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ABSTRACT:

Studying deforestation has been an important topic in forestry research. Especially, canopy classification using remotely sensed
data plays an essential role in monitoring tree canopy on a large scale. As remote sensing technologies advance, the quality and
resolution of satellite imagery have significantly improved. Oftentimes, leveraging high-resolution imagery such as the National
Agriculture Imagery Program (NAIP) imagery requires proprietary software. However, the lack of insight into the inner workings
of such software and the inability of modifying its code lead many researchers towards open-source solutions. In this research,
we introduce CanoClass, an open-source cross-platform canopy classification system written in Python. CanoClass utilizes the
Random Forest and Extra Trees algorithms provided by scikit-learn to classify canopy using remote sensing imagery. Based on our
benchmark tests, this new canopy classification system was 283 % to 464 % faster than commercial Feature Analyst, but it produced
comparable results with a similarity of 87.56 % to 87.62 %.

1. INTRODUCTION

Forested areas play an integral role in the maintenance of both
local and global environments. They are the bulk of Earth’s car-
bon sequestration for mitigating anthropogenic processes (Bala
et al., 2007; Platz, 2015; Reed and Kaye, 2020; Shen et al.,
2020), provide natural erosion and runoff control for flooding
events, which have been growing in frequency because of cli-
mate change (Benito et al., 2003; Sriwongsitanon and Taesom-
bat, 2011), and can offer respite for urban heat islands (Wong
and Yu, 2005; Rani et al., 2018; Bosch et al., 2020). The effec-
tive creation of canopy data is of utmost importance to analyze
the aforementioned processes in addition to forest patterns such
as disturbance, mortality, and the societal and economic effects
forests can provide (Senf et al., 2018; Senf and Seidl, 2020).
Deforestation monitoring is an essential part of maintaining any
environment as the loss of forested lands leads to increased car-
bon dioxide being placed into the atmosphere while simultane-
ously eliminating carbon storage (Bala et al., 2007). At smaller
scales, deforestation leads to increased runoff rates and subse-
quently increased erosion, especially in areas where no plant
reclamation is initiated (Benito et al., 2003). As improvements
are made in the fields of geospatial science and remote sensing,
an increasing emphasis is put on accurate forest canopy detec-
tion, among other ecological factors, for the purpose of mon-
itoring and predicting canopy change (Franklin, 2001). How-
ever, monitoring forest ecosystems accurately to mitigate these
effects on a large scale can be a time-consuming and difficult
process to complete (Basu et al., 2015) and there can be many
inhibiting factors such as access to high resolution imagery data
and access to software capable of processing the amount of data
required. Subsequently, with the increase of high spatial reso-
lution data available both publicly and commercially, a need
arises for implementations capable of reproducible and efficient
classification schemes designed specifically for tree canopy de-
tection.

In this research, we developed the CanoClass Python mod-
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ule for canopy classification built on top of scikit-learn (Pe-
dregosa et al., 2011) and the Geospatial Data Abstraction Li-
brary (GDAL) (GDAL/OGR Contributors, 2020). Dallaqua et
al. (2018) have used scikit-learn for deforestation monitoring in
which a committee system was developed. CanoClass is built
around the classification of the National Agricultural Imagery
Program (NAIP) imagery and is capable of classifying both 1-
m and the submeter resolution imagery made available in the
2019 iterations of the NAIP program leading to increased accu-
racies (USDA, 2020). Section 2 introduces our Python module
and elaborates on how it works. Sections 3 and 4, respectively,
present data and discuss results for a case study. Finally, we
conclude our research in Section 5.

2. METHODS

2.1 Challenges in Canopy Classification

In this study, we used remote sensing data to classify canopy.
However, as the resolution of remote sensing data increases and
the extent of the study area grows, classifying geospatial data as
canopy versus non-canopy becomes computationally challeng-
ing. Challenges faced in classifying canopy include the mis-
classification of water as canopy, noisy or cluttered outputs in
higher resolution data sets, and linear artifact creation along
data set edges. Furthermore, as data sets grow, so does the
computational time required to process them. For example, as
we will discuss later, we used 1-m NAIP imagery for our case
study. However, since a single 1-m NAIP raster tile contains
approximately 50 million individual cells, processing multiple
NAIP tiles for a large study area can lead to considerable com-
putational times if the workflow is not optimized. To address
these issues, we employed machine-learning techniques where
we first compute vegetation indices using multi-band remote
sensing data, and apply classification and post-processing algo-
rithms designed specifically for canopy classification problems.
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2.2 Vegetation Indices

