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ABSTRACT: 

 

Socio-economic and demographic data is often released at the level of census administrative units. However, there is often a need for 

data available at a higher spatial resolution. Dasymetric mapping is an approach that can be used to disaggregate such data into finer 

levels of detail. It relies on the assumption that proxies available at a higher spatial resolution, along with knowledge of an area, can 

be used to produce weights in order to spatially reallocate the data to a finer scale layer. The power and efficiency of machine 

learning (ML) approaches can be taken advantage of when producing weighted layers for dasymetric mapping. Less advanced users, 

however, may find these approaches too complex. To encourage a wider uptake of such approaches, easy-to-use tools are necessary. 

GRASS GIS is a free and open-source GIS software that contains many modules for processing geographic data. The existing 

GRASS GIS add-on “v.area.weigh” already makes the dasymetric mapping approach more accessible, however users must provide 

their own weighted layer. This paper presents the development of a GRASS GIS add-on, “r.area.createweight”, which provides a 

simple and convenient tool to facilitate the implementation of a ML-based approach to produce weighted layers for dasymetric 

mapping. The tool will be available on the official GRASS GIS add-on repository to encourage a more widespread uptake of these 

approaches. 

 

 

1. INTRODUCTION 

Socio-economic and demographic data is usually collected at 

the individual or household level, and numbers are then 

aggregated and released at the level of administrative units (Su 

et al., 2010). The spatial extent of many phenomena, however, 

do not correspond to any existing administrative limits, making 

them difficult to exploit. Additionally, geospatial information 

has started to be available at more and more detailed spatial 

resolutions, thanks to progress made using high-resolution earth 

observation (EO) data. Consequently, scientists often aim to 

perform spatial analyses at a fine resolution, but face issues 

related to the fact that the spatial resolution of administrative 

units, on which socio-economic and demographic data are 

aggregated, is too coarse and does not fit their needs and 

specifications.  

 

The spatial disaggregation of data from administrative units 

(i.e., from aggregated data), often assumes a uniform 

distribution, however this is unlikely to reflect real world 

patterns, as a large part of human activity is spatially 

heterogeneous. In recent decades, the dasymetric mapping 

approach (Wu et al., 2005; Langford, 2007) has increasingly 

received attention in order to exploit socio-economic and 

demographic data for spatially detailed analysis and/or to 

explore spatial phenomena that do not follow existing 

administrative units (the modifiable areal unit problem - 

MAUP). This modelling technique relies on the assumption that 

the knowledge of an area can be used to unequally spatially 

disaggregate (or redistribute) socio-economic data provided at 

the administrative level, to create a more realistic, finer scale, 

gridded layer of disaggregated socio-economic data (Su et al., 

2010). This is often done through the use of proxy indicators, in 

order to create the weights necessary for the distribution of the 

administrative data into finer levels of detail. Consequently, the 

major challenge in dasymetric mapping resides in determining 

the spatial distribution of the socio-economic or demographic 

variable within the administrative units, based on a set of 

ancillary geoinformation data.  

 

In the example of human population counts, these weighted 

layers are typically produced using surrogate information 

provided by land cover (LC) and land use (LU) maps derived 

from EO data. For a long time, these weights have been 

subjectively determined based on expert knowledge (Mennis, 

2003), where higher weights are attributed to urban areas, 

slightly lower weights to suburban or rural areas, and a weight 

of zero for forest areas or water bodies. Recent research, 

however, has shifted this paradigm by taking advantage of the 

power and the efficiency of machine learning (ML) algorithms 

to create weighting layers for dasymetric mapping without any a 

priori knowledge and in a data driven framework.  

 

The WorldPop project, for example, uses the random forest 

(RF) algorithm as a flexible means to predict the weights for 

reallocation of population into grid layers, improving upon 

“existing, freely available population mapping approaches” 

(Stevens et al., 2015). Grippa et al., (2019) published a similar, 

replicable approach also using the RF algorithm for the creation 

of a weighting layer. The related computer code (Grippa, 2019) 

allows replicating the method, but it is very specific to the 

experiments presented in the paper and may not fit the needs of 

other scientists. Moreover, since it is computer code, potential 

users not skilled enough in the programming languages used 

(Python and R) could be reluctant to use it. 

 

An important step of the approach has already been 

implemented in a GRASS GIS add-on, "r.zonal.classes" 

(Grippa, GRASS Development Team, 2019), which consists of 

the zonal extraction of class proportions from categorical raster 

data, that are the main proxies used in the ML approach. Further 

developments were still needed, however, to make the approach 

more accessible to a larger audience. While there are clear 

benefits to using improved disaggregation methods, the 
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development of simple and convenient methods or tools are 

necessary to encourage a more widespread uptake of these 

approaches by potential user communities, for example by 

remote sensing and GIS scientists.  

