
MARITIME BIG DATA ANALYSIS WITH ARLAS

W. Gautier*,  S. Falquier, S. Gaudan

Data Science Department, Gisaïa
2 avenue de l’Escadrille Normandie Niemen

31700 Blagnac – FRANCE
(willi.gautier@gisaia.com, sylvain.gaudan@gisaia.com, sebastien.falquier@gisaia.com)

KEY WORDS: Maritime Data, Automatic Identification System (AIS), Vessels Traffic, Origin Destination, Big Data, Open Source,
Data Visualization, Machine Learning

ABSTRACT:

The maritime industry has become a major part of globalization. Political and economic actors are meeting challenges regarding
shipping and people transport. The Automatic Identification System (AIS) records and broadcasts the location of numerous vessels
and delivers a huge amount of information that can be used to analyze fluxes and behaviors. However, the exploitation of these
numerous messages requires tools based on Big Data principles.
Acknowledgement of origin, destination, travel duration and distance of each vessel can help transporters to manage their fleet and
ports to analyze fluxes and focus their investigations on some containers based on their previous locations. Thanks to the historical
AIS messages provided by the Danish Maritime Authority and ARLAS PROC/ML, an open source and scalable processing platform
based on Apache SPARK, we are able to apply our pipeline of processes and extract this information from millions of AIS messages.
We use a Hidden Markov Model (HMM) to identify when a vessel is still or moving and we create “courses”, embodying the travel
of the vessel. Then we derive the travel indicators.
The visualization of results is made possible by ARLAS Exploration, an open source and scalable tool to explore geolocated data.
This carto-centered application allows users to navigate into the huge amount of enriched data and helps to take benefits of these new
origin and destination indicators. This tool can also be used to help in the creation of Machine Learning algorithms in order to deal
with many maritime transportation challenges.

1. INTRODUCTION

Maritime activity has significantly increased over the last two
centuries. The management of the goods and people
transportation has become an important challenge for political
and economic actors. 90% of transportation of goods is globally
carried out by more than 80,000 service vessels. To manage
these fluxes and improve the vessel's safety, the Automatic
Identification System (AIS) records and broadcasts their
location in almost real time. It delivers more than 520 million
messages per day from more than 180,000. It provides a reliable
source of information for understanding maritime activity, but it
requires powerful tools for handling such voluminous data. 

Identifying the vessel's travels and determining their origin,
destination and duration can help transporters to optimize their
fleet activity and ports to understand the incoming/outcoming
traffic and to select containers to inspect in priority for instance.
We managed to extract these travel indicators from AIS
messages. We use a dataset composed of AIS messages
provided by the Danish Maritime Authority. This extraction
follows several steps, adapted to the volume of data thanks to
ARLAS PROC/ML, an open source and scalable processing
platform. The results are visible with ARLAS Exploration, an
open-source solution (ARLAS Development Team, 2021a) we
have developed to visualize and explore interactively such
amounts of geographical data. We will see how this valuable
information can be extracted from such amounts of AIS
messages thanks to these tools.

2. A PROCESS APPLIED TO ENRICH
MARITIME DATA AND ISOLATE TRAVELS

We use the AIS data provided by the Danish Maritime
Authority to isolate the travel of the different vessels and
identify their origins and destinations. The objective of our
process is to transform punctual information into ‘course’
objects. A course, as we define it, corresponds to the travel of a
particular vessel between a start and end timestamps. All the
observations corresponding to this course will be used to build a
condensed ‘course’ object.
This processing pipeline has been developed according to
several steps.

2.1 Initially, raw data of heterogeneous quality

The AIS data is supposed to be transmitted continuously and at
regular time intervals. It contains information about the vessels
(name, size, type...) and their position. These messages are
received by other vessels and land-based antennas. The Danish
Maritime Authority provides the historical AIS data they
collect. We use several days of this data (DMA, 2021) to
explore AIS information (in accordance with the conditions for
the use of Danish public data).
The points are not usually sampled regularly. We have different
tempos and many temporal "gaps" while locations are not
transmitted. We also have outliers, where the ship signal is
transmitted from locations far apart from other measurements
that cannot be explained by realistic motion, which can then
lead to misinterpretation of the displacement. Finally, a lot of
information about the vessel (type, name...) is not available in
all messages and these fields should be harmonized to analyze
the AIS data.
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2.2 Local location outliers

Geolocated objects usually obtain their positions through GPS
equipment. This data is often noisy (approximate
measurements) and occasionally irregular. We have therefore
implemented a series of algorithms to denoise it and to identify
outliers and ignore them.