Vegetation indices are extensively used when one attempts to
separate vegetation from other types of land cover. These in-
dices typically use the near-infrared (NIR) band in their equa-
tions as the wavelength of 0.75 µm to 0.8 µm in this band is
absorbed by photo-synthetically active vegetation and reflected
by bodies of water and impervious surfaces (Tucker, 1979). To
account for atmospheric effects, we used the Atmospherically
Resistant Vegetation Index (ARVI) (Kaufman and Tanre, 1992).
The ARVI is written as

ARVI =
NIR− 2× Red + Blue
NIR + 2× Red + Blue

(1)

where it uses the blue band in conjunction with the red and NIR
bands to provide correction for atmospheric effects. The ARVI
is four times less sensitive on average to atmospheric effects
than the NDVI, the most widely used vegetation index (Kauf-
man and Tanre, 1992).

2.3 Remote Sensing Data

We used four-band (red, green, blue, and NIR) NAIP imagery
for developing and testing our canopy classification framework.
Previous studies that utilized open-source classification systems
have not been able to achieve accuracy at a level that NAIP
imagery can provide, having been limited to using only pub-
lic access imagery such as Landsat 8 (Roy et al., 2014) (30-m
resolution) or Moderate Resolution Imaging Spectroradiome-
ter (MODIS) (NASA, 2020) (250-m to 1000-m resolution)
(Šimić de Torres, 2016; Dallaqua et al., 2018). While NAIP
imagery is on a 3-year cycle and cannot match the temporal
frequency in which satellite imagery is taken, it is taken during
seasons in which agriculture is growing in the United States en-
suring similar characteristics between data sets (USDA, 2020).
Furthermore, cloud masking will not be needed for processing
as NAIP imagery’s quality control removes any image that has
more than 10 % cloud cover per quarter quad (QQ), rendering
the need for a cloud mask negligible (USDA, 2020). The lack of
cloud cover in NAIP imagery will remove issues that previous
studies had with utilizing vegetation indices because the pres-
ence of clouds would render the index increasingly unreliable
the more cloud cover the scene contained. It is important to note
that, while NAIP was used to develop and test the canopy clas-
sification framework and most batch processing functions are
developed to use NAIP imagery, the individual classification
and training modules are capable of working with any remotely
sensed vegetation indices developed from other satellites such
as Landsat 8 and Sentinel-2 (Drusch et al., 2012).

2.4 Classification Algorithms

We considered two classification methods including the Ran-
dom Forest and Extra Trees classifiers. Both are capable of uti-
lizing multi-core processing for increased computational speed,
putting them at an advantage over other algorithms.

2.4.1 Random Forest Algorithm The Random Forest (RF)
algorithm is a combined multi-tree predictor built upon boot-
strap aggregating where each decision node is split using a ran-
dom selection of features and the most popular class is subse-
quently chosen based on a vote after the specified number of
trees are generated (Breiman, 2001). In cases of land-cover
classification, the RF algorithm is found to be as effective, if

not more effective, as other popular similar ensemble algo-
rithms such as boosting and bagging (Breiman, 2001; Gisla-
son et al., 2006). In addition, the RF algorithm has been found
to have lighter computational load than the popular AdaBoost
algorithm (Freund and Schapire, 1996). The lighter computa-
tional load of the RF classifier is thanks to the random selection
of variables to split decision trees. It minimizes the correlation
between trees and utilizes bootstrapping, which means that a
portion as opposed to the entire data set is used for each tree.
However, the RF algorithm can use a considerable amount of
memory because a matrix of the number of samples by the num-
ber of trees is stored in memory (Gislason et al., 2006). With
memory usage in mind, the RF classifier is still an ideal algo-
rithm for use with large data sets since it does not overfit as
the algorithm follows the law of large numbers (Etemadi, 1981)
and is considerably less sensitive to noise than other boosting
or bagging algorithms (Breiman, 2001). RF algorithms have
been used with success when classifying vegetation and land
cover, and, in the case of canopy classification, are often found
to outperform other algorithms (Coulston et al., 2012).

