. He uses a sequence of semi-static
filters of ever-increasing accuracy. The phases are attempted
in order, each phase building on the result from the previous
one until the correct sign is obtained. On the other hand, effi-
cient dynamic filters are proposed in (Brönnimann et al., 1998).
For Delaunay triangulations (Devillers and Pion, 2003) propose
a set of efficient static and semi-static filters and experiment-
ally compare them with several alternatives including (Shew-
chuk, 1997). In (Meyer and Pion, 2008), the authors present
FPG, a general purpose code analyzer and generator for almost
static filtered predicates. In (Nanevski et al., 2003), they ex-
tend Shewchuk’s method to arbitrary polynomial expressions
and implement an expression compiler that takes a function
and produces a program that computes the sign of the source
function at any given floating points arguments. More recently,
in (Ozaki et al., 2016), they develop a new semi-static floating-
point filter for the 2D orientation predicate, which handles

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVI-4/W2-2021
FOSS4G 2021 – Academic Track, 27 September–2 October 2021, Buenos Aires, Argentina

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVI-4-W2-2021-1-2021 | © Author(s) 2021. CC BY 4.0 License.

1

floating-point exceptions such as overflow and underflow, as
well as an improved fully-static filter. Regarding non-linear
geometries, there is work on filters for circular arcs (Devillers
et al., 2000). Moreover, robust predicates could be extended to
provide robust constructions such as points of intersection of
linestrings (Attene, 2020).

Our contribution. The contribution of this paper is two-fold.
First, we present a new implementation based on C++ meta-
programming techniques that produces fast, robust predicates at
compile-time for arbitrary, polynomial computations. It is ex-
tensible and based on the C++ library Boost.Geometry (Gehrels
et al., 2021). The main advantage of our proposed implementa-
tion is the ability to automatically generate filters based on some
expression. On the other hand, it can be used with manual hand-
crafted filters, as illustrated by the use of our axis-aligned filter
for the incircle predicate (Section 4.2).

Second, we perform an experimental analysis of our generated
filters as well as a comparison with the state-of-the-art. We
perform our benchmarks with synthetic as well as real datasets
arising in GIS, e.g. a Triangulated irregular network represent-
ing Maribor city in Slovenia (Špelič et al., 2008). Following
our, analysis we propose staged orientation and incircle predic-
ates, i.e. predicates that use a pipeline of filters. Our predic-
ates outperform the current implementations of state-of-the-art
libraries (Shewchuk, 1996, Brönnimann et al., 2021). Finally,
we highlight the importance of robust predicates by showing
a number of issues and inconsistencies in the course of stand-
ard GIS algorithms (e.g. see Table 5) that can be fixed by using
robust predicate while adding a small computational cost.

2. ROBUST GEOMETRIC PREDICATES

In this section we define and explain all the preliminaries
needed to present our implementation method in the next sec-
tion.

2.1 Geometric Predicates and Robustness Issues

In the context of this paper we define geometric predicates to be
functions that return yes or no answers to geometric questions
based on evaluating the sign of a polynomial. One example is
the planar orientation predicate. Given three points a, b and c
in R2, it determines the location of c with respect to the straight
line going through a and b by evaluating the sign of

p (ax, ay, bx, by, cx, cy) :=

∣∣∣∣ ax − cx ay − cy
bx − cx by − cy

∣∣∣∣ (1)

For this definition of the orientation predicate, postive, zero and
negative determinants correspond to the locations left of the
line, on the line and right of the line respectively. This geomet-
ric predicate has applications in the construction of Delaunay
triangulations, convex hulls and in spatial predicates such as
within for 2D points, lines or polygons.

While expression (1) always gives the correct answer in real
arithmetic, this is not necessarily the case for floating-point
arithmetic. Consider a floating-point number (FPN) system F
and let rd : R → F be the rounding-function, which maps
any number to its nearest floating-point representation in F ,
breaking ties towards the number with an even mantiss. We

Architecture c̃ and t1 c and t2 c and t1 ∪ t2
-march=haswell outside outside inside
-march=ivybridge touch touch inside
exact inside outside inside

Table 1. Relationships of point c = (0,−0.01) to polygon
t̃1 := {(−1, 0) , ã, b̃} and t2 := {(1, 0) , b̃, ã}, where

a = (−0.01,−0.59), b = (0.01, 0.57).

denote the floating-point operators on F by ⊕, 	 and ⊗, with
a} b := rd (a ◦ b) for ◦ ∈ {+,−, ·}. We call

p̃ (ax, ay, bx, by, cx, cy) := (ax 	 cx)⊗ (by 	 cy)	
(ay 	 cy)⊗ (bx 	 cx) (2)

a floating-point realisation of (1). Due to rounding errors, this
realisation can produce incorrect and inconsistent results.

As an illustration, consider the points a = (−0.01,−0.59), b =
(0.01, 0.57), c = (0,−0.01). In real arithmetic, c lies on the
straight line through a and b. Their closest approximations in
double precision, ã, b̃, c̃, however, are not collinear but close to
collinear which makes the case sensitive to rounding errors.

