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ABSTRACT:

We propose a vector alternative to the typical raster based population modeling framework. When compared with rasters, vectors
are more precise, have the ability to hold more information, and are more conducive to areal constructs such as building and parcel
outlines. While rasters have traditionally provided computational efficiency, much of this efficiency is reduced at finer resolutions
and computational resources are more plentiful today. Herein we describe the approach and implementation methodology. We also
describe the output data stack for the United States and provide examples and applications.

1. INTRODUCTION

High resolution mapping of human populations is often
achieved through the disaggregation of aggregate counts (e.g.
census tabulations) from tabulation areas (source zones) to
smaller areas (target zones), with the aid of covariate spatial
data characterizing the natural or built environment (e.g. land
cover/use, building footprints) with some known or presumed
functional relationship with population density. Source zones
and natural/built environment data, found in a variety of raster-
/vector formats and resolutions, are often converted to a com-
mon raster resolution for analysis (Lloyd et al., 2017, Mennis,
2003, Bhaduri et al., 2007, Freire et al., 2016). This approach
is computationally efficient at coarse resolutions and existing
software and methods facilitate modeling for those with an un-
derstanding of raster-based spatial analysis (Leyk et al., 2019),
but has potential shortcomings due to limitations of raster data
formats. When compared to a vector data model, rasters are
less precise, usually hold less information, and are less condu-
cive to smaller area constructs, such as building outlines and
parcels. Given these shortcomings, we propose a vector ana-
lytical framework for population modeling. The framework is
designed to combine all of the lines defining the input layers so
that fields enclosed by those lines (i.e. polygons) are uniformly
attributable to each of the input layers. This richer data stack
allows for the development of models with more complex lo-
gic that are straightforward to implement and explain, as well
as potentially increasing the accessibility of modeled estimates
and intermediate layers to a broader audience. Furthermore, by
embedding grid cell boundaries into the vector framework from
the outset, we maintain the ability to generate raster layers (e.g.,
gridded population estimates) using this framework.

2. MAIN BODY

2.1 Approach

Within our framework, capturing all relevant built environment
attributes as well as all source zone identifiers at the finest res-
olution requires calculating the spatial intersections of all input
layers as a first step. Unlike approaches that convert all vector
data to raster or that simply join attributes on polygon centroids,
our approach maintains all attribute information from the in-
put layers with their original spatial precision. We thereby re-
tain the flexibility to aggregate at subsequent steps according to

modeling assumptions. This method also allows for the inclu-
sion of a regular grid for aggregation, preserving our ability to
aggregate back to the raster format familiar to users of high res-
olution population estimates. Simply put, the vector analytical
framework is designed to combine all of the lines defining the
input layers so that fields enclosed by those lines (i.e. polygons)
are uniformly attributable to each of the input layers.

2.2 Implementation

Our population models rely on myriad datasets, some with
point/polygon geometries natively in shapefiles, geodatabases,
geojsons, etc, some in tabular form, such as from csvs. We have
found PostgreSQL with PostGIS to be an ideal central storage
point for extract, transform, and load (ETL) processes from the
many data sources. While using this as storage and service for
our previous raster based modeling efforts, we found the Post-
GIS processing capabilities to be impressive and thus developed
our vector based framework to run within the PostgreSQL/Post-
GIS environment.

While SQL is more accessible as a descriptive language, some
understanding of the underlying PostgreSQL query engine and
configuration settings is required for performant outcomes. We
arrived at the following order of operations:

1. Index all geometries and id columns to optimize evalu-
ations and joins.

2. Assemble all linear boundaries from polygon inputs,
census blocks and parcels, as well as the regular grid
bounding lines, into a single ‘blades’ table; this prevents
duplication of features when cutting building polygons.

3. Identify and union all blades that intersect each building
and join that line to the building geometry by buildingid
so that the resulting table has a record for each building
with a column for the single building polygon and a single
blade that intersects it. This table can be iterated over and
the building polygon split by the blade.

4. The resulting table of split geometries is then merged into
a new table with the building geometries that had no inter-
sections with the blades.
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5. A point within the polygon is calculated for joining all in-
put parameter polygons. This point is the centroid if the
centroid is within, otherwise it is a point on surface so that
spatial joins are guaranteed to be within the building parts.

