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ABSTRACT:

Synthetic Aperture Radar (SAR) images are a valuable tool for wetlands monitoring since they are able to detect water below the
vegetation. Furthermore, SAR images can be acquired regardless of the weather conditions. The monitoring and study of wetlands
have become increasingly important due to the social and ecological benefits they provide and the constant pressures they are subject
to. The Sentinel-1 mission from the European Space Agency enables the possibility of having free access to multitemporal SAR
data. This study aims to investigate the use of multitemporal Sentinel-1 data for wetlands land-cover classification. To perform
this assessment, we acquired 76 Sentinel-1 images from a portion of the Lower Delta of the Parana River, and considering different
seasons, texture measurements, and polarization, 30 datasets were created. For each dataset, a Random Forest classifier was trained.
Our experiments show that datasets that included the winter dates achieved kappa index values (x) higher than 0.8. Including
textures measurements showed improvements in the classifications: for the summer datasets, the x increased more than 14%,
whereas, for Winter datasets in the VH and Dual polarization, the improvements were lower than 4%. Our results suggest that for
the analyzed land-cover classes, winter is the most informative season. Moreover, for Summer datasets, the textures measurements

provide complementary information.

1. INTRODUCTION

Earth satellite images can provide information about great ex-
tension and difficult access natural areas. So, they are an essen-
tial tool for mapping wetlands. Furthermore, using satellite im-
ages is less expensive than fieldwork-based mapping, and they
can provide information in different temporal and spatial scales
(Brisco et al., 2011).

The Synthetic Aperture Radars (SAR) signal can penetrate
through the vegetation and provide information about flood
conditions, underneath vegetation biomass, and soil character-
istics (White et al., 2015), depending on the sensor and target
characteristics. Thus, SAR satellite images are used for map-
ping and monitoring wetlands (Hess et al., 2003, Arnesen et
al., 2013, LaRocque et al., 2020). Other remarkable points of
SAR images are that they provide information about the geo-
metric and dielectric characteristics of the observed target and
that they can be acquired regardless of the presence of clouds
or lighting conditions.

The Sentinel-1 mission initiated a new age in SAR systems for
earth observation. For the first time, multitemporal SAR im-
agery from all over the world is freely available. Multitem-
poral SAR data may provide information about the variation of
phenological vegetation states and flooding levels in the stud-
ied scene. Ozesmi and Bauer (2002) remark the importance of
including multitemporal SAR data in wetlands identification.

Although the multitemporal SAR data can provide information
about land-covers seasonal characteristics, it does not capture
the spatial variation of a pixel’s brightness in an image. Land-
cover classes may show similar backscatter values statistics;
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however, they may have different spectral within-class spec-
tral variability (Oliver and Quegan, 2004). Previous studies
(Numbisi et al., 2019, Caballero et al., 2020) show that tex-
ture measurements based on the grey level co-occurrence mat-
rix (GLCM) show potential for land-cover classification. These
textures describe the spatial relationship of the image pixel val-
ues with their spatial distribution in the landscape (Haralick et
al., 1973, Hall-Beyer, 2017b).

Remote sensing image classification performance depends on
the remote sensing data (selection and manipulation) and also
on the classification algorithm (Lu and Weng, 2007). A large
variety of classifiers have been explored for land-cover clas-
sification using remote sensing data such as Support Vector
Machine, Maximum Likelihood, Decision Tree (Otukei and
Blaschke, 2010), among others. In the lasts years, Ran-
dom Forest (RF) became one of the most used supervised
algorithms for wetlands mapping (Mohammadimanesh et al.,
2018, LaRocque et al., 2020, Mahdianpari et al., 2020) due to
the high accuracy of its classifications results, it can handle high
data dimensionality and multicollinearity, is fast and insensitive
to overfitting (Belgiu and Dragu, 2016).

In this work, we consider a portion of the Lower Delta of
the Parand River, a wide coastal freshwater wetland located in
Buenos Aires, Argentina. Due to the high amount of biomass in
all its extent, mapping and monitoring this area is particularly
challenging. The main objectives of this work are:

1. to study the potential of multitemporal Sentinel-1 datasets
for land-cover maps in densely vegetated areas,

2. to classity the study area and compare the performance of
the different multitemporal Sentinel-1 datasets.
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The Sentinel-1 images were processed using the Sentinel’s Ap-
plication Platform (SNAP) (ESA Sentinel Application Plat-
form, 2019). SNAP is an open-source common architecture
software for earth observation data manipulation. The Sentinel-
1 Toolbox (S1TBX) (included in SNAP) consists of a collection
of processing tools to pre-process and analyze data from SAR
missions such as Sentinel-1, ERS-1 & 2, ENVISAT, ALOS-
PALSAR, TerraSAR-X, COSMO-SkyMed, and RADARSAT-
2.