As a second example, let us evaluate the spatial predicate
within, defined as ‘inside’ in (Egenhofer and Herring, 1990),
for c and the polygons t̃1 := {(−1, 0) , ã, b̃} and t2 :=
{(1, 0) , b̃, ã} using the winding-number algorithm (Sunday,
2021). Table 1 summarizes the results, all compiled with GCC
11.1 and optimization level O2. The first row is particularly
noteworthy because the results are not only incorrect but also
internally inconsistent. The final row can be obtained using
any implementation of the orientation predicate that guarantees
correct results, such as the implementation of Shewchuk (Shew-
chuk, 1996) or CGAL’s kernels epick or epeck (Brönnimann et
al., 2021).
Remark 1. The difference between the architecture is
due to GCC producing an assembly involving the FMA-
instruction from polynomial (1). FMA can be defined as
FMA (a, b, c) := rd (a · b+ c). This instruction causes loss of
anti-commutativity for difference, i.e. a⊗b	c⊗d = −c⊗d	
a⊗ b holds if no range errors occur, but FMA (a, b,−c⊗ d) =
−FMA (c, d,−a⊗ b) is not necessarily true. When inserted
into the orientation predicate, this can lead to situations in
which swapping two input points does not necessarily reverse
the sign of the result.

Inconsistencies can occur without FMA as well. Consider
ã, b̃, d̃ := (rd (0.15) , rd (8.69)) and ẽ := (rd (0.07) , rd (4.05)).
The floating-point realisation (2), compiled without FMA-
optimizations, will determine ã, b̃, ẽ and b̃, d̃, ẽ to be collinear
but not ã, b̃, d̃, which is a contradiction.

2.2 Exact Arithmetic

A natural idea to solve the precision issues of floating-point
arithmetics would be to perform the evaluations at a higher pre-
cision. For example, it can be sensible to perform calculations
with single-precision inputs using double-precision. This ap-
proach has immediate limitations. Consider, for example, 240

and 2−40, which are both representable in single precision (32
bit). Their exact sum would require more than 80 bits just
for the significant to be represented as a floating-point number.
As soon as the precision is extended beyond the floating-point
number systems for which operations are hardware-accelerated

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVI-4/W2-2021
FOSS4G 2021 – Academic Track, 27 September–2 October 2021, Buenos Aires, Argentina

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVI-4-W2-2021-1-2021 | © Author(s) 2021. CC BY 4.0 License.

2

https://github.com/boostorg/geometry

the time cost of elemantary operations can increase by one or
two orders of magnitude.

Floating-point expansions are an approach to overcome the pre-
cision limitations of FPN. The idea is to represent values that
are not representable in a FPN system themselves as sums of
components that are individually representable in the original
system. E.g., the result of 240 + 2−40 can be represented
as the two-component expansion

(
2−40, 240

)
. This technique

is sometimes called double-double arithmetic, for expansions
with two components, or double-quad arithmetic for expansions
with four components. The computation of such expansions can
be expressed in terms of elementary operations in the original
FPN system and, hence, make use of hardware-acceleration.
The application of floating-point expansions for the exact eval-
uation of geometric predicates was described in (Shewchuk,
1997).
Definition 2 (Expansion). For a binary FPN system F , an ex-
pansion is a tuple of n floating-point numbers x1, . . . , xn ∈ F ,
which are called components. An expansion is a, not necessar-
ily unique, representation of a real number x = x1 + . . . + xn
that can be represented in binary with finitely many digits but is
not necessarily in F . We call an expansion x1, . . . , xn ordered
(by increasing magnitude with possibly interspersed zeroes) if
|xi| ≤ |xj | or xi = 0 or xj = 0 for all 1 ≤ i ≤ j ≤ n. We call
two components |x| ≤ |y| nonoverlapping if the least signific-
ant nonzero bit of y is more significant than the most significant
digit of x. We call an ordered expansion nonoverlapping if that
property holds for each pair of components.

We previously mentioned that exact computations on expan-
sions can be performed based on elementary floating-point op-
erations. For illustration purposes we will show an example
of this using the algorithm that is presented as Fast-Two-Sum
in (Shewchuk, 1997) and due to (Dekker, 1971) to compute the
exact sum of two floating-point numbers.
Example 3 (Expansion). This example will assume radix 2, 5
bits of precision and for readability we will give all numbers
in fixed-point notation. Consider the numbers a = 10101 and
b = 1.01. The FP approximation x := a ⊕ b of the result is
10110 after rounding and the exact result is a+ b = 110110.01
with 0.01 being the round-off error. All less significant digits of
b, the number with the smaller exponent, are necessarily roun-
ded off in the result. We can make use of that notion by first
computing the part of b that is not rounded off in the result via
bvirtual := x 	 a = 1. Note, that with exact operations or suffi-
ciently high precision that number would always be 0 because
there would be no round-off error. Using bvirtual we then ob-
tain the exact round-off error as y := b 	 bvirtual = 0.01. The
expansion exactly representing a+ b is then (10101, 0.01).

Further algorithms for the exact summation and multiplication
of floating-point numbers and expansions, including invariants
and proofs of correctness, are discussed in (Shewchuk, 1997).
The exact evaluation of +, − and · for two floating-point num-
bers can be performed using constant time, constant auxiliary
storage and produces expansions of, at most, length 2. The al-
gorithm Grow-Expansion computes the sum of an expansion of
length n and a floating-point number using linear time, constant
auxiliary storage and producing an expansion of, at most, length
n + 1. The algorithm Fast-Expansion-Sum computes the sum
of two expansions of lengths n and m producing an expansion
of, at most, length n +m and has similar performance charac-
teristics to the merge-step in MergeSort. The algorithm Scale-
Expansion computes the product of an expansion of length n

and a floating-point number using linear time, constant auxili-
ary storage and producing an expansion of, at most, length 2n.
By repeatedly applying Scale-Expansion and Fast-Expansion-
Sum, the product of two expansions of lengths n and m can
be computed in O (mn · logmn), resulting in an expansion of
length, at most, 2mn.