6. The final step is a query to join all the parameter polygons.
Where multiple distinct values are possible, variables are
stored in arrays. The result is stored in a table structured
as shown:

uid bigint,

buildingid bigint,

censusblock character varying(15),

parcelids array,

landuses array,

area_m2 double precision,

point_geom geometry,

polygon_geom geometry,

grid_row integer,

grid_column integer

The final two columns are required only to facilitate the
conversion to a raster grid.

We have implemented these concepts in SQL orchestrated
through Python 3.x. We have run these scripts on various
versions of PostgreSQL/PostGIS from PostgreSQL 11.12 with
PostGIS 2.5 to PostgreSQL 13.1 with PostGIS 3.0. All pro-
cessing times and discussion references herein were performed
in a centos 8 environment with 128 cores and 500 GB of RAM
using PostgreSQL 13.1 with PostGIS 3.0. USA Structures
building outlines (Oak Ridge National Laboratory, 2021) are
stored in one table per state. Lightbox parcel data (DMP/Light-
box, 2020) and US Census TIGER data (U.S. Census Bureau,
2019) are stored in one table each, with partial indexes on geo-
metries per state.

2.3 Processing times

The processing times shown in Table 1 are for the polygon to
line conversions and the creation of the 3 arcs-econd grid cell
bounding lines, described in section 2.1, operation 2. As such,
the time is a function of the total rows. Larger extents have
more grid lines and more populated states have more blocks
and parcels.

Table 2 lists processing times for operations 3 to 6 in section
2.1, as they are scripted together. Variations from state to state
are not simply dependent on the number of rows in the input
tables; they depend on the complexity of polygons in the build-
ing and land use layers and the spatial relationships between
those layers. Operation 3, for example, takes longer for a state
with more building/blade intersections. However, the relation-
ship between number of building polygons and processing time
is roughly linear (Figure 2). With regard to operation 2, the
number of parcel polygons is moderately predictive of pro-
cessing time; the number of census blocks and the total land
area to be diced into grid cells also contribute to the processing
time variation (Figure 1).

2.4 Discussion

The vector analytical framework has been transformative in our
population modeling work for LandScan USA (Moehl et al.,
2020, Weber et al., 2019). It allows us to move the heaviest

Figure 1. Processing times for blade generation by number of
parcel polygons.

Figure 2. Processing times for generation of building parts by
number of building polygons.
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Table 1. Processing time for generating the blades from parcels,
census blocks, and grid cell boundaries (step 2 in section 2.1).

States are run in parallel; total processing time limited by
longest-running state (California in this case).

State Wall Time
AL 0:18:35.760
AR 0:13:52.950
AZ 0:24:09.857
CA 1:12:24.087
CO 0:27:53.953
CT 0:06:49.054
DC 0:01:55.219
DE 0:03:28.271
FL 0:46:10.952
GA 0:23:38.582
IA 0:15:46.051
ID 0:34:28.764
IL 0:21:24.412
IN 0:14:45.101
KS 0:22:51.305
KY 0:20:53.742
LA 0:22:51.269
MA 0:07:46.557
MD 0:11:52.809
ME 0:20:16.344
MI 0:40:37.441
MN 0:35:53.678
MO 0:24:36.971
MS 0:12:42.376
MT 0:42:27.089

State Wall Time
NC 0:25:39.478
ND 0:24:01.913
NE 0:26:38.188
NH 0:06:50.751
NJ 0:07:47.448
NM 0:26:24.210
NV 0:30:04.362
NY 0:33:07.005
OH 0:15:55.075
OK 0:27:28.125
OR 0:30:59.154
PA 0:19:21.387
RI 0:01:23.531
SC 0:18:30.442
SD 0:20:20.866
TN 0:20:28.197
TX 0:50:53.683
UT 0:24:53.473
VA 0:22:06.382
VT 0:07:16.702
WA 0:22:29.309
WI 0:18:34.736
WV 0:14:15.496
WY 0:17:33.924

computation to the early stages of production, before many de-
cisions, removing barriers to iterating and adjusting implemen-
ted decisions. Conversely, raster based methods have the heav-
iest computations at the penultimate step. The US analytical
data stack herein consists of 270 million plus rows of build-
ing parts resulting from running 123 million building outline
polygons through our framework, using over 152 million par-
cel polygons, over 11 million census blocks, and over 65 mil-
lion unique grid cells also embedded; all stored and calculated
within PostGIS. These 270 million building parts having no
loss of information and linking back to the source datasets, be-
come the basis for all subsequent decisions and analysis in the
workflow, including handling of overlapping parcel polygons,
interpreting other confounding land use information, imputa-
tion of null land uses, as well as summaries of area by land use
by source zone for further statistical analyses.