The classifications were done using Python 3.6 (libraries: sk-
learn, pandas, numpy, and gdal).
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Figure 1. Location of the study area and the reference data for
each land-cover class. The background image shows VH band
from a Sentinel-1 scene of 1 September 2018.

2. MATERIALS

The present work analysis the capability of different datasets to
identify the dominant land-cover classes from the Lower Delta
of the Parana River wetland (Argentina) using Sentinel-1 data.

2.1 Study area

The study area is located in the Lower Delta of the Parana River
in Buenos Aires, Argentina (Figure 1), encompassing approx-
imately 117 km? (central coordinates: 34.35°S 58.55°W). Here
the climate is humid and temperate, and the annual mean pre-
cipitation is approximately 1000 mm.

The studied area is formed by islands. Here, the accumulation
of sediments produced by the Parand distributary rivers forms

levees in their borders. Over these natural levees, Willow (Salix
spp.) and Poplar (Populus spp.) forest plantation, fruit orch-
ards, and secondary forests are established. Isolated Ceibos
with Cortadera marshes (Scirpus giganteus) in the understory
or Ceibo forest (Erythrina crista-galli), can be found toward
the interior of the islands. In the island’s center, where the soil
is permanently saturated, Cortadera (S.giganteus) is the domin-
ant species. Junco (Schoenoplectus californicus) beds produce
narrow strip marshes at the edge of watercourses (Kandus et al.,
2006).

2.2 Data

2.2.1 Remote Sensing data Seventy-six Sentinel-1 images
from the period October 2016— April 2019 were used in this
study. These images were freely downloaded from the Coper-
nicus website (https://scihub.copernicus.eu/dhus/#/home). The
scene product type was Level-1 High-Resolution Ground Rage
Detection (GRD) in Interferometric Wide Swath mode; this
mode provides VH and VV polarization imagery. All the im-
ages were obtained in the descending acquisitions direction
with near incidence angles of 29.5° and far incidence angles
of 45.3°.

2.2.2 Reference data For this study, we considered a total
of five information classes: one corresponding to the water
class and four corresponding to the dominant vegetation classes
in the area (Ceibo forest, Willow plantation, Cortadera marsh,
Junco marsh).

Experts in local vegetation, using two high-resolution images
(Planet Team, 2017) and previous studies in the area (Kandus
et al., 2003, Kandus and Malvarez, 2004, Kandus et al., 2006),
labeled a total of 496 Regions of Interest (ROIs) (Figure 1). For
Water, Ceibo Forest, and Junco Marsh classes sixty ROIs were
labeled per class. Fifty-eight ROIS were labeled as Cortadera
Marsh and Willow Plantation. With each ROI, a unique pixel
was labeled in the Sentinel-1 stacks. This analysis was done
using QGIS software (QGIS Development Team, 2016).

3. METHODS

In this section, we describe the Sentinel-1 images pre-
processing. We explain how we calculated the GLCM-textures
for each image and how we created the different datasets. Then,
we describe the Random Forest classifier and the accuracy
measurements considered in this work.

3.1 Data pre-processing

The imagery pre-processing was done using SNAP and Sen-
tinell Toolbox; the pre-processing steps included: thermal
noise removal, border noise removal, orbit file application, ra-
diometric calibration, speckle filtering (Refined Lee), terrain
flattening, and terrain correction, with the final production of
a geocoded SAR backscattering gammay coefficient image for
each scene (Filipponi, 2019). Then, we created two stacks, one
for each polarization.

3.2 Extraction of GLCM texture measurements

Additional features were computed from each gammay stack.
Image texture measurements provide information about the re-
lationship between the values of each pixel and its neighboring
pixels. The GLCM is one of the most used methods to cal-
culate satellite image texture measurements. The GLCM is a
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Figure 2. Multitemporal signature of Sentinel-1 gamma, values for the reference data vegetation classes of the Lower Delta of the
Parand River. The values are computed as averages of the reference data for each class, and the error bars represent the standard
variation of the backscatter value for each date.

tabulation of how often different combinations of pixel intens-
ity values (grey levels) occur in an image (Hall-Beyer, 2017b).
Several textures can be calculated based on the GLCM. Accord-
ing to Hall-Beyer (2017), the following texture measures were
selected for this study: GLCM-Contrast, GLCM-Correlation,
GLCM-Variance, and GLCM-Entropy.

For each processed image, the above-mentioned GLCM tex-
tures were calculated using SNAP. For each polarization, a stack
containing the four textures was created; the size of each stack
is 4x76.