 

2. AIMS AND OBJECTIVES 

The dasymetric mapping approach has already been made more 

accessible with an existing GRASS GIS add-on “v.area.weigh”  

(Metz, GRASS Development Team, 2013), available on the 

official GRASS GIS add-on repository. It provides a tool for 

dasymetric mapping, however it requires that the user provide 

their own weighted layer. The aim of this work is to provide a 

ready-to-use tool, accessible to non-programmer users, to 

facilitate the implementation of a ML-based approach to 

produce weighting layers for dasymetric mapping of variables 

based on ancillary spatial layers. In the presented example, we 

make use of LC and LU maps to disaggregate population count 

data, as a proof of concept. 

 

The “r.area.createweight” add-on presented in this paper has 

been developed as a GRASS GIS add-on to achieve this aim. 

The proposed layout of the add-on in GRASS GIS is shown in 

Figure 1. Along with the existing “r.zonal.classes” add-on 

(Figure 2), it implements the approach of Grippa et al., (2019) 

in a more generic and user-friendly manner, that better fits the 

needs of different potential users. It allows users unfamiliar with 

coding or ML algorithms to use these advanced approaches and 

create a weighted layer which can then be used as in input to the 

existing “v.area.weigh” add-on for dasymetric mapping.  

 

 
Figure 1. Proposed layout of the “r.area.createweight” add-on 

in GRASS GIS 

 

 
Figure 2. Part of the processing step has already been 

implemented in a user friendly 

click-button tool called “r.zonal.classes” 

 

 

This tool will be available under a complete open-source license 

and will be accessible on the official GRASS GIS add-on 

repository. In this way, the tool will be able to reach a large and 

international audience in GIS and EO research. To our 

knowledge, there is no other existing open-source and ready-to-

use tool, with a Graphical User Interface (GUI) for creation of 

dasymetric mapping weighting layers, using a ML approach. 

 

3. THE GRASS GIS PROJECT 

GRASS GIS (GRASS Development Team, 2020) is a powerful 

free and open-source GIS software. It was developed in the 80’s 

and has since been maintained and regularly improved thanks to 

its active international developer team. It is characterized by its 

ability to efficiently process raster data, in addition to 

manipulating vector and 3D formats, simple to advanced spatial 

analysis and modelling, and connecting to spatial databases. 

 

GRASS GIS is built using a system of modules, and its’ 

standard distribution currently contains over core 500 modules 

which enable the processing of geographic data. As GRASS is a 

Free and Open-Source Software (FOSS), this enables the wider 

community to both benefit from, and also contribute to software 

development.  Indeed, the GRASS developer team encourage 

users to create their own tools, in addition to contributing to the 

improvement of existing tools. As such, there also exists over 

300 extensions, or addons, in the official GRASS addons 

Github repository (https://github.com/OSGeo/grass-addons), not 

to mention those that are currently under development.  

 

This “r.area.createweight” add-on contributes, therefore, to the 

development of the GRASS GIS software. The source code is 

consequently also free and open source. This is essential for 

allowing any user to refer to it for more details on the 

functioning of the code, or even to develop future 

improvements. It will be available and maintained through the 

official GRASS GIS add-ons repository. 

 

4. METHOD 

4.1 General workflow 

The major steps of the workflow are provided in Figure 3. The 

add-on first pre-processes the input data then statistics are then 

calculated at two levels, one at the level of spatial units in order 

to first calibrate and train a Random Forest (RF) regressor, then 

at the level of the output grid to create a weighted layer using 

the trained RF model. This weighting layer can then be used for 

redistribution of a response variable (e.g., population count) 

known at a spatial unit level (e.g., administrative units), into a 

raster grid with a finer spatial resolution (dasymetric mapping).  

 

4.2 Initial data preparation 

The add-on requires two types of datasets to be provided.  

Firstly, a vector of spatial units with attribute table containing, 

for each unit, the information to be disaggregated (the response 

variable e.g., population count), and secondly at least one 

categorical raster (a.k.a. basemap) that provides information 

(such as LC or LU) which is associated with the response 

variable and can be used to predict the spatial disaggregation of 

the response variable. The add-on allows the user to optionally 

include a second categorical raster, and/or a raster of continuous 

numerical values (e.g., distance to the nearest point of interest, 

temperatures, etc.).  
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Figure 3. General workflow  
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A template of the output grid is also created, using the user-

defined spatial resolution, or pixel size, and the spatial coverage 

of the spatial units provided. The pixel size should be coarser 

than that of the input raster layers to avoid spatial scale 

mismatches. Predicting a RF model using raster layers that have 

a coarser spatial resolution than the output predicted layer 

would reduce the predictive accuracy and reliability of the 

model. As such, the add-on will produce an error if the user-

defined pixel size is of a higher spatial resolution than the first 

categorical raster provided.   

