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ABSTRACT 

 

Storms represent an increased source of risk that affects human life, property, and the environment. Prediction of these events, however, 

is challenging due to their low frequency of occurrence. This paper proposed an artificial intelligence approach to address this challenge 

and predict storm characteristics and occurrence using a gated recurrent unit (GRU) neural network and a support vector machine 

(SVM). Historical weather and marine measurements collected from buoy data, as well as a database of storms containing all the 

extreme events that occurred in Brittany and Pays de la Loire regions, Western France, since 1996, were used. Firstly, GRU was used 

to predict the characteristics of storms (wind speed, pressure, humidity, temperature, and wave height). Then, SVM was introduced to 

identify storm-specific patterns and predict storm occurrence. The approach adopted leads to the prediction of storms and their 

characteristics, which could be used widely to reduce the awful consequences of these natural disasters by taking preventive measures.  

 

 

1. INTRODUCTION 

Extreme weather events, particularly storms, are one of the main 

natural hazards affecting human life, infrastructure, and the 

environment (Brunkard et al., 2008; Genovese & Przyluski, 

2013; Jahn, 2015; Stephenson, 2008; Usbeck et al., 2010). It has 

been estimated that, on average, 60,000 people die each year due 

to extreme weather conditions (Franzke & Torelló i Sentelles, 

2020). The economic losses from storms have also risen in most 

countries (Dorland et al., 1999; Kates, 1980; Leckebusch et al., 

2007). However, storms are also important, as rain-bearing 

structures for large parts of the world; the case of West African 

parts that get 90% of their rainfall from thunderstorms (Kamara, 

1986). 

 

Due to the increased risk of these severe events (Haarsma, 2021; 

Kron et al., 2019), they have attracted significant attention in the 

last few decades (Ren et al., 2018). Predicting storms is a 

challenging task, and traditional prediction methods are mainly 

based on statistical and numerical models, leading to problems of 

high computational complexity and low prediction accuracy 

(Goerss, 2000). But machine and deep learning algorithms can 

rapidly analyze large volumes of data and serve as a cost-

effective alternative for predicting upcoming events (Sun et al., 

2020), such as impending hurricane trajectories and storms 

(Ghosh & Krishnamurti, 2018). 

 

Recently, the application of machine learning and deep learning 

models dramatically increased in predicting natural hazards and 

disasters. For instance, flood prediction using machine learning 

models (Mosavi et al., 2018) or landslide susceptibility 

prediction using deep learning (Dao et al., 2020). The use of 

machine learning and deep learning models becomes more and 

more popular for the prediction of extreme weather events; deep 

learning models are currently used to forecast severe convective 

weather over China (Zhou et al., 2019), for example, and the 

prediction results prove that machine learning and deep learning 

solutions outperform traditional methods (Lu et al., 2020; Zhang 

et al., 2019). (Sun et al., 2020) have also provided an overview 

of the current applications of these models in disaster 

management. 

 

Gated recurrent unit (GRU) networks, which was developed as 

an improved version of recurrent neural networks (RNNs) to 

solve the problems of vanishing and exploding gradients in 

standard RNNs when learning long-term dependencies, is among 

the most advanced deep learning algorithms (Cho et al., 2014). 

The GRU model has outperformed other benchmark models and 

has shown to be effective for a wide range of issues, such as wave 

height prediction during tropical cyclones (Meng et al., 2021), 

wind power forecasting (Ding et al., 2019), and tropical cyclone 

track prediction (Lian et al., 2020). 

 

In addition to GRU, support vector machines (SVM) is another 

robust and efficient machine learning algorithm widely used for 

time series classification and regression problems (Kampouraki 

et al., 2009; Sapankevych & Sankar, 2009). This algorithm has 

outperformed other methods in a wide variety of applications, 

such as extreme rainfall event prediction (Nayak & Ghosh, 

2013), convective storms classification (Jergensen et al., 2020), 

flood prediction (Mosavi et al., 2018), and tornado Prediction 

(Trafalis et al., 2004). 

 

This paper proposes a new approach for predicting the 

occurrence and characteristics of storms using buoy data and a 

storm database containing all storm events that occurred in 

Brittany and Pays de la Loire regions, Western France, since 

1996. The GRU model was introduced to predict storm 

characteristics (wind speed, pressure, humidity, temperature, and 

wave height). The SVM model attempted to identify storm-

specific patterns and applied an SVM-based classifier for storm 

occurrence prediction. The remainder of this paper is organized 

as follows. Section 2 covers the study area, the data used, the 

architectures of the proposed models, and the methodology 

adopted. Section 3 presents the results of the experiment. Finally, 

Section 4 discusses the conclusions and summarizes the paper. 
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2. EXPERIMENTS 

2.1 Study Area 

This study focuses on a portion of The French Atlantic coasts. It 

comprises two regions: Brittany and Pays de la Loire with a total 

area of 66000 km2 (Figure 1). 

 
 Figure 1. Location of the study area. 

 

 

These two regions have known several storms leading to heavy 

loss of life and devastating infrastructure damage. Storms Lothar 

and Martin, for example, which hit the study area from December 

26 to 28, 1999, caused the death of 92 people (Dedieu, 2010), in 

addition to the destructive impact on infrastructure, buildings and 

the environment (Sacré, 2002). 