2.4.2 Extra Trees Algorithm The Extra Trees (ET) algo-
rithm is similar to the RF algorithm in that it is a multi-tree
predictor built using an ensemble of decision trees and the most
popular class is chosen based on an aggregation of trees. How-
ever, in contrast to RF, the ET algorithm splits the nodes of the
tree completely at random whereas the RF algorithm cuts the
node at the locally optimal combination of features and split
(Breiman, 2001; Geurts et al., 2006). Additionally, the ET clas-
sifier uses the entirety of the sample and not just the bootstrap
to grow trees, which means that each tree is independent or un-
correlated to the last (Geurts et al., 2006). The ET algorithm
has higher bias and lower variance than the standard RF algo-
rithm because of the increased randomness of the split nodes
(Geurts et al., 2006). These differences lead to the ET algo-
rithm’s biggest strength, which is its computational efficiency
that can be attributed to its increased randomness and simplistic
approach to node splitting when compared to the RF algorithm.
On average when empirically compared to the RF algorithm,
the ET algorithm is computationally about three times faster
than an RF algorithm applied to the same data set (Geurts et
al., 2006). The computational efficiency in addition to its use-
fulness when classifying high-dimensional objects such as im-
agery makes the ET algorithm an ideal algorithm for an efficient
classification system (Xu et al., 2010; Lawson et al., 2017).

2.5 CanoClass Python Module

CanoClass was developed to bridge the gaps between remotely
sensed imagery, classification, and post-processing required for
large data sets through the development of multi-phase process-
ing modules. As a Python module, CanoClass is separated into
two sections being NAIP classification and the classification of
all other remote sensing products that offer 4-band imagery.
The separation of NAIP from other remote sensing imagery is
due to the differences in processing created for NAIP imagery,
in particular the batch processing created for NAIP imagery to
allow for its scalable application. Batch processes for imagery
such as Landsat 8 and MODIS are not created chiefly because
of the difference in scale between NAIP and other imagery. The
extent of a single Landsat 8 image is 185 km by 180 km while
that of a single NAIP image is approximately 7 km by 7 km,
making the scalability of Landsat 8 less important than other
remote imagery as it already encompasses such a large area in
comparison. The processing of both NAIP and other imagery is
shown in Figure 1 and described in detail below.
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Figure 1. Workflow of CanoClass.

2.5.1 Pre-processing As the classification algorithms are to
be utilized with vegetation indices, GDAL and NumPy (van der
Walt et al., 2011) are used. For training data, CanoClass can
convert vector training data into a raster format matching the
grid and extent of the imagery that the training data is applied
to. Matching extents are integral to the classification process
as both the training data set and its corresponding data will be
converted into matching one-dimensional arrays where training
data exists. An additional region of interest (ROI) can be cre-
ated to clip the imagery to a custom extent. The ROI will allow
for focused analysis and additionally cut the computational pro-
cessing time for larger image data sets.

CanoClass also provides parameter optimization and cross-
validation before undergoing classification. Each uses a one-
third data split that separates a third of the data to be used as
testing data. Cross-validation allows the end user to receive the
estimator performance and accuracy of their training data set
while parameter optimization utilizes a generated random pa-
rameter matrix to compute aggregated cross-validation scores
with computational time to return the optimal parameters to use
without large sacrifices to other aspects of classification. Both
features allow for optimization of accuracy and computational
time, which becomes increasingly important as data sets grow.

2.5.2 Classification The classification algorithms are im-
plemented using scikit-learn and, to keep spatial information
intact when undergoing classification, all data is read through
GDAL before being converted to arrays. In an effort to reduce
the size of the output classified raster, each cell in the raster is
allotted 2 bits (values 0 to 3) for representing non-canopy (1),
canopy (2), and no data (3). However, because of limitations in
both NumPy and GDAL, it is not a true 2-bit raster file as the
smallest file size that both modules can save and read a raster
as is 8 bits or 1 byte. For this reason, while CanoClass results
in a smaller file size than an 8-bit image, the 2-bit output raster
is still read as an 8-bit image by the file system, resulting in
the need for cell allotment to be enforced throughout further
processing.

In addition to measures taken to preserve spatial information
and reduce the file size, an optional median filter for the out-
put data is integrated in an attempt to develop a noise-reduction
system such as those available in proprietary software such as
Feature Analyst (Textron Systems, 2020). The median filter
was created to reduce noise in imagery and has been shown to
be effective while maintaining computational efficiency (Huang
et al., 1979). The median filter runs a 3-by-3 cell window over
each cell in the data set and can mimic a smoothing effect on the
data and reduce noise that may be prevalent in high resolution
rasters such as NAIP imagery.