 

The input spatial units are rasterised to the extent, cell size and 

alignment of the output weighted grid, and are then re-

vectorised (Figure 4). This results in spatial units whose 

boundaries will have a 'staircase' appearance, ensuring that each 

pixel of the output weighted grid will be contained in only one 

spatial unit. This can result in some polygons disappearing if the 

original vector contains small (or very narrow) polygons, and 

the desired tile-size is too large. In this case, the add-on will 

also produce an error to the user about the loss of observations.  

 

 
Figure 4. Spatial units a) input, b) raster grid overlaid with final 

gridded vector, c) final gridded vector (data adapted from 

GRASS GIS sample data North Carolina, USA). 

 

4.3 Dasymetric framework 

Statistics are calculated from all the input rasters. For each of 

the categorical rasters (a.k.a basemaps), the proportion of each 

of the classes present is calculated. For the continuous raster 

map, if included, the average values are calculated. These 

extracted covariates are then used to train the RF model. By 

default, all present classes will be taken into account, however, 

the user has the option to define a list of specific classes should 

they not wish to take all classes into account.  

 

These statistics are calculated at two levels: first at the level of 

the spatial units, and second for each pixel of the output grid 

layer. The model is first trained and fitted at the level of the 

spatial units. The model is then used to predict the response 

variable for each pixel of the output grid.  

 

Prior to fitting the RF model, the variable to be predicted (e.g., 

population count) is first transformed. The density per spatial 

unit is calculated (e.g., population density) and then the natural 

log is taken. Previous research has suggested that the quality of 

the prediction of weights is improved when log-transformation 

is applied to the response variable prior to RF model fitting 

(Stevens et al., 2015). The response variable of the RF model is 

therefore the log of the variable density.  

 

Once the RF model has been trained and fitted, it predicts the 

response variable (log of variable density) for each pixel of the 

output grid. The log is then back transformed, to retrieve the 

variable density (e.g., population density), producing the final 

weighted grid. For each cell of the output grid, a weighted 

prediction will only be made if statistics are available for that 

cell from each of the input raster layers. This means that any 

data gaps, or no-data cells in any one of the input raster layers 

will result in a no-data value for that cell in the output weighted 

layer. The weighting layer can then be used for standard 

dasymetric mapping with the “v.area.weigh” add-on.   

 

4.4 Random Forest model 

RF is a non-parametric supervised ML algorithm. It is an 

ensemble method that can be used both for regression (as in this 

add-on), or classification. The RF algorithm builds an ensemble 

of decision trees (CART). Each decision tree is trained using 

bootstrapped samples, i.e., random sampling with replacement 

of the training data. At each node of the tree, a random subset of 

features is analysed, and the node uses the feature that optimally 

splits the observations. Each tree in the forest provides a 

predicted value. In the case of regression, the average value of 

all the trees in the forest is calculated, to produce the final 

prediction. Individual decision trees are sensitive to the data 

they are trained on and are very prone to overfitting. The 

combined use of many trees, bootstrapped samples, and random 

selection of features, however, ensures that the RF model is 

relatively resistant to overfitting and able to ensure a strong 

degree of generalization.  

 

The RF model is also advantageous, as it only has a few 

(hyper)-parameters which can be optimised to tune the model 

and improve its’ performance. The most important parameters 

are the number of trees in the model, and the number of 

randomly selected features at each tree node.  

 

“r.area.createweight” makes use of the Python sci-kit learn 

(sklearn) ML library (Pedregosa et al., 2011) to train, fine-tune 

and use the RF model. A RF model is first trained using the 

default sklearn parameters, with 500 trees. The importance of 

features is estimated and the add-on, by default, removes the 

features with an importance of less than 0.5%. This allows the 

elimination of features that have little or no impact on the 

prediction. The user can, however, optionally choose to keep all 

features regardless of their importance.  

 

The RF model is then fine-tuned for its parameters. This is 

facilitated by using a grid-search algorithm where every 

combination of a range of given parameters is used to train 

different models. The performance of each model is assessed 

using a k-fold cross-validation. This splits the data into k-

sections (folds) and trains the model k-times, each time leaving 

out 1-fold of samples. The performance is assessed with the out-

of-bag (OOB) accuracy, a pseudo-independent validation 

measure that is known to be reliable to assess model 

performance. It uses the ‘left-out’ samples to test the accuracy 

of the model’s predictions and select the best performing model. 