Figure 1. Examples of boat positions identified as outliers (red)
and normal (green). The red lines illustrate the "jumps"

generated by the GPS

Our filter derived from the Hampel filter (Hampel, 1974) uses
median values calculated over sliding windows to identify local
anomalies. These treatments allow us to identify and
automatically correct most of the geographical outliers
contained in AIS data. We adapt and change our algorithms
when new types of anomalies are identified.

2.3 Temporal sampling

Once obtained by the ship's GPS system, its location is
transmitted by the AIS system via VHF radio frequencies. Class
A equipment is supposed to transmit its position every 10
seconds underway and every 3 minutes at anchor, while Class B
equipment sends messages every 30 seconds. In practice, the
transmission of positions is sometimes very irregular. We
observe phases where geo-locations are provided with details,
while there are also instances of missing signal.

Figure 2. Distribution of durations separating two consecutive
AIS messages of a vessel. The multiple peaks can correspond to

different emission tempos.

The time separating two AIS messages of a vessel is very
heterogeneous. Multiple peaks are distinguishable and they do
not correspond to the normal ais time frequency (2-10s, 30s or
3min). It is necessary to detect and homogenise these different
frequencies to facilitate the application of machine learning
algorithms. Hidden Markov Model (Rabiner, 1986) -HMM- are
used to identify the "tempos" in the broadcast sequences. Each
tempo is modelled by a Markov state. Since the probabilities of
transitions between states are lower than the probabilities of
remaining in the same state, we have an inertia that avoids rapid

transitions between different tempo's, thus adding some
robustness to the noise of the measurements.

● Notion of fragments
We call ‘fragment’ a portion of the travel of a vessel between
two timestamps. The smallest fragment is the one between two
AIS messages of a vessel

This type of data identification transmission times not only
allows for application of diverse treatments to this particular
transmission frequency, but also to harmonize and compress the
information by reducing redundancy without loss of quality.
Consecutive short fragments are then linked to form harmonized
fragments of 5 minutes duration.

Figure 3. Example of AIS data (220 messages) for a particular
vessel

Figure 4. Resulting resampled data (4 fragments) from example
above

These extracts show the compression of data without losing
spatial details. The sequences of latitude and longitude are
stored and used to represent the vessel track.

Figure 5. Example of resampled fragments ends (red) versus
raw geopoints (grey). Resampled fragments are more

homogenous along the vessel track.

These algorithms are designed and fully implemented by our
engineers to be massively distributed on computer farms.

2.4 Movement detection

Before identifying complex movement patterns of a vessel or
inferring its paths, it is necessary to automatically detect
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whether the vessel is moving or stationary from its geolocation
and dynamics data.
Sometimes the geolocated object also transmits its speed, but
this is not always the case. Regardless of this aspect, an object is
not necessarily moving when its velocity (also noisy signal) is
not zero or when its position evolves. This detection must take
into account the noise of the signal and the evolution of the
position of the object when it is stationary. Here again we use
Markov Chains (Figure 6) which provide a robust response to
these variations (Figure 7).

Figure 6. Graph of transition probabilities between the states
still and move

Figure 7. Time evolution of the speed (blue) of a ship making
round trips between two ports. In green the result of the

noise-robust stop/move phase classification.

Once the "still" and "move" states are identified, they are
plotted on the actual ship tracks.

Figure 8. Examples of boat tracks identified in motion (green)
and at rest (red) by ARLAS PROCML. On the left, we

recognise the red trace of a boat held by an ink.

Another data compression step takes place to aggregate all the
points associated with a stop and greatly reduce information
redundancy.
This step therefore allows both the analysis of vessel mobility
and the optimization of the space occupied by the data.

2.5 Travels Origins and Destination

Detecting the stops makes it possible to identify the movements
between these areas as paths of the ship. Sometimes, certain
routes are punctuated by shortstops, pauses, which must be
identified so as not to interrupt what we call a "mission", a
logical movement between an origin and the target destination.
The study of the origins and destinations of these journeys
allows for a better analysis of the movement flows of the fleet.
Clustering algorithms (unsupervised classification) such as
DBScan or K-mean can be used to group trips with similar
origins/destinations (Figure 9).