2.5.3 Post-processing Several post-processing functions
are offered with the goal to allow classified canopy imagery to
have a linear workflow available from the beginning to the end
of canopy classification. All post-processing functions enforce
2-bit allotment in order to maintain small file sizes after clas-
sification. Classified imagery can be converted to user-defined
projections to fit different needs and additionally allow all clas-
sified outputs to be reprojected into the same spatial reference.
This process is important when multiple output tiles need to be
mosaicked. Clipping is provided to allow the further division
of an ROI or to remove excess boundaries in the case of linear
artifacts or overlapping with other imagery. Clipping becomes
integral to processing of NAIP imagery in particular as the QQ
seamline file that USDA provides can be used to remove the ap-
proximately 300-m overlap on each side of a NAIP raster. Mo-
saicking is integrated by calling GDAL through the system to
allow for the synthesis of multiple classified canopy images into
one continuous raster. The single mosaicked raster can enable
more complete usage of the data for cell statistics and mapping
purposes.

2.5.4 Batch Processing All three sections of CanoClass are
utilized in the creation of batch processing functions to enable
the scalable classification of NAIP imagery. A configuration file
is provided to determine input and output file paths and allow
the creation of a clean folder structure for every process output.
Using the methods described for pre-processing, training data
can be properly converted to a raster format and subsequently
tested and validated. The additional ability to optimize parame-
ters is increasingly important for batch processing as an optimal
time-accuracy split can both improve accuracy and reduce com-
putational time across a large data set.

Using the specified ROI and NAIP QQ seamline file, the file
paths of all NAIP imagery within the ROI are iterated over and
the specified vegetation index can be computed. The use of the
NAIP QQ seamline file in conjunction with the ROI effectively
allows for only those files within the ROI’s spatial extent to be
processed thus saving computational time. The same iterative
method is used throughout the batch process to read and write
files that only fall within the ROI spatial extent.

Using the trained raster to create a predictive data set, all other
rasters can be classified in the ROI. The process to do so is the
same as described for classification, but it includes an extra step
to integrate over the required files. The spatial reference of the
raster being classified is gathered in each iteration, ensuring the
classified output is saved with the appropriate spatial output and
not that of either the training data or another raster.

Clipping, mosaicking, and reprojection are enacted after clas-
sification. Clipping, as previously mentioned, is important be-
cause of the overlap between NAIP tiles. Without the removal
of overlapping areas, errors appear in the subsequent ROI mo-
saicking. Each tile is clipped to its corresponding QQ polygon
and is saved in a user-defined projection. As NAIP imagery is
provided in a Universal Transverse Mercator (UTM) zone pro-
jection and a NAIP data set can consist of more than one UTM
zone, the user-defined projection is integral to ensure that all
classified canopy outputs are within the same spatial reference.
Mosaicking and clipping to the ROI boundary is enacted after
all rasters are clipped and reprojected, and the final 2-bit raster
is saved. Thanks to the removal of overlapping areas, a mo-
saicking order does not need to be established.
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3. CASE STUDY

3.1 Study Area

The area of study is the state of Georgia in the United States.
Georgia has an area of approximately 153,910 km2 and has a
rapidly increasing population leading to large potential changes
in land features (Lo and Yang, 2002). This state contains a large
variety of different land-use and land-cover types with the Ap-
palachian mountain belt starting in northeast Georgia, increas-
ing urban sprawl of Atlanta, farming in central and south Geor-
gia, and the wetlands that make up the coastal areas. For our
case study, we chose six physiographic districts (McCaysville
Basin, Lookout Mountain, Dougherty Plain, Winder Slope,
Barrier Island Sequence, and Vidalia Uplands) to measure com-
putational times and one physiographic district (Blue Ridge
Mountains) to compare classification quality with Feature Ana-
lyst. Figure 2 shows all these seven physiographic districts.

	ID	:	Physiographic	District	Name
		2	:	Lookout	Mountain
		3	:	Blue	Ridge	Mountains
		8	:	McCaysville	Basin
15	:	Winder	Slope
19	:	Vidalia	Uplands
21	:	Barrier	Island	Sequence
24	:	Dougherty	Plain

Figure 2. All physiographic districts used for the case study. For
computational time comparisons, McCaysville Basin, Lookout

Mountain, Dougherty Plain, Winder Slope, Barrier Island
Sequence, and Vidalia Uplands districts were used. For

classification quality comparisons, the Blue Ridge Mountains
district was used.