In “r.area.createweight”, a pre-defined default range of 

parameters and a 5-fold cross validation are used. The add-on, 

however, allows more advanced users to optionally define a 

custom range of hyper-parameters, and/or a different number of 

folds for the cross validation. This allows a greater flexibility 

for users who are more familiar with RF.   

 

The resulting fine-tuned RF model is then used to predict the 

response variable for each pixel of the output weighted grid. 

Each tree in the RF model makes a prediction, and the average 

of these predictions is taken to provide the final response 

variable prediction. The add-on also provides the user with a log 

file containing details such as the selected features, the hyper-

parameters tested, the optimally selected parameter 

combination, and measures of exactitude (OOB score). A graph 

of the features used, and their importance, is also provided to 

the user. For more information about RF, please refer to the 

original publication (Breiman, 2001). 
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4.5 Methodological considerations 

The method used contains a number of assumptions and 

methodological elements to be taken into consideration. 

 

Regarding the input data, the spatial coverage of the spatial 

units by the ancillary data layers will affect the quality of the RF 

model. Best practice is for the spatial units to be completely 

covered by each of the ancillary data layers, which will result in 

a better RF model, and better predictions. In the case that the 

spatial units are not completely covered, the RF algorithm may 

be missing important data for training the model. In addition, 

predicting the response variable weights is only possible for 

pixels where there is coverage from all the ancillary data layers. 

Therefore, when spatially reallocating the value given in the 

initial spatial units, values will only be predicted for cells where 

a weight exists and it will be as if the non-covered area is 

weightless, resulting in overestimated values in the dasymetric 

process. There may be cases where some missing data is 

acceptable, as will be shown with the case study. The add-on 

leaves it up to the user to decide what levels of coverage are 

acceptable for their analysis, and to remove any spatial units 

with insufficient coverage, prior to analysis.  

 

A key assumption of the RF approach used here, is that there 

exists an association between the covariates (e.g., land cover) 

and the response variable (e.g., population). The RF model is 

strongly dependent on the quality of the input data, as such its’ 

predictive accuracy will only be as good as the data it is given. 

In addition, as the RF model is trained and predicted at different 

spatial scales, there is also the assumption that the relationship 

between the covariates and the response variable stays constant 

at both the spatial unit level, and the level of the output grid 

cells. In reality, this is unlikely to quite be true, and depends 

strongly on the afore mentioned MAUP, i.e. the information at a 

specific spatial scale depends on the shape, but also the scale at 

which data is aggregated. Indeed, Grippa et al., (2019) found 

that the best covariates for predicting distribution vary from one 

spatial scale to another.  

 

Also as a result of training at one spatial scale, but prediction at 

another, is the need to be cautious when using the OOB-score to 

measure the performance of the model for reallocation. When 

training the RF model with k-fold cross validation, the RF 

internal validation computes the OOB score, or error. This 

accuracy assessment metric measures the ability of the model to 

predict the response variable on data left out of the training 

dataset but does so for a specific spatial level (the level of the 

aggregated spatial units). The model predicts, however at 

another spatial scale. (Grippa et al., 2019) found that as a result, 

the OOB score may not be very effective for measuring the 

performance of the model in reallocation.  

 

We must also mention the constraints linked to the use of the 

natural log. While using the natural log increases the accuracy 

of the prediction, this requires all input spatial units to have a 

non-zero value for the variable to be predicted. This, in 

combination with the fact that the RF algorithm can only predict 

values within the range of values on which it was trained, means 

that the RF model will be unable to make a prediction of zero. 

The add-on has been designed to force a value of zero in the 

weighting layer if the predicted weight is smaller than 

0.0000000001 obs./m². 

 

Lastly, the user should keep in mind that RF is a predictive 

modelling tool, and that it can only provide an approximation, 

albeit a useful approximation, of reality. “All models are 

wrong; some models are useful” (Box et al., 2005) (p.440).  

 

5. CASE STUDY 

Population distribution is often highly correlated with LC and 

LU. This example uses very high-resolution LC and LU data 

(0.5 m and 5m respectively) to produce a gridded weighted 

layer, i.e., predicted population density, at a resolution of 100 m 

for the city of Ouagadougou. This weighted layer is then used 

for dasymetric mapping, redistributing the population count per 

administrative unit to a more spatially detailed grid.  