3.3 Datasets

After preprocessing the 76 Sentinel-1 images, we developed
thirty multitemporal datasets. In the following, we will say
that a dataset is Complete if it is formed by the 76 dates. We
will refer as a Winter (Spring/ Summer/Autumn) dataset if it is
formed by selecting the winter (spring/summer/autumn) dates
from the 76 studied images. Table 1 shows the set of dates as-
sociated with each season. We will refer to a Dual dataset if it
is composed of the VH and the VV polarizations. Each data-
set was created selecting a subset of the 76 dates (Complete,
Winter, Spring, Summer, or Autumn), a polarization type (VV,
VH or DUAL), and using either the gamma, backscatter values
(Intensity) or using the combination of the gamma, with the
GLCM textures (Intensity+GLCM).

3.4 Algorithm and accuracy assessments

Random Forest (RF) classifier is a widely used algorithm in
remote sensing classification tasks (Belgiu and Drdgu, 2016,
Mahdianpari et al., 2017). The main objective of this algorithm
is to assign a label to a given input (Breiman, 2001). The RF
algorithm is formed by multiple decision trees. The user has to

select the number of trees to be used. Then, using the training
set (i.e., a labeled sampled set), each tree is constructed by se-
lecting a random subset of attributes and is trained using a ran-
dom subset of the training samples. The main benefit of these
random steps is that this way, the algorithm generates different
trees. Therefore, we obtain a decrease in the variance of the RF
estimator. Once all the trees are trained, the RF classifier can
be used to predict an input class. First, the algorithm predicts
the input class in each decision tree and then selects the most
repeated class as the RF classifier’s predicted class.

All datasets were classified using the RF classifier algorithm.
The 496 labeled pixels were randomly divided into two sets:
training and test sets. The training set is formed by 296 labeled
pixels, and the test set is formed by 200 labeled pixels (40 per
class).

Once the RF classifier was trained over the training set, the
performance was evaluated over the test set. Classification ac-
curacies were assessed using the Overall Accuracy (OA) and
Kappa Index Value () (Congalton and Green, 2005).

The RF classifier, OA, and x were computed using the imple-
mentation provided by the scikit-learn package (Pedregosa et
al., 2011) in Python 3.6.

4. RESULTS

This section presents the results obtained after applying the RF
classifier to each multitemporal dataset. Table 2 shows the
and OA obtained for each dataset.

4.1 Temporal analysis

Figure 2 shows the gammay mean values per date per class.
Although the mean values differ, the error bars overlap in all the
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Season Dates

Spring | 2016-10-05 2016-10-17 2016-10-29
2016-11-10 2016-11-22  2016-12-04
2016-12-16  2017-09-30 2017-10-12
2017-10-24  2017-11-05 2017-11-17
2017-11-29  2017-12-11  2018-09-25
2018-10-07 2018-10-19 2018-10-31
2018-11-12  2018-11-24  2018-12-06
2018-12-18

Summer | 2016-12-28 2017-01-09 2017-01-21
2017-02-02  2017-02-14 2017-02-26
2017-03-10  2017-12-23  2018-01-04
2018-01-16  2018-01-28  2018-02-09
2018-02-21 2018-03-05 2018-03-17
2018-12-30  2019-01-11  2019-01-23
2019-02-04  2019-02-16  2019-03-12

Autumn | 2017-04-03  2017-04-15 2017-04-27
2017-05-09  2017-05-21  2017-06-02
2017-06-14  2018-03-29  2018-04-10
2018-04-22  2018-05-04 2018-05-16
2018-05-28 2018-06-09 2018-06-21
2019-03-24  2019-04-05 2019-04-17
2019-04-29

Winter | 2017-06-26  2017-07-20 2017-08-01
2017-08-13  2017-08-25 2017-09-06
2017-09-18  2018-07-03  2018-07-15
2018-07-27 2018-08-08 2018-08-20
2018-09-01 2018-09-13

Table 1. Description of the images’ dates corresponding to each
season.

dates. These overlapping reflect the difficulties to identify the
vegetation in the Lower Delta of the Parand River with Sentinel-
1 data. During the winter, where the vegetation is in a leaf-off
state, the gammay mean values show a subtle difference. One
of the objectives of this study is to understand which Sentinel-
1 dataset leads to a better classification in densely vegetated
areas: is the dataset associated with a specific season, or is it
the Complete dataset?

For each polarization, the Summer dataset got the lowest per-
formance values, whereas the highest x were obtained using
the Winter and the Complete datasets (Table 2). In the case of
the Intensity+GLCM-Dual data, « values corresponding to the
Winter and Complete dataset differ in less than a 2%. Whereas,
in the case of the Intensity-Dual, the Winter and the Com-
plete datasets have the same « value (0.96). In the case of the
Intensity-VH and Intensity+GLCM-VH, the Winter and Com-
plete datasets differ in less than 4%.