Figure 3. A single building polygon.

Figures 3 - 5 show how our vector analytical framework starts
with a single building polygon (3), representing a row of sev-
eral shops in Knoxville, TN, and results in 29 records (5) after
being split by parcels and grid lines. An example row, with the
polygon geom highlighted in Figure 5, is shown below:

Table 2. Processing time for generating building parts from
buildings, parcels, and census blocks (3 to 6 in Section 2.1).

States are run in parallel; total processing time limited by
longest-running states (California and Texas at close to three

hours).

State Wall Time
AL 0:36:06.501
AR 0:20:38.310
AZ 0:53:50.692
CA 2:57:20.312
CO 0:58:07.492
CT 0:12:45.892
DC 0:02:07.410
DE 0:04:48.488
FL 1:44:36.450
GA 1:33:17.016
IA 0:26:08.041
ID 0:23:08.115
IL 1:03:09.031
IN 0:41:13.737
KS 0:26:33.453
KY 1:55:33.864
LA 0:28:05.476
MA 0:23:01.636
MD 0:24:01.672
ME 0:11:31.417
MI 1:09:49.176
MN 0:51:49.121
MO 0:38:11.729
MS 0:23:09.423
MT 0:38:59.357

State Wall Time
NC 0:59:26.013
ND 0:19:22.768
NE 0:21:40.890
NH 0:06:45.709
NJ 0:31:32.009
NM 0:26:37.462
NV 0:29:43.461
NY 1:02:05.974
OH 1:07:20.716
OK 0:35:57.850
OR 0:34:45.796
PA 1:47:57.058
RI 0:05:03.301
SC 0:29:57.128
SD 0:17:01.052
TN 0:41:25.756
TX 2:46:29.628
UT 1:30:16.304
VA 0:43:21.270
VT 0:05:25.795
WA 0:48:36.747
WI 0:43:17.230
WV 0:16:26.612
WY 0:22:44.552

Figure 4. Four parcels intersect this single building polygon.
Three land uses are present.

Figure 5. The single building polygon, when split by parcels
and a regular grid, becomes 29 records. A single record is

highlighted in yellow.
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uid: 12016302

buildingid: 1280868

censusblock: ‘470930058031033’

parcelids: {534343}

land_uses: {‘COMMERCIAL’}

area_m2: 1816.42

point_geom: SRID=4326;POINT(...)

polygon_geom: SRID=4326;POLYGON(...)

grid_row: 16320

grid_column: 49016

Spatially joining attributes from one polygon layer to another
is a common procedure. This is often done using the centroid
of the target layer to ensure one record in the resultant table for
each of the target layers. An example using building outlines
as the target layer for parcel land uses, would result in a 1 to 1
ratio of records between the input buildings layer and the out-
put buildings + land use layer. Figures 3 and 4, which show
one building polygon intersecting four parcels, illustrate how a
spatial join of parcels to a building using centroids might be in-
sufficient. With the building parts, we can calculate the ratios
of building/parcel intersections to buildings by any any census
geography. A ratio of 1:1 would be equivalent to the centroid
based join, with no building intersecting parcel boundaries. Fig-
ure 6 shows that a centroid based spatial join approach would
not be sufficient in many counties. The highest ratios are found
in the New York City counties. Queens County is one of these
extreme examples with a ratio of 3.075:1. Figure 7 shows the
38 buildings before being split by parcels, as shown in Figure
8. These figures illustrate that while the county level ratio at
3:1 is extreme relative to the rest of the US, there are even more
extreme ratios at the tract scale; 12.94:1 in this example. The
vector analytical framework and the building parts allow us to
understand these ratios across our entire study area at any scale,
not just for a sample. Otherwise, it would be very difficult to
know and explain where and how a centroid method would be
insufficient.

Figure 8 also illustrates where the vector framework allows for
the precision of the underlying land use data to be maintained
throughout the modeling process. In a raster based workflow,
rasterization would inevitably distort the relative distributions
of land use areas at all scales and depending on the cell size and
alignment some land uses might be lost entirely.