Figure 9. Set of similar routes between two ports

We used a geoservice to get the address of these origins and
destinations location in order to get the names of the ports when
available.

2.6 Machine learning for activity detection

Once the data has been cleaned, de-noised, re-sampled and the
movement/stop phases detected, the result is a sequence of
fragments for each vessel. Each fragment represents a portion of
the object's movement between two instants. Once harmonised,
the short fragments were concatenated to manipulate unified
fragments of 5 minutes. These fragments are ideal models for
the application of machine learning algorithms. It allows the
dynamics of moving objects to be understood as time series.
Activity detection, including supervised classification
algorithms, exploits these time series in different ways.

The use of temporal convolutions like taking into account
neighbouring fragments, allows the upstream and downstream
historical context of the object's movement to be considered for
prediction of the behaviour on the current fragment. The
fragments are then ordered in time and a time window is applied
to calculate indicators on each fragment sequence.

Figure 10. Schematic of processing using time convolution
over fragments.

We can then calculate aggregations such as total distance, speed
averages, and also direct distances between the beginning of the
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first fragment and the end of the last one. Such indicators can be
computed over different window sizes, allowing the encoding of
multiple movement dynamics. These enriched fragments are
then provided as input to classification models.

The choice of the classification model and its parameterization
are clearly essential in defining the behavior that needs to be
identified. In a fishing detection challenge, our experience as
well as reviewing scientific literature on the subject, informs our
choice of several relevant algorithms (Random Forrest,
XGBoost, Recurrent Neural Network, LSTM). In order to
implement these models, we use Scikit-Learn,
Keras/Tensorflow, SparkML libraries as well as some libraries
that we developed to exploit HMM and kalman filters. We train
the models on the dataset and experiment with multiple
parameters. To be comparable, all models are evaluated using
the same metrics. These metrics are computed by comparing the
predicted classes to the real classes. All parameters describing
the experiment and the metrics obtained are stored in the
open-source MLFlow tool (MLFlow, 2021), which then allows
all experiments to be plotted and compared with each other.

Figure 11. Comparison of experiments according to different
metrics (recall, precision, F1-score) with MLFlow. Each line

represents an experiment.

Each new attempt is recorded and the multiplication of
experiments facilitates step by step convergence towards a
machine learning algorithm that provides optimal classification
results.

3. BIG DATA-PROOF ANALYSIS

3.1 Data compression

The creation of these ‘course’ objects allows an important
compression of the information. Indeed, all the static
information about the vessel is much less redundant and the
aggregated dynamic information is much smaller. Moreover, we
applied a geometry simplification algorithm to lighten the travel
geometry without losing information. We also compute the
geohashes covered by the travel geometry, to facilitate the geo
exploration of these courses (only these geohashes could be
enough to observe the flux, but we chose to keep also the
detailed travel). From more than 31 million GPS locations
representing 7 days of data, we eventually get around 14,000
course objects. In our context of Big Data analysis, this
compression is really valuable. 

3.2 A scalable process based on ARLAS PROC/ML

We've implemented the whole process described above as a
suite of Apache Spark applications, relying on the open ARLAS
PROC/ML framework from CSV files ingestion to ARLAS
Exploration data loading. ARLAS PROC/ML is now open
source and contains the different scalable processes that can be

applied to mobile data. It allows the creation of processing
pipelines adapted to the use case.

Depending on the step of the process, ARLAS PROC/ML is
taking advantage of Spark to group AIS data by vessels and
build their time series. It also extensively uses Spark's window
computing to process specific parts of these time series with
maximum efficiency in a distributed computing environment.
As a result, data are partitioned differently at each step of the
process according to this step's specificity. This makes the
computation scalable by increasing (or decreasing) the number
of executors that are able to compute partitions.

For instance, to get 14,000 courses from a dataset of 31 million
GPS positions, the cluster was configured with 4 nodes of 8
cores and 52 Go memory, split into 6 executors (computation
workers) of 4 cores and 30 Go memory. Since executors need
sufficient memory on some steps of the process that require
loading the entire vessel's time series, we had to limit
parallelization with few executors to assign more resources for
each one of them. That being said, the whole dataset was
processed in about one day with this setup. If we need to ingest
a larger dataset or to compute this one faster, we can add nodes
to the computation cluster and/or give them more cores and
memory.