3.2 Data and Training

We used 2015 NAIP imagery data for our case study. The NAIP
data set used has 3913 QQ tiles each of which is 3.75° by 3.75°
in size. Each tile is at a resolution of 1 m and holds all four
bands offered by the USDA. The entire data set is 731 GB in
size. The USDA additionally offers the accompanying seam-
line QQ polygon shapefile for each state containing spatial and
descriptive identifying information for each QQ.

Training data was drawn using QGIS 3.10 (QGIS Develop-
ment Team, 2019), a freely available open-source Geographic
Information System (GIS) software. The data was drawn as
a vector shapefile with the values of 1 for non-canopy and
2 for canopy. The data set created was drawn over NAIP
tile m 3408326 ne 17 1 20150915 and rasterized within Can-
oClass before being applied to all mentioned districts to mea-
sure computational time. It has a blend of built up, barren,

pasture, and water for non-canopy labels in addition to sig-
nificant amount of canopy. The training data set yielded an
average cross-validation score from a 5 fold cross-validation
of 0.948 indicating that the data used for training classifica-
tion algorithms is accurate. The cross-validation scores were
computed with functionality incorporated within the CanoClass
framework.

All training and validation were done within CanoClass, and
further classification and post-processing were also performed
within the CanoClass batch processing environment. Table ??
shows the system specifications that we used for CanoClass
processing and Cho et al. (2020) used for their Feature Analyst
processing. Note that we used a Linux system while Cho et al.
(2020) used two different Windows systems, which we will re-
ferred to as the Windows 1 and 2 systems below. According to a
CPU benchmarking website (UserBenchmark, 2020), in terms
of effective speed, the Windows system 1 is 9 % faster than the
Linux system which is in turn 3 % faster than the Windows sys-
tem 2. Overall, the three systems are within 12 % difference in
effective speed. However, the Linux system is equipped with a
hard disk drive (HDD) with 5400 rev/min, which is slower than
the solid-state drives (SSDs) that the other Windows systems
have.

OS CPU Disk Type RAM Swap Software
Linux 5.4.0-40 AMD Ryzen 7 2700X @ 3.7 GHz HDD∗ 32 GB 18.5 GB CanoClass

QGIS 3.10.7
Windows 101 Intel Core i7-8700 @ 3.2 GHz SSD† 32 GB 4.75 GB Feature Analyst 5.2.0.7

ArcGIS Desktop 10.5.1
Windows 102 Intel Core i7-7700 @ 3.6 GHz SSD‡ 8 GB 1.25 GB same as above

Table 1. System specifications for our case study with
CanoClass (Linux) and Feature Analyst by Cho et al. (2020)

(two Windows 10s). All systems are 64 bits. 1: Windows system
1. 2: Windows system 2. *: 5400 rev/min. †: 3200 MB/s
sequential read, 2400 MB/s sequential write. ‡: 550 MB/s

sequential read, 535 MB/s sequential write.

3.3 Comparisons with Other Canopy Data Sets

The most notable and recent canopy creation processes uti-
lizing Feature Analyst and NAIP imagery, and in particular
within Georgia, have been those commissioned by the Geor-
gia Forestry Commission (GFC) for the years 2015 (Bailey and
Bailey, 2019) and 2009 (Cho et al., 2020) improved upon the
2015 study. We conducted two different types of comparisons
between CanoClass and Feature Analyst including computa-
tional times and classification quality.

3.3.1 Computational Time Comparison For computa-
tional time comparison, it is important to accurately measure
run times. Unfortunately, since there was no way to reliably cal-
culate the computational time of creating the 2015 results that
Bailey and Bailey (2019) produced, we used the study of Cho
et al. (2020). Cho et al. (2020) ran each of the six districts in a
single session within Feature Analyst, so the timestamps of the
2009 study outputs are a good indicator of run times. Classifi-
cation times for Feature Analyst were gathered using the times-
tamps of the output raster files in the 2009 GFC study (Cho
et al., 2020). However, there were unexpected circumstances
when the Barrier Island Sequence and Vidalia Uplands districts
were being processed at the end of each Feature Analyst run,
and one tile and two tiles for the former and latter districts, re-
spectively, had to be processed in separate sessions of Feature
Analyst. For these three tiles in separate Feature Analyst ses-
sions, we used the mean tile processing time of each district
excluding these outliers. To be consistent, we used the same
timestamp method to measure the time for CanoClass. Because
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of limited computational resources and time, we only ran Can-
oClass for the year 2015, but not for 2009. Therefore, we com-
pared CanoClass runs for 2015 and Feature Analyst runs for
2009.