2.5 Applications

2.5.1 Overlap Handling Vector polygon datasets often
have overlapping features. This is sometimes the result of mis-
alignment, but is also often a true representation, a building
outline and a land use polygon within OpenStreetMap, for ex-
ample. Measuring the impact of these overlaps on population
models can be difficult. In a raster framework, calculating the
impact of overlaps requires one to rasterize for each possible
handling scenario. This impact can also change depending on
spatial resolution, i.e. cell size, which would require further
rasterization for evaluation. Additional complexity is added
for evaluation at different scales, such as state, county, or tract.
With the vector analytical framework, all decisions are down-
stream of the heaviest computations, thereby encouraging and
facilitating iterative analysis and refinement of methods. With
the building parts, we have no information loss and all area and
land use information is in the context of the building outline
polygons. This allows us to calculate overlap in terms of area
of the building parts at various scales rapidly. As specified in

Figure 6. Most counties have ratios between 1 and 2, though
some have much higher ratios.

Figure 7. Tract 36047043500 has 38 buildings

Figure 8. Tract 36047043500 has 492 building/parcel records.

the 2.2, when multiple values occur in the parameter polygons,
arrays are used to capture the distinct values present. We can
use this in the sql logic to find the building area with multiple
parcels by any level of census geography.

SELECT sum(area_m2),

substring(censusblock, 1, 5) as county

FROM table

WHERE array_length(a.parcelids, 1) > 1

GROUP BY county

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVI-4/W2-2021 
FOSS4G 2021 – Academic Track, 27 September–2 October 2021, Buenos Aires, Argentina

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVI-4-W2-2021-103-2021 | © Author(s) 2021. CC BY 4.0 License.

 
106



It takes about a minute to process the 270 million building parts
and find that the building area overlap across the states ranges
from 0.75% in Indiana to 16.15% in Washington, D.C. as shown
in Figure 9. It takes another minute each to process the 70,000
tracts and 3,000 counties in Figures 10 and 11, respectively.
These calculations show that the chosen method(s) for over-
lap handling, such as ’prefer residential’ or ’take the smallest
parcel’ can greatly impact population models at finer scales as
there are some geographies with large amounts of overlapping
information. These calculations can also aid in identification of
any systematic issues that might be present in the input datasets.

Figure 9. The building area overlap across the States ranges
from 0.75% in Indiana to 16.15% in Washington, D.C.

Figure 10. Count of tracts by percentage of building area with
overlapping parcels

Figure 11. Count of counties by percentage of building area
with overlapping parcels

2.5.2 Subpopulation Modeling For this demonstration,
let’s assume we have a polygon layer representing the extents of
the grounds of colleges in the contiguous US. This source zone

layer has a unique identifier for each campus and a population
to be distributed within the zone. To distribute the population
with the zone, we first select the building parts that intersect
each zone, along with zone id and population so that the result-
ant weights table has a row with the uid, area m2, and land use
attributes from the building parts and the zone id and population
from the zone layer. After selection, population is distributed to
each of the building parts in the weights table. Any building
parts that intersect multiple source zones receive reduced por-
tions of the contributing source zones’ populations so that they
don’t receive extra population. This is calculated by counting
the occurrences of each building part, with one occurrence in-
dicating that building part is within one college zone, and then
dividing that building part’s area by the occurrences count. The
area per school is calculated and each building part is given it’s
portion of the college population according to its portion of of
the total school area. The building parts with nonresidential
land uses have their areas set to a tiny value (0.0000001), so
that a building part with a nonresidential land use receives no
population unless all the building parts for that zone have non-
residential land uses. Figure 12 shows the building parts within
two campus zone polygons (blue). The darker green building
parts within the smaller college zone denotes the presence of
two building parts polygons, one for each college. That building
would receive all of small source zone population and a fraction
of the population from the larger college at half the density of
the buildings which only intersect the larger source zone.

Figure 12. Two college zones (blue outline) share building parts.

3. CONCLUSIONS

We believe this framework, developed in the context of pop-
ulation modeling, is extensible to many other spatial analysis
problems. Also, it is an excellent example use of Postgres/Post-
GIS beyond storing and serving data and is thus of interest and
relevance to the FOSS4G community. To GIS practitioners ac-
customed to a geoprocessing workflow in desktop GIS software
(input layers process output layer), our data flow diagrams are
familiar, but the scale and performance achieved is not. Many
practitioners of traditional GIS spatial analysis can benefit from
making their data more analytically accessible to a wider array
of emerging data science techniques.
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