2.3 Floating-Point Filters

We call an implementation a robust floating-point predicate if it
is guaranteed to produce correct results. With expansion arith-
metic, we can produce a robust predicate from a floating-point
realisation by replacing all rounding floating-point operators
⊕,	 and ⊗ with the respective exact algorithms on floating-
point expansions. The sign of the resulting expansion is then
equal to the sign of its most significant (i.e. largest non-zero)
component.

The issue with this naive approach is that it produces a robust
but computationally expensive implementation, even for simple
predicates. To mitigate this issue we make use of filters.

Definition 4 (Filter). For a predicate sign (p (x1, . . . , xn))
and an FP system F , we call f : M ⊆ Fn →
{−1, 0, 1, uncertain} a floating-point filter. f is called valid for
p on M if for each (x1, . . . , xn) ∈ M either f (x1, . . . xn) =
sign (p (x1, . . . , xn)) or f (x1, . . . , xn) = uncertain holds. The
latter case is referred to as filter failure.

Adopting the terminology used in (Devillers and Pion, 2003),
we call filters dynamic, if they require the computation of an er-
ror at every step of the computation, static, if they use a global
error bound that does not depend on the inputs of the predicate,
and semi-static if their error bound has a static component and
a component that depends on the input. A variation of static fil-
ters, which require a priori restrictions on the inputs to compute
global error bounds, are almost static filters, which start with
an error bound based on initial bounds on the input and up-
date their error bound whenever the inputs exceed the previous
bounds. We will now present some filters as examples.

Example 5 (Shewchuk’s Stage A orientation predicate). Con-
sider the predicate (1) and its floating-point realisation (2).
Then,

f (ax, . . . , cy) :=

{
sign (p̃) |p̃| ≥ e (ax, . . . , cy)
uncertain otherwise.

with the error bound

e (ax, . . . , cy) :=
(
3ε+ 16ε2

)
⊗ (|(ax 	 cx)⊗ (by 	 cy)| ⊕

|(ay 	 cy)⊗ (bx 	 cx)|),

where p̃ := p̃ (ax, . . . , cy) and ε is the machine-epsilon of the
FPN, is a valid filter for all inputs that do not cause overflow or
denormalisation (Shewchuk, 1997).

This filter can be considered semi-static filter with its static
component being 3ε+16ε2. The error bound is obtained mostly
by applying standard forward-error analysis to the floating-
point realisation. Shewchuk also described similar filters for
the 2D incircle predicate, as well as the 3D orientation and in-
circle predicates.

Example 6 (FPG orientation filter). Consider pre-
dicate (1) and its floating-point realisation (2). Let

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVI-4/W2-2021
FOSS4G 2021 – Academic Track, 27 September–2 October 2021, Buenos Aires, Argentina

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVI-4-W2-2021-1-2021 | © Author(s) 2021. CC BY 4.0 License.

3

mx := max{|ax 	 cx| , |bx 	 cx|} and my :=
max{|ay 	 cy| , |by 	 cy|}. If max {mx,my} >
1.67597599124282407923e + 153, 0 6= min {mx,my} ≥
5.00368081960964690982e − 147 or |p̃| ≤
8.88720573725927976811e − 16 ⊗ mx ⊗ my 6= 0, then
”uncertain” is returned, otherwise the sign of p̃ is returned.

This filter is generated by the program FPG, which is presented
in (Meyer and Pion, 2008) for the 2D orientation predicate. It is
valid with double precision arithmetic for all double precision
inputs.

This filter is also semi-static with the static component of the
error bound being 8.88720573725927976811e − 16. A fully
static version of this filter can be obtained if global bounds for
mx and my are known a-priori. The first two conditions are
range-checks that guard against overflow and underflow. Apart
from these conditions, the filter is based on an error bound sim-
ilar to the previous example. The program FPG can generate
such filters for arbitrary homogenous polynomials if group an-
notations for the input variables are provided. In the example
above the group annotations specified that ax, bx and cx as well
as ay, by and cy form a group.

Another example of a semi-static error bound filter for the 2D
orientation predicate, that can handle overflow, underflow and
rounding-errors with less branches than the filter generated by
FPG, can be found in (Ozaki et al., 2016).

The next example is not strictly an error-bound filter.

Example 7 (Shewshuk’s stage B orientation predicate). Con-
sider the predicate 1 and its floating-point realisation 2. Let
dax := ax 	 cx, dbx := bx 	 cx and analogously for y. If the
computations of these values incurred round-off errors, return
uncertain. Otherwise compute dax · dby − day · bdx exactly,
using expansion arithmetic, and return the sign. This filter is
described as stage B in (Shewchuk, 1997) and is valid for all in-
puts that do not produce overflow or underflow. The full version
in (Shewchuk, 1997) also includes an error-bound check that al-
lows preventing a filter failure if the no-round-off test fails.