3.3.2 Classification Quality Comparison For classifica-
tion quality comparison, we used runs for the same year 2015
between CanoClass and Feature Analyst. The Blue Ridge
Mountains district was used to compare the spatial results of
CanoClass and Feature Analyst as training data from the 2015
iteration of the GFC study (Bailey and Bailey, 2019) in addi-
tion to the outputs were made available to us. The Blue Ridge
Mountains district was classified with CanoClass utilizing only
the training data created by Bailey and Bailey (2019) to ensure
both data sets were created from the same training data. The
2015 data set was created utilizing Feature Analyst and com-
pleted with an estimated accuracy of 91 % (Bailey and Bailey,
2019), making an ideal proprietary data set to compare our re-
sults with. Feature Analyst operates using an Automated Fea-
ture Extraction model which uses texture, ancillary, and spectral
data in conjunction with an ensemble classification method built
around artificial neural network, decision trees, Bayesian learn-
ing, and imagery segmentation (O’Brien, 2003; Filchev, 2010).
The difference in classification methods makes for a good com-
parison in classification systems between those utilized by Can-
oClass and those created from a proprietary setting.

For comparison, 20 QQs and their corresponding classified tiles
within the Blue Ridge Mountains district were randomly cho-
sen to eliminate bias. Quality comparison was enacted through
the implementation of a moving window algorithm for raster
comparisons (Costanza, 1989; Kuhnert et al., 2005; Kassaw-
mar et al., 2019) was explored. Compared to pixel-by-pixel-
based comparison methods, the moving window comparison
has the advantage of detecting spatial patterns within the data,
which is especially important when we compare two data sets
created with two different methods and in the same resolution
(Costanza, 1989; Kuhnert et al., 2005). The comparison index
Fw for the moving window with the window size w can be writ-
ten as

Fw =

∑tw
s=1

[
1−

∑p

i=1
|a1,i−a2,i|
2w2

]
s

tw
(2)

where s is the index for moving windows, tw is the number of
windows with the window size w, a1,i and a2,i represent the
numbers of cells with category i in rasters 1 and 2, respectively,
and p is the number of categories. The value of Fw ranges be-
tween 0 and 1 where 0 means no similarity while 1 means com-
pletely the same with the window size w. The algorithm was
implemented in Python and will be added to CanoClass after
more development is undertaken to increase the speed of the
algorithm.

For this case study, this implementation of Eq. (2) was used out-
side the CanoClass environment. The Fw value was calculated
for each tile with a window size of w = 3 to compare the simi-
larity of both the RF and ET classified outputs to those created
with Feature Analyst.

4. RESULTS AND DISCUSSION

4.1 Computational Times

Figure 3a shows elapsed times as each method processes mul-
tiple tiles for each physiographic district. Plots for Feature An-

alyst 1 and 2 indicate Feature Analyst runs on the Windows
systems 1 and 2, respectively, as shown in Table ?? (three plots
for each system). Overall, CanoClass with both ET and RF
classifiers outperformed Feature Analyst except for one case
where, for the Lookout Mountain district, Feature Analyst was
faster than CanoClass with the RF classifier by 0.04 min. The
means and standard deviations of the processing time per tile for
CanoClass ET, RF, Feature Analyst 1, and 2 were 44.3± 4.1 s,
44.5± 4.1 s, 164.0± 52.1 s, and 182.7± 17.6 s, respectively.
As can be seen in Figure 3b, CanoClass exhibited more con-
sistent and faster tile processing times compared to Feature An-
alyst except for this one exceptional case. Thanks to this con-
sistent performance of CanoClass, the 12 plots for CanoClass in
Figure 3a (six plots each for CanoClass ET and RF) are close to
each other while the six plots for Feature Analyst show varying
linear trends. The more consistent performance of CanoClass
indicates that this module is less sensitive to the size of the dis-
trict. In contrast, the slopes of the elapsed time of Feature Ana-
lyst are different depending upon the district size. Figure 4 also
shows these trends in the total computational time. CanoClass
ET and RF show a linear trend with a y-intercept of close to
0 while Feature Analyst 1 shows a steeper slope and Feature
Analyst 2 a linear trend with a significantly higher y-intercept
implying that this software on the Windows system 2 adds a
constant processing time regardless of the district size. The re-
liability and consistency of CanoClass’s computational times is
important as larger ROIs can be processed without fear of time
taken growing exponentially or unpredictably.
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(b) Box plots of processing times per
tile