This scalable processing chain gives us enriched data containing
information such as the origin, destination, duration and
distance of travel for all vessels, which can be really useful to
analyze maritime traffic. However, the optimal exploitation of
these results requires a visualization tool that suits the volume
of data.

3.3 ARLAS Exploration, an open source geo-analytic
tool

ARLAS Exploration is an open-source scalable solution to
explore huge amounts of geolocated data. It is highly
configurable thanks to a builder facilitating the creation of
dashboards. We use this tool to analyze and understand the
result of this processing chain (ARLAS Development Team,
2021b). ARLAS Exploration is a map-centered application
which allows users to navigate in the map and explore the
spatial dimension of the data. A system of aggregation is used to
represent the flux of all the vessels.

Figure 12. Data visualization of AIS courses with ARLAS
Exploration

The temporal dimension of the data is analyzed by the timeline,
which shows the temporal distribution of the courses and allows
to select time ranges. The other components of the courses, such
as mmsi, vessel type, duration or distance are visible in the
widget space on the left of the application. These widgets make
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it possible to select parts of the data, and each filter updates the
entire application. All these elements make the navigation easy
and interactive, even with a huge amount of data. 

It is possible to filter the courses on their origins or destinations.

Figure 13. Origins of Ship Trips in ARLAS Exploration. We
can directly select trips starting from given ports or countries or

type names in the search bar.

If we focus on the departures from the port of Kiel (Germany)
for example, we directly visualize the main maritime roads
linked to this port.

Figure 14. Selection of courses with departure in Kiel

We can also visualize the detailed itineraries starting from this
port.

Figure 15. Plots of ship routes from the port of Kiel in ARLAS
Exploration

In Figure 15, the itineraries are colored by their mean speed. If
desired, courses may be colored from other attributes, mmsi or

vessel type for instance. It is also possible to draw geographic
selection. Only courses crossing this selection are selected
(other rules can be chosen, such as keeping only the course
starting inside the selection). We can also apply time selection
thanks to the timeline cursors.
ARLAS Exploration works perfectly to explore AIS data and
exploit the results of our origin/destination process. This
open-source solution can also be used to explore any maritime
data in a Big Data environment.

3.4 ARLAS Exploration for machine learning

Moreover, ARLAS Exploration provides labelling data
functions, so users can set a label to a given selection. It helps
data scientists to create and evaluate Machine Learning
algorithms, particularly for detection/classification tasks. In the
case of supervised learning, ARLAS allows data curators to
create a training set thanks to this tagging system. It is possible
to quickly select a part of the data with ARLAS Exploration and
“label” it. It is particularly relevant for pattern detection.
Experts can observe data, recognize patterns and set a suitable
label (for fishing detection for instance).

Figure 16. Example of use of the labelling system for fishing
detection

Then we can download the labelled data with ARLAS API,
available in Python, among others. These data are then used to
train a Machine Learning model. In addition, it is possible to
label the result of the algorithm prediction in ARLAS with the
API, in order to explore the results and discover where
classification mismatches the real behavior.

Figure 17. Examples of fishing vessel tracks identified in
fishing (green) and moving (red) activity
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In case of unsupervised learning, the manual labelling is not
necessary, but the exploration of classification results is still
valuable.

4. CONCLUSION

We were able to transform the data, compress it and isolate
origin, destination and key indicators of travels from the
dynamics of vessels. ARLAS PROC/ML allows us to apply this
process to any amount of data.

Then, the result of this transformation can be discovered and
analyzed with ARLAS Exploration, a powerful and open source
geospatial analytic tool. Knowing the multiple origins of a
vessel can help the authorities to adapt their goods control
policy to sensitive places and better understand its
frequentation. And the course statistics can help transporters to
optimize their fleet activity.

Besides, ARLAS Exploration allows data scientists to label the
data, which is useful for creating training sets. In addition, the
ability to explore the results of predictions makes it a useful tool
for developing Machine learning algorithms to effectively deal
with maritime transportation challenges.
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