Similar filters were presented by Shewchuk for other predic-
ates. This filter is particularly effective for input points that
are closer to each other than to (0, 0) because differences of
floating-point numbers that are within half/double of each other
do not incur round-off errors. In the context of Shewchuk’s
multi-staged predicates, this filter also has the advantage that it
can reuse computations from stage A and that its interim results
can be reused for more precise stages in case of filter failure.
As a final example we present a fully dynamic filter.

Example 8 (Interval arithmetic filter). Consider a predicate and
one of its floating-point realisations. Given the inputs, compute
for each floating-point operation ⊕,	,⊗ the lower and the up-
per bound of the result, including the rounding error, using in-
terval arithmetic. If the final resulting interval contains num-
bers of different signs, return uncertain. Otherwise return the
shared sign of all numbers in the result interval. This approach
is presented in (Brönnimann et al., 1998).

In (Devillers and Pion, 2003), (Ozaki et al., 2016) and (Shew-
chuk, 1997) failure probabilities and performance experiments
for various sequences of filters, types of inputs and algorithms
are presented. We will present our own experiments in Sec-
tion 4.

template <std:: size_t Index >
struct argument { /*...*/ };
template <typename Float >
struct constant
{

static constexpr Float
value = /*...*/

};
template <typename Left , typename Right >
struct sum :

public internal_binary_node <Left , Right >
{ /*...*/ };
template <typename Left , typename Right >
struct difference :

public internal_binary_node <Left , Right >
{ /*...*/ };
template <typename Left , typename Right >
struct product :

public internal_binary_node <Left , Right >
{ /*...*/ };

Figure 1. Templates for the representation of expression trees

3. NEW META-PROGRAMMING IMPLEMENTATION

3.1 Code design and expression trees

After having described a number of filters as well as algorithms
for the exact evaluation, we will now describe the framework
we implemented for the generation of filtered predicates in
C++. At the core of our framework are expression trees. Our
expression trees consist of internal binary or unary nodes and
leaves. Binary nodes represent operations such as +,−, ·, max,
min. Our only current unary node template represents the op-
eration abs (·). Leaves represent indexed arguments, which are
placeholders for input values, and constants. Trees are repres-
ented in the C++ type system as class templates. There is a class
template for each node type that requires one type argument
for unary nodes or two type arguments for binary nodes, which
represent the subtrees below the node. Arguments are repres-
ented by class templates that require an index as template argu-
ment. The implementation is open source and publicly avail-
able: https://github.com/BoostGSoC20/geometry

Figure 1 shows some of the templates in our binary expression
trees. Figure 2 illustrates how they can be used later to represent
the expression of the 2D orientation predicate of expression (1)
in the C++ type system.

3.2 Evaluation of expression trees

To evaluate the expression trees in given arguments, our
framework provides two function templates. The function
evaluate expression takes an expression and an array of in-
put values as parameters and evaluates the expression in the
given inputs using the given type. This is realized by first ob-
taining a post-order traversal of the expression tree as a type list
and then eliminating all duplicates and leaves. The remaining
type list then contains expression trees representing all interim
results in the order in which they need to be computed.

The expression tree processing is performed at compile-time
and does not affect performance. Because the number of in-
terim computations is also known at compile-time, the in-
terim results can be stored on the stack and no dynamic heap-
allocations are required, as long as simple types like float or
double without internal heap-allocations are used.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVI-4/W2-2021
FOSS4G 2021 – Academic Track, 27 September–2 October 2021, Buenos Aires, Argentina

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVI-4-W2-2021-1-2021 | © Author(s) 2021. CC BY 4.0 License.

4

https://github.com/BoostGSoC20/geometry

The design of the framework is generic. Therefore any input
type that supports all operators used in the expression tree can
be used with the function template. For floating-point types
like double or float, this function template can be used to obtain
floating-point approximations of polynomials or to compute er-
ror bounds for known error expressions. If the function tem-
plate is called with an interval arithmetic type, it can be used
to provide a dynamic filter, like in Example 8. Finally, the
function can yield an exact filter useful for the final stage of
a staged predicate by using an arbitrary precision number type
like CGAL::Gmpzf, which is based on GMP library (Granlund
and the GMP development team, 2012).

The second function template that we provide to evaluate ex-
pression trees is eval expansions. It also processes expres-
sion trees in post-order and computes the total number of com-
ponents for all interim expansions at compile-time. The oper-
ations +, −, · are replaced by the appropriate expansion arith-
metic algorithms. The function template accepts policies that
allow finer control of implementation details of expansion arith-
metics, in particular regarding zero-elimination and the choice
of summation algorithms, see the end of Section 2.4 of (Shew-
chuk, 1997) for a brief discussion of these aspects.

Because we again know the exact number of components at
compile-time, we can perform all computations without heap
allocations. For very complicated expressions, the space on the
stack may be insufficient. A possible future version could in-
clude thresholds for when to chose heap storage over stack stor-
age for expansion components.

As straight-forward applications of the eval expansions

function template and the expression trees, we provide the tem-
plates stage d and stage b. Both get an expression tree and
a calculation type as template arguments and provide a variadic
static apply method. The apply method of the stage d class
template accepts a number of values and evaluate the expression
exactly using expansion arithmetic. Then returns the sign of the
expression evaluated in the inputs. The stage b template first
performs all interim computations that involve differences of
two arguments (leaves). If all can be performed without round-
off error, the remaining expression is evaluated using expansion
arithmetic but simplified, because it is known that the difference
nodes of height 1 only have one component each, rather than
two. If a round-off error occurs within one of the differences of
height 1, a value indicating uncertainty is returned. This tem-
plate therefore implements the filter of Example 7 for arbitrary
polynomials.