Figure 3. (a) Elapsed time as the number of tiles processed
grows for each of the six districts for each method. Both

CanoClass ET and RF plot all the six districts in the same black
and green colors, respectively. Feature Analyst 1 plots the three

districts produced by the Windows system 1 in red while Feature
Analyst 2 plots the other three districts by the Windows system 2

in blue. The three blue outlier points indicate that additional
Feature Analyst sessions were needed to complete those districts

because of unexpected circumstances such as weekly
maintenance reboots. The 415th tile for the Barrier Island

Sequence district, and the 648th and 649th tiles for the Vidalia
Uplands district were run in separate Feature Analyst sessions.

(b) The three outliers were excluded from the box plot for
Feature Analyst 2.

Table ?? shows the total computational times of the three
methods. CanoClass with both ET and RF classifiers was
competitive with Feature Analyst. Overall, CanoClass was
about 283 % to 464 % faster than Feature Analyst. For the
largest physiographic district, Vidalia Uplands, classification
took 1792.10 min. Classification implemented with CanoClass
took 485.12 min utilizing the ET classifier and 490.01 min uti-
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Figure 4. Computational times versus district areas.

lizing the RF classifier. As shown in Figure 4 and Table ??,
computational times for individual districts were similar be-
tween the ET and RF algorithms with each algorithm being only
marginally faster than the other. While usual comparisons be-
tween the RF and ET classifiers find the ET algorithm to be
three times faster on average (Geurts et al., 2006), at scales so
large as in this case study, it ultimately made little difference in
computational time whichever algorithm was chosen. More im-
portantly, CanoClass with both algorithms outperformed Fea-
ture Analyst even when time is added for the creation of indices
with the exception of the Lookout Mountain district for which
Feature Analyst was marginally faster than the CanoClass RF
algorithm by 0.04 min.

Physiographic District Area (km2) Index Creation CanoClass ET CanoClass RF Feature Analyst
McCaysville Basin 386 1.11 15.15 15.03 42.471,∗

Lookout Mountain 866 3.72 27.67 27.85 27.811,∗

Dougherty Plain 6630 22.21 160.63 160.00 662.081,†,‡

Winder Slope 8780 28.27 200.97 199.63 906.512,†

Barrier Island Sequence 15563 40.68 290.85 293.04 1349.842,∗,§

Vidalia Uplands 23579 68.43 485.12 490.01 1792.102,†,§

Table 2. Computational times in minutes. Index creation times
are shown separately to give context to the additional times the
method used by CanoClass utilizes. CanoClass ET/RF times do
not include the time to create the indices and is only the time to

classify and save the raster. Feature Analyst times similarly
shows the amount of time to classify and save the output. 1:

Windows system 1. 2: Windows system 2. *: Shapefile outputs.
†: GeoTIFF outputs. ‡: Simultaneous runs with other two

districts that were not used in this study. §: The three outliers
from Figure 3a were replaced by the average tile processing

time.

Considering that the Linux system, where all CanoClass runs
were conducted, is equipped with the second best CPU but with
the slowest drive, the drive type did not act as a bottleneck. In
other words, SSDs in the Windows systems did not help. Also,
taking into account the three CPUs within 12 % difference in ef-
fective speed, the performance improvement of CanoClass be-
tween 283 % to 464 % can be considered exceptional assuming
that it has produced comparable classification quality to Feature
Analyst, which we will discuss in the next section.