 

The LC and LU data are publicly available in scientific 

repositories (Grippa, Georganos, 2018) and (Grippa, Georganos, 

2019) respectively. The LU dataset is provided in vector format 

and was rasterized to 5 m resolution. Similar datasets for the 

city of Dakar have previously been used for population re-

distribution (Georganos et al., 2019; Grippa et al., 2019). The 

administrative units containing population counts were obtained 

from the Institut National de la Statistique et de la Démographie 

of Burkina Faso (INSD, 2012). The add-on 

“r.area.createweight” was run using these three inputs and 

specifying an output grid resolution of 100 m. The default 

parameters were used, although 16 cores were used for parallel 

processing of these large datasets.   

 

The population density was calculated for each administrative 

unit, then was log-transformed, to obtain the response variable 

of the RF model. The add-on calculated the proportion of 

available classes within the LC and LU layers to train the RF 

model at the level of the administrative units. Once trained and 

fine-tuned, the RF model predicted the response variable (i.e., 

log of the population density) for each pixel of the output grid. 

The add-on then back transformed the predictions, to retrieve 

population density values. The final weights consist precisely of 

these gridded predicted population density values. The inputs 

and the final weighted grid are presented in Figure 5. The output 

plot of feature importances is shown in Figure 6 and shows that 

the features with the most importance for prediction are the 

‘Low buildings’ of the LC basemap and the ‘Planned’ 

residential of the LU basemap. The OOB score for the model 

was 0.725. 
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Figure 5. Creating a weighted layer for disaggregation of population count   

 

 
Figure 6. Feature importances 
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The weighted grid was then used with the “v.area.weigh” add-

on to predict population count per grid cell. Figure 7 compares 

the weighted grid and the final population density for a section 

of Ouagadougou. The two classes with greatest feature 

importance were the “Low buildings” (LC map) and “Planned” 

(LU map). We can see that the unplanned area (LU class 4) has 

lower predicted population counts than the planned area (LU 

class 7). By looking at the LC map this can be understood by 

the higher proportion of high buildings (LC class 111) in the 

planned class than the unplanned class. Vegetated zones (LC 

classes 30 and 31) and Administrative, Commercial, Services 

areas (ACS, LU class 5) have low predicted population counts. 

From our knowledge of where people reside, this is as we could 

expect.  

 

This example shows, therefore, the ease with which the add-on 

can be used, with no programming knowledge, and where with 

few inputs and using default parameters, dasymetric mapping 

for the disaggregation of population count in Ouagadougou was 

carried out using ML techniques. 

 

 
Figure 7. Comparing the LC, LU, weighted layer and final predicted population counts.  

 

We mentioned previously that it is good practice for the spatial 

units to be completely covered by each of the ancillary data 

layers. As can be seen in Figure 8, this is not the case here and 

several of the spatial units are not completely covered by the LC 

and LU data (they have the same coverage). While, generally 

speaking, this should be avoided, it can in some situations can 

be acceptable. Our aim, in this example, is to disaggregate 

population count, using LC and LU ancillary data. Through 

additional expert knowledge of the area, we know that the zones 

not covered by the LC and LU maps are in fact zones with 

sparse or no population, meaning therefore that the population 

present in the area covered by the LC and LU data for a spatial 

unit, will approximate the total population for that entire spatial 

unit.  In addition, it is useful to be reminded that dasymetric 

mapping only provides a model of population distribution, i.e., 

is only an approximation of reality, and so will in any case 

contain some errors. As such, it is assumed in this case that the 

impact of this non-complete coverage on RF training and 

prediction is minimal.  

 

If a spatial unit were to not be completely covered by the 

ancillary data, but that the non-covered zone in fact contained a 

high presence of population, then population estimates in the 

area covered by the ancillary data for that spatial unit would 

strongly overestimate population numbers.  

 

With this add-on, while higher coverage of ancillary data is 

preferable, it is up to the user to choose the level of coverage 

acceptable for their analysis. If in doubt, it is better for the user 

to first remove the spatial units with low coverage, prior to 

using the add-on.  

 

 
Figure 8. Spatial coverage of the administrative zones by the 

LC dataset, Ouagadougou  

 

6. CONCLUSIONS & FUTURE CONCEPTS 

The “r.area.createweight” GRASS GIS add-on presented in this 

paper provides a user-friendly tool, accessible to non-

programmer users, which greatly facilitates the implementation 

of a ML-based approach to produce weighting layers for 
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dasymetric mapping. In addition, the add-on provides more 

advanced users with the option to define different hyper-

parameters for fine-tuning the RF model. As a GRASS GIS 

add-on, the approach is easily and freely accessible, allowing 

for increased uptake and use. The add-on therefore will allow 

users to rapidly and readily perform dasymetric mapping, 

creating datasets that can be used in many applications such as 

the example given disaggregating population data.  
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