3.3 Error bounds

For error bound filters, our framework provides two class
templates. The template stage a error bound expression

takes an expression tree involving +, − and · and a calculation
type. The tree is then processed at compile-time using forward
error analysis in a manner similar to the reasoning in section 4.3
of (Shewchuk, 1997). The result is again given as an expression
tree, representing an error bound consisting of a constant, that
is a polynomial in ε, and a scaling expression involving the in-
puts. For the expression of the 2D orientation predicate, the
error bound expression that is produced is equivalent to the er-
ror bound in example 5.

The second error bound template that we provide is named
fpg error expression. It takes as arguments an expression
tree representing a homogenous polynomial, a calculation type

and, optionally, a type list representing groups of input argu-
ments. If no groups are provided, the template defaults to
automatically computed groups. The automatic grouping heur-
istic processes the expression tree by performing a constexpr

BFS algorithm on the arguments, considering two arguments
adjacent if leaves representing them, appear as children of the
same difference node. The error expression is then obtained by
decomposing the expression tree into summands and greedily
assigning the arguments in the summands to groups. Based
on this assignment, an error expression is then computed at
compile-time according to the rules described in in (Meyer and
Pion, 2008). For the 2D orientation filter, the error expression
is equivalent to the error expression in example 6. Unlike the
original FPG code generator, our implementation does not sup-
port range checks against underflow or overflow. However, our
proposed framework can be used to implement such checks.

3.4 Static filters

We provide three templates for use with the above error ex-
pressions. The template semi static filter takes an ex-
pression tree, a calculation type and an expression tree rep-
resenting an error expression, for example obtained using
the two previously mentioned templates. The class template
provides a static apply method that takes input values and
evaluates the expression tree and the error expression tree in
these inputs. If the result of the expression is larger or equal
in magnitude than the error expression, then its sign is re-
turned. Otherwise a value indicating uncertainty is returned.
The templates stage a semi static and fpg semi static

are aliases for semi static filter with error expres-
sions generated from stage a error bound expression and
fpg error expression respectively.

The template interval takes an error expression in the in-
put and transforms it at compile-time using interval arith-
metic rules. The result is an expression tree that repres-
ents the maximum of this error expression, given global up-
per and lower bounds on the input. This error expression can
then be used with the template static filter, which, unlike
semi static filter represents a stateful class that computers
its error bound at construction rather than for each call to the ap-
ply method. It can be used to generate static filters. A second
template, almost static filter takes an expression, a calcu-
lation type and a static filter type, which it stores in its in-
ternal state an instance of the given static filter type given
the current bounds on the input. If these bounds change, the
internally stored static filter is updated to compute a new
global error bound.

3.5 Staged predicates

Finally, we provide the template staged predicate. It is a
variadic template that accepts a calculation type and an arbitrary
number of type arguments. The types are expected to provide
the shared interface of the previously described filters and exact
staged. The templates optionally take bounds on the input at
construction, which is only sensible if its staged predicate con-
tains at least one static filter. It also optionally allows updates
to its bounds, which is sensible if it contains an almost static fil-
ter. Its apply method will run each of its stages in order until a
value other than ”uncertain” is returned. Notably, the provided
filter types need not be variants of the filters described above.
Besides our filters that are automatically generated based on the
expression, the user of our framework can also use handcrafted
predicates. Figure 2 shows an example of how to generated a
two-staged predicate for the 2D orientation problem.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVI-4/W2-2021
FOSS4G 2021 – Academic Track, 27 September–2 October 2021, Buenos Aires, Argentina

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVI-4-W2-2021-1-2021 | © Author(s) 2021. CC BY 4.0 License.

5

using _1 = argument <1>;
/* ... */
using orient2d =

difference <
product <

difference <_1 , _5 >,
difference <_4 , _6 >

>,
product <

difference <_3 , _5 >,
difference <_2 , _6 >

>
>;

using predicate_type =
staged_predicate <

stage_a_semi_static <orient2d , double >,
stage_d <orient2d , double >

>;
predicate_type predicate;
/* ... */
int orientation =

predicate.apply(ax , ay , bx , by ,
cx, cy);

Figure 2. Example code for the generation of a robust
orientation predicate

4. EXPERIMENTS

We perform an experimental analysis of our implementation
with synthetic and real data. First we compare the perform-
ance and accuracy of various filters. Second, we present per-
formance comparison of filters used in Delaunay triangulation
computations.

All benchmarks were performed on a Linux Workstation
powered by an Intel Xeon CPU E3-1505M v5 @ 2.80Ghz.
For consistency, turbo boost was disabled for all runs. All
benchmarks were compiled with GCC 11.1, Boost 1.75, CGAL
4.14.3 and GMP 6.2.1. Timings were recorded for GCC with
level 2 optimizations and native optimizations. For each con-
figuration eight timings were recorded. Deviation between runs
with the same settings was negligible, so we will show median
results for simplicity. Because preliminary tests found little or
no performance advantages for static filters over semi-static fil-
ters for the data sets that we considered, we omit them from the
following experiments.