4.2 Classification Quality

Table ?? shows the Fw values of the 20 QQs randomly cho-
sen within the Blue Ridge Mountains district. The mean Fw

values for the ET are RF algorithms when compared with Fea-
ture Analyst were 0.87617 and 0.87563, respectively. In other
words, CanoClass with the two different classifiers produced
results that are similar to the results of Feature Analyst within
87.56 % to 87.62 % similarity. The most notable differences
between the two data sets can be observed in areas with a high
amount of farm land. Feature Analyst was better at reliably
separating low growing crops with similar spectral signatures
from tree canopy partly because of Feature Analyst’s segmen-
tation abilities and combined ensemble classifiers. While Can-
oClass struggled with separating low growing green crops from
canopy, it performed better in areas of extremely dense forest as
can be seen in Figure 5. Notably in tile 2, while neither system
performed perfectly for the noisy NAIP tile, CanoClass was a
better predictor than Feature Analyst with the inaccuracy of the
latter constituting to a poor Fw of only 0.7327 when compared
to the ET classifier, and a lower Fw of 0.7307 when compared
to the RF classifier, which is not shown in Figure 5. Overall
however, the high similarity of 87.56 % to 87.62 % between the
two data sets indicates a high level of confidence in the capabil-
ities of CanoClass.

Tile 1 2 3 4 5 6 7 8 9 10
Fw ET 0.9225 0.7327 0.9409 0.8571 0.9328 0.8968 0.8474 0.9361 0.9167 0.9838
Fw RF 0.9221 0.7307 0.9409 0.8563 0.9325 0.8970 0.8470 0.9356 0.9165 0.9838
Tile 11 12 13 14 15 16 17 18 19 20
Fw ET 0.9414 0.9290 0.9302 0.8189 0.9079 0.7906 0.8172 0.8957 0.7337 0.7920
Fw RF 0.9413 0.9287 0.9302 0.8178 0.9080 0.7888 0.8163 0.8954 0.7325 0.7912

Table 3. Fw values of the 20 random QQs chosen within the
Blue Ridge Mountains district.

CanoClass	
Extra	Trees
Outputs

2015
NAIP

	
Non	Canopy
Canopy

Feature
Analyst
Outputs

Fw

	
Non	Canopy
Canopy

Fw
0	-	0.24
0.25	-	0.74
0.75	-	1

Figure 5. Tiles 1, 2, 10, 11, and 13 from Table ?? in that order
from left to right showing the 2015 NAIP tiles, the raster outputs
of the ET classification within CanoClass, Feature Analyst, and

the raster visualizing the Fw values of each cell showing the
differences between the classified outputs with a window of

w = 3.

5. CONCLUSIONS

We developed an open-source Python framework titled Can-
oClass for classifying canopy using remotely sensed imagery.
As an increasing amount of imagery becomes publicly avail-
able, so does the need to leverage the new data for studying
forestry. Canopy classification is becoming more integral to
create up-to-date data sets to influence policy, assist in research,
and enable efficient environmental monitoring. To tackle is-
sues presented in canopy classification, we developed Can-
oClass through the integration of GDAL and scikit-learn within
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a Python framework. CanoClass is an open-source system that
is both scalable and reproducible. This system provides train-
ing, classification, and post-processing utilities with the goal of
bridging gaps left by proprietary and open-source systems in
creating canopy data sets while addressing the issues inherent
in canopy classification problems. CanoClass can be applied
to any remotely sensed imagery while batch processing func-
tions are provided specifically for NAIP imagery. The resulting
process was found to be computationally 283 % to 464 % faster
than Textron Systems’ Feature Analyst, proprietary classifica-
tion software, while producing comparable results with a high
similarity of 87.56 % to 87.62 %. The system introduced in this
research looks to provide an open and accessible framework to
build canopy data for the future without the need to pay ex-
cessive cost for commercial proprietary software. Future work
includes reduction of data requirements such as eliminating the
need for the near-infrared band, which may not be readily and
freely available for most researchers and areas.

SOFTWARE AVAILABILITY

CanoClass:

• https://github.com/ocsmit/canoclass

• Free under the GNU GPL 3.0 license

System requirements:

• Operating systems: Microsoft Windows XP or newer, ma-
cOS 10.4.10 or newer, recent GNU/Linux or a UNIX vari-
ant.

• Tested on Microsoft Windows 10 and GNU/Linux 5.4.0-
40.

• Python 3.5 or newer

Required Python modules:

• Rindcalc: https://github.com/ocsmit/rindcalc

• Scikit-learn: https://scikit-learn.org

• SciPy: https://scipy.org

• NumPy: https://numpy.org

• GDAL: https://gdal.org
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