4.2 Textural analysis

The Intensity+GLCM-VH data using the Complete set of dates
had the highest « (0.98) and OA (98%) (Figure 4c). In contrast,
the dataset formed by the Intensity data, in the VV polarization
and using the Summer dates, achieved the lowest s (0.69) and
OA (75%).

Incorporating GLCM textures to each Intensity dataset showed
an improvement in the « value in all the studied cases. For

WH
INTENSITY+GLCM TEXTURES
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Figure 3. Variable relative importance of Random Forest
classification for the dataset formed by the Complete
Intensity+GLCM values in the VH polarization. The dataset if
formed by 380 variables, the top 38 are presented in the figure.
Different variables are represented as follows: Intensity
elements (red), GLCM Contrast texture (green), and GLCM
Correlation texture (purple).

Intensity datasets with « values higher than 0.90, when we in-
corporated the GLCM textures, the improvement was less than
3.2%. However, for the Intensity datasets with x values lower
than 0.8, the improvement was higher than an 8.25%.

The x values from datasets corresponding to the Dual-
polarization and the Intensity data oscillate between 0.75 and
0.94. When we incorporate the texture data to these datasets,
i.e., the Intensity+GLCM datasets corresponding to the Dual
polarization, the performance values were between 0.89 and
0.96.

Figure 4 shows the classifications obtained using the Intens-
ity+GLCM datasets from the VH polarization data correspond-
ing to the Summer, Winter, and Complete dates, respectively.
Winter and Complete datasets classification show a similar spa-
tial pattern of the land-cover classes. Summer dataset classific-
ation shows a much noisier pattern.

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVI-4-W2-2021-133-2021 | © Author(s) 2021. CC BY 4.0 License. 136



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVI-4/W2-2021
FOSS4G 2021 — Academic Track, 27 September—2 October 2021, Buenos Aires, Argentina

4.3 Variable importance analysis

RF classifier enables to estimate the input datasets variable im-
portance, i.e., to score the dataset variables according to its use-
fulness in predicting the target classes (Breiman, 2001). The
classification with the highest x and OA results was the one ob-
tained using the Complete Intensity+GLCM values in the VH
polarization dataset. So, this dataset was selected for further
analysis. Figure 3 represents the variable importance of the
most significant result in this study. The dataset is formed by
380 variables, hence only the top 38 variables are presented in
the figure. The five most important variables of this dataset
correspond to Intensity VH winter dates. The most important
GLCM variable is the GLCM-Contrast texture corresponding
to 20 August 2018 and is in the nineteenth place. The sum of
all the variables importance is 0.038 for the GLCM-Entropy
textures, 0.10 for the GLCM-Variance textures, 0.13 for the
GLCM-Contrast textures, and 0.17 for GLCM-Correlation tex-
tures.

Intensity | Intensity+GLCM
Polarization Dates
K OA K OA
(%) (%)
Complete | 0.94 95 | 0.96 97
Autumn | 0.89 92 | 0.93 95
Dual Spring 0.81 85 | 0.93 95
Summer | 0.75 80 | 0.89 92
Winter 094 96 | 0.95 96
Complete | 0.95 96 | 0.98 98
Autumn 0.80 84 | 0.87 90
VH Spring 0.76 81 0.9 92
Summer | 0.70 76 | 0.84 87
Winter 093 95 | 0.94 95
Complete | 0.86 89 | 0.95 96
Autumn 0.76 81 0.88 91
\'AY% Spring 0.78 83 | 0.88 90
Summer | 0.69 75 | 0.79 84
Winter 0.80 84 | 0.89 91

Table 2. Kappa Index Values () and Overall Accuracy (OA)
obtained for Random Forest classifier in different scenarios.
Best result indicated in bold.

5. CONCLUSIONS

This research aimed to identify the potential of Sentinel-1 data
for creating a thematic land-cover map in the Lower Delta of
the Parand River. Based on the 76 dual polarized Sentinel-1 im-
ages, and considering different seasons, texture measurements,
and polarization, 30 datasets were created. Each dataset was
classified using the RF classifier. Then, the classification per-
formances obtained by the different datasets were compared.
The experiments indicate that including GLCM-texture meas-
urements and winter dates got higher x and OA performance
values.

Whereas this study illustrates the potential of including multi-
temporal GLCM textures in the datasets, it also raises a question
on the contribution of the GLCM-Entropy texture. To better
understand the implications of these preliminary results, future

studies could address studying the potential of each GLCM-
texture in the area and replicating the analysis in other study
areas.
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