We tested 2D orientation and incircle predicates using the 2D
Delaunay triangulation provided by the CGAL library. We
compared various filters generated using our templated imple-
mentation against non robust predicates, Shewchuk’s predicates
and the exact predicates, inexact construction kernel provided
by CGAL. Shewchuk’s predicates consist of four stages, named
A, B, C and D and their implementation can be found in (Shew-
chuk, 1996). The exact predicates, inexact construction ker-
nel of the CGAL library provides predicates consisting of three
stages. The first stage is a semi-static filter based on FPG with
range-checks against overflow and underflow. The second stage
uses a dynamic filter based on interval arithmetic. The final
stage uses exact evaluation based on a high-precision number
type.

4.1 Single filter experiments

For the first experiment, we perform a 2D Delaunay triangula-
tion of uniformly distributed random points with coordinates in

Timings for 2D orientation predicates
Filter/Stage added time (ns)
stage a semi static 6.6
fpg semi static 8.5
stage b 33.9
evaluate expression (CGAL Interval nt) 37.2
stage d 44.8
evaluate expression (CGAL Gmpzf) 361.9

Table 2. Time added by a filter over a non-robust
implementation of the 2D orientation predicate during the

computation of a Delaunay triangulation of uniformly
distributed points.

Filter accuracy for axis-aligned grid points
Filter/Stage Accuracy
stage a semi static 0.997
fpg semi static 0.996
stage b 0.990
evaluate expression (CGAL Interval nt) 0.997
stage d 1
evaluate expression (CGAL Gmpzf) 1

Table 3. The percentage of successful filter calls i.e. not return
uncertain. Results obtained for the computation of the Delaunay

triangulation of points on an axis-aligned grid.

[1, 2]. This distribution and interval was chosen because it guar-
antees filter successes for all tested filters. Table 2 shows the
averaged time per predicate call over the non-robust predicate,
which is always the fastest. Clearly, the semi static filter based
on Shewchuk’s Stage A is the fastest generated filter. Among
the two exact stages, stage d and the CGAL Gmpzf based com-
putation, stage d is the faster. It should be noted that the exact
evaluation based on CGAL Gmpzf has the advantage that it can
also guarantee correct results in cases of overflow.

Regarding filter accuracy, Table 3 presents filter failures for the
triangulation of points aligned to a grid. The distance between
two adjacent points was set to 0.1. The test sets consist of 100K
points. Interestingly, stage a semi static is also the most accur-
ate among the non exact filters.

For the 2D incircle predicate, the situation is more complicated.
We test predicates generated from two alternative formulations
of incircle the predicate.

p̃I2D = det(ax − dx, ay − dy, (ax − dx)2 + (ay − dy)2 ,

bx − dx, by − dy, (bx − dx)2 + (by − dy)2 ,

cx − dx, cy − dy, (cx − dx)2 + (cy − dy)2).

and

p̃I2Ds = det((ax − dx) (cy − dy)− (ay − dy) (cx − dx) ,
(cx − dx) (cx − ax) + (cy − dy) (cy − ay) ,
(ax − dx) (by − dy)− (ay − dy) (bx − dx) ,
(bx − dx) (bx − ax) + (by − dy) (by − ay)).

The second expression was referred to as a simplified form in
the CGAL source code, so we will refer to it as the simplified
(S) incircle expression. We test filters for the simple data set of
uniformly distributed points (Table 4).

Notably, the simplified expression is preferable across the board
especially for the exact filters. Interestingly, the performance
gap between the stage A filter and the exact ones is much larger
than the orientation case.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVI-4/W2-2021
FOSS4G 2021 – Academic Track, 27 September–2 October 2021, Buenos Aires, Argentina

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVI-4-W2-2021-1-2021 | © Author(s) 2021. CC BY 4.0 License.

6

Timings for 2D incircle predicates
Filter/Stage added

time
(ns)

stage a semi static 1.5
stage a semi static (S) 1.5
fpg semi static 6.6
fpg semi static (S) 5.0
evaluate expression (CGAL::Interval nt) 116.6
evaluate expression (CGAL::Interval nt) (S) 110.8
stage d 871.9
stage d (S) 558.7
evaluate expression (CGAL Gmpzf) 1789.0
evaluate expression (CGAL Gmpzf) (S) 1568.0

Table 4. Time added by a filter over a non-robust 2D incircle
implementation during the computation of a Delaunay

triangulation of uniformly distributed points.

4.2 Staged predicate experiments

Now we study the performance of using staged predicates, i.e.
pipelines of filters. For the orientation case the staged predicate
we propose is simple, consisting of the stage A filter, directly
followed by the exact stage D filter.

For the incircle predicate, the performance gap observed in
Table 4 indicates the use of further filters between the stage
A and D filters. Experiments showed that the most common
failure cases for the incircle predicate were found in artificial
datasets that include axis aligned rectangles. Thus, we add a
custom handwritten filter to catch this case in particular. An-
other filter that proved particularly helpful with degenerate ex-
amples was the dynamic filter based on CGAL interval type,
which is still five times as fast as stage D. Now the staged pre-
dicate for incircle predicate consist of four filters in this order:
the stage A semi-static filter, our axis-aligned-rectangle-filter, a
dynamic interval filter and the exact stage D filter. We perform
comparison experiments against the state of the art methods.

Delaunay triangulation benchmarks were performed with uni-
formly distributed points, points aligned on a non-integer grid
(step size 0.1) and the dataset GIS 193360 F.pnt from (Špelič
et al., 2008). The non robust predicates is consistently the fast-
est across all data sets while our implementation is always the
fastest among the robust ones (Figure 3). The cost of robustness
with our predicates amounted to about 13-15 percent over the
non-robust predicates for the uniformly distributed points and
the GIS data set and around 40 percent for the more challen-
ging grid data set. For both the grid and the GIS data set, in-
correct predicate calls were recorded for non robust predicates,
regardless of compiler and optimization level, so the perform-
ance advantage of the non-robust predicates comes at the cost
of possibly incorrect Delaunay triangulations. No crashes were
recorded for any test.

Overall, we can see that there is no single filter template, that
is optimal. The stage A filter delivered very good performance
overall, and we always propose it as a first stage. For the 2D
orientation predicate it is sufficient to just add a stage d filter
in the staged predicate. For the 2D incircle predicate, it makes
sense to add a dynamic interval filter and an axis-aligned box
test, between stage A and D.

This picture might change, if overflow and underflow are con-
cerned. In this case, it makes sense to use an arbitrary-precision
number type like Gmpzf for exact evaluation. While none of
our filters includes overflow detection, it would probably make

Figure 3. Performance times for the construction of the
Delaunay triangulation of three datasets. Timings in ms.

sense to add this test to the code that produces FPG-like error
bounds, according to the rules given in the description of the
original FPG in (Meyer and Pion, 2008).

We also tested the spatial test for the point in polygon prob-
lem. The polygon is extracted from the large scale countries
vector data set by Natural Earth, introduced in (Kelso and Pat-
terson, 2010), and represents the largest continental component
of Russia. Making this test robust, does add about 33% to the
runtime cost for randomly generated points (Figure 4). In the
case of points that are generated to be close to the boundary the
runtime difference shrinks to less than 10%. We conjecture that
this is due to the non robust version failing to recognize collin-
ear points which produces an incorrect result and also misses
an opportunity to terminate the computation early.

We recorded the number of “touch”-results for the points that
are close to the boundary. This number is inconsistent across al-
gorithms and possible compiler settings if non robust predicates
are used (Table 5). With robust predicates, consistent results are
guaranteed.

Figure 4. Timings in ms for testing whether a point is in
continental Russia polygon from (Kelso and Patterson, 2010).

5. CONCLUSION AND FUTURE WORK

We revisit geometric filters and predicates and study the pos-
sible applications to GIS algorithms and software. We propose

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVI-4/W2-2021
FOSS4G 2021 – Academic Track, 27 September–2 October 2021, Buenos Aires, Argentina

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVI-4-W2-2021-1-2021 | © Author(s) 2021. CC BY 4.0 License.

7

https://www.naturalearthdata.com/downloads/10m-cultural-vectors/
https://www.naturalearthdata.com/downloads/10m-cultural-vectors/

Count of “touch” results
algorithm predicate -march=native -O2 -O2
ours non robust 365 2,716
Boost.Geometry
relate

non robust 8,759 8,759

ours robust 2,714 2,714
CGAL
bounded side 2

robust 2,714 2,714

Table 5. Count of “touch” results between continental Russia
polygon (Kelso and Patterson, 2010) and query points resulted
from a linear interpolation of the polygon; ours: our winding

count implementation.

a generic C++ meta-programming based framework to generate
automated as well as manual filters. Then we perform an exper-
imental analysis of various generated filters, we compare them
with the current state-of-the-art on synthetic and real world
datasets.

We reach the following conclusions based on evidences from
the conducted experimental analysis. First, staged predicate
with A, D filters is the best option for 2D orientation predicates.
However, for incircle predicates the situation is more involved.
The FPG error bound always seems to be less accurate than the
Stage A error bound and also slower but there is some poten-
tial use when overflow is a concern. There is a speed-accuracy
trade-off between dynamic interval filters and semi-static stage
A filters and it is possible that a staged predicate can benefit
from placing a dynamic interval filter between the semi-static
stage A filter and the exact stage. For exact stages, stage D is
always faster than Gmpzf, but the latter can handle inputs that
cause overflow. Stage B and Stage C are in a similar role to the
dynamic interval filter. For complicated predicates they may be
useful between the semi-static and the exact stage, but we are
not aware of any data set for which this can be observed.

As a future work, we would like to generalize our meta-
programming framework to compute robust geometric con-
structions.

ACKNOWLEDGEMENTS

The main part of the work was mostly produced while T.B was
supported by Google Summer of Code 2020 grant and V.F. was
his mentor within the Boost C++ libraries organization.

REFERENCES

Attene, M., 2020. Indirect Predicates for Geometric Construc-
tions. Computer-Aided Design, 126, 102856.

Brönnimann, H., Burnikel, C., Pion, S., 1998. Interval arith-
metic yields efficient dynamic filters for computational geo-
metry. Proc. of the 14th Annual Symposium on Computational
Geometry, ACM, USA, 165–174.

Brönnimann, H., Fabri, A., Giezeman, G.-J., Hert, S., Hoff-
mann, M., Kettner, L., Pion, S., Schirra, S., 2021. 2D and
3D linear geometry kernel. CGAL User and Reference Manual,
5.2.1 edn, CGAL Editorial Board. https://doc.cgal.org/
5.2.1/Manual/packages.html#PkgKernel23.

Dekker, T. J., 1971. A floating-point technique for extending the
available precision. Numerische Mathematik, 18(3), 224–242.

Devillers, O., Fronville, A., Mourrain, B., Teillaud, M., 2000.
Algebraic methods and arithmetic filtering for exact predicates
on circle arcs. Proc. of the 16th Annual Symposium on Compu-
tational Geometry, ACM, USA, 139–147.

Devillers, O., Pion, S., 2003. Efficient exact geometric predic-
ates for delauny triangulations. R. E. Ladner (ed.), Proceedings
of the Fifth Workshop on Algorithm Engineering and Experi-
ments, Baltimore, MD, USA, January 11, 2003, SIAM, 37–44.

Egenhofer, M., Herring, J., 1990. A mathematical frame-
work for the definition of topological relations. Proceedings
the Fourth International Symposium on Spatial Data Handing,
803–813.

Gehrels, B., Lalande, B., Loskot, M., Wulkiewicz, A., Kara-
velas, M., Fisikopoulos, V., 2021. Boost C++ libraries: Geo-
metry, version 1.76. https://boost.org/libs/geometry.

Granlund, T., the GMP development team, 2012. GNU MP: The
GNU Multiple Precision Arithmetic Library. 5.0.5 edn. http:
//gmplib.org/.

Kelso, N. V., Patterson, T., 2010. Introducing Natural Earth
Data - naturalearthdata.com. Geographia Technica, 5(82-89),
25.

Kettner, L., Mehlhorn, K., Pion, S., Schirra, S., Yap,
C., 2004. Classroom examples of robustness problems in
geometric computations. Algorithms – ESA 2004, Springer
Berlin Heidelberg, 702–713. https://doi.org/10.1007/

978-3-540-30140-0_62.

Li, Z., Zhu, C., Gold, C., 2005. Digital Terrain Modeling: Prin-
ciples and Methodology. CRC Press. https://doi.org/10.
1201/9780203357132.

Meyer, A., Pion, S., 2008. FPG: A code generator for fast and
certified geometric predicates. Real Numbers and Computers,
Santiago de Compostela, Spain, 47–60. https://hal.inria.
fr/inria-00344297.

Nanevski, A., Blelloch, G., Harper, R., 2003. Automatic Gen-
eration of Staged Geometric Predicates. Higher-Order and
Symbolic Computation (formerly LISP and Symbolic Com-
putation), 16(4), 379–400. https://doi.org/10.1023/a:

1025876920522.

Ozaki, K., Bünger, F., Ogita, T., Oishi, S., Rump, S. M., 2016.
Simple floating-point filters for the two-dimensional orientation
problem. BIT Numerical Mathematics, 56(2), 729-749.

Shewchuk, J., 1996. Routines for Arbitrary Precision Floating-
point Arithmetic and Fast Robust Geometric Predicates.
https://cs.cmu.edu/afs/cs/project/quake/public/

code/predicates.c.

Shewchuk, J. R., 1997. Adaptive Precision Floating-Point
Arithmetic and Fast Robust Geometric Predicates. Discrete
& Computational Geometry, 18(3), 305–363. https://doi.
org/10.1007/pl00009321.

Sunday, D., 2021. Practical Geometry Algorithms: with C++
Code. Amazon Digital Services LLC. ISBN: 9798749449730.

Špelič, D., Novak, F., Žalik, B., 2008. Delaunay Tri-
angulation Benchmarks. Journal of Electrical Engineering,
59(1), 49–52. http://iris.elf.stuba.sk/JEEEC/data/

pdf/1_108-09.pdf.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVI-4/W2-2021
FOSS4G 2021 – Academic Track, 27 September–2 October 2021, Buenos Aires, Argentina

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVI-4-W2-2021-1-2021 | © Author(s) 2021. CC BY 4.0 License.

8

https://summerofcode.withgoogle.com
https://doc.cgal.org/5.2.1/Manual/packages.html#PkgKernel23
https://doc.cgal.org/5.2.1/Manual/packages.html#PkgKernel23
https://boost.org/libs/geometry
http://gmplib.org/
http://gmplib.org/
https://doi.org/10.1007/978-3-540-30140-0_62
https://doi.org/10.1007/978-3-540-30140-0_62
https://doi.org/10.1201/9780203357132
https://doi.org/10.1201/9780203357132
https://hal.inria.fr/inria-00344297
https://hal.inria.fr/inria-00344297
https://doi.org/10.1023/a:1025876920522
https://doi.org/10.1023/a:1025876920522
https://cs.cmu.edu/afs/cs/project/quake/public/code/predicates.c
https://cs.cmu.edu/afs/cs/project/quake/public/code/predicates.c
https://doi.org/10.1007/pl00009321
https://doi.org/10.1007/pl00009321
http://iris.elf.stuba.sk/JEEEC/data/pdf/1_108-09.pdf
http://iris.elf.stuba.sk/JEEEC/data/pdf/1_108-09.pdf

	INTRODUCTION
	Robust Geometric Predicates
	Geometric Predicates and Robustness Issues
	Exact Arithmetic
	Floating-Point Filters

	New Meta-programming Implementation
	Code design and expression trees
	Evaluation of expression trees
	Error bounds
	Static filters
	Staged predicates

	Experiments
	Single filter experiments
	Staged predicate experiments

	Conclusion and future work