 

Due to the extensive damage and the risk represented by these 

extreme events, several works of literature have investigated the 

dynamics and paths of past storms affecting the study area; 

(Athimon & Maanan, 2018) studied storm impacts and 

vulnerability of past societies based on more than 19691 French 

historical documents, while other studies attempted to detect 

damaging storm events in the last 300 and 1000 years by coupling 

historical documents and sedimentological data (Pouzet et al., 

2019; Pouzet & Maanan, 2020). These studies have identified 

two main categories of storms that affect the study area. The first 

type of storm has a west-to-east trajectory, and the second type 

has an SW-NE trajectory (Pouzet & Maanan, 2020). 

 

2.2 Data Used 

The data used is a combination of a storm database and buoy data. 

The storm database was obtained from the website Meteo France 

(http://tempetes.meteo.fr/spip.php?rubrique6), and it represents 

all the storm events that have occurred in the study area over the 

past 25 years.  

 

The buoy data consists of data collected from station 62163 - 

Brittany Buoy, which contains records of wind speed, pressure, 

humidity, temperature, and wave height from January 1, 1996, 

through May 31, 2021. The buoy data was downloaded from the 

website Meteo France 

(https://donneespubliques.meteofrance.fr/?fond=produit&id_pro

duit=95&id_rubrique=32). 

 

The final time series data used to predict storm occurrence and 

characteristics represent daily records of wind speed, pressure, 

humidity, temperature, and wave height, in addition to the exact 

days that have known the occurrence of a storm. 

2.3 Proposed Models: GRU and SVM  

2.3.1 Gated Recurrent Unit (GRU) neural network: 

Recurrent neural networks (RNNs) are a powerful deep learning 

model known for their effectiveness in time series prediction 

(Elman, 1990). However, RNN faces problems when learning 

long-term dependencies due to the vanishing and exploding 

gradient problems (Bengio et al., 1994). To overcome these 

issues, Long Short-Term Memory (LSTM) was proposed in 1997 

as an improved version of RNN (Hochreiter & Schmidhuber, 

1997). Moreover, a gated recurrent unit (GRU) neural network 

was introduced by (Cho et al., 2014) to simplify the training 

parameters. 

 

The architecture of GRU implements a restructuring gate 

mechanism while retaining the advantages of LSTM. The gate 

mechanism consists of an update gate and a reset gate. The update 

gate controls how much information from a previous state is 

brought into the current state. The more information brought into 

the current state, the higher the value of the update gate. It plays 

the role of input gate and forget gate in LSTM. On the other hand, 

the reset gate is used to control how much information from a 

previous state is ignored. In contrast to the update gate, the lower 

the reset gate value, the more information is ignored (E et al., 

2019). 

 

The processes inside each GRU cell are designed as follows (E 

et al., 2019): 

 

First, the reset gate and update gate are established by the inputs 

of the current input 𝑋𝑡 and the hidden state at previous time 𝐻𝑡−1. 

The outputs of the update gate and the reset gate are given as 

follows: 

 

𝑟𝑡 =  𝜎(𝑋𝑡𝑈𝑟 + 𝐻𝑡−1𝑊𝑟 + 𝑏𝑟                                   (1) 

 

𝑧𝑡 =  𝑋𝑡𝑈𝑧 + 𝐻𝑡−1𝑊𝑧 + 𝑏𝑧                                    (2) 

 

where  𝑈 and 𝑊 = are weight coefficient matrices. 

 𝑏  = denotes bias vector. 

 𝜎 = is the logistic sigmoid function. 

𝑟𝑡 helps to capture the short-term dependencies in temporal 

sequence, and 𝑧𝑡 is able to memorize arbitrary-length information 

of the input 𝑋𝑡. 

Second, the current candidate hidden state 𝐻̃𝑡 is formulated as: 

 

𝐻̃𝑡 = tanh(𝑋𝑡𝑈𝐻 + (𝐻𝑡−1 ∗  𝑟𝑡)𝑊𝐻 + 𝑏𝐻                 (3) 

 

where  ∗  = denotes the scalar product of two vectors. 

Finally, applying the current candidate hidden state 𝐻̃𝑡 and the 

previous hidden state 𝐻̃𝑡−1 to implement the following linear 

combination that satisfies the sum of weighted coefficient be of 

a value 1. 

 

𝐻𝑡 = (1 − 𝑧𝑡) ∗  𝐻̃𝑡 + 𝑧𝑡  ∗  𝐻𝑡−1                              (4) 

 

where  𝐻𝑡  = is the output of the current hidden state. 

 

2.3.2 Support Vector Machines 

 

The SVM algorithm has performed very well on a wide range of 

problems and has become one of the most powerful methods in 

machine learning for both classification and regression 

(Kampouraki et al., 2009; Sapankevych & Sankar, 2009). 

The reason for using SVM in our approach is that this algorithm 

is less prevalent in the field of meteorology than other machine 
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learning methods, but it has been successfully used to predict 

tornadoes (Adrianto et al., 2009; Trafalis et al., 2003) and 

temperature (Radhika & Shashi, 2009). 

 

Linear SVM was introduced by (VAPNIK, 1963) for binary 

classification; it separates data into two classes by constructing a 

hyperplane in the predictor space that best separates the two 

classes (Jergensen et al., 2020). 

 

During training, the linear SVM learns to maximize the margin 

or the average Euclidean distance between the hyperplane and the 

correctly classified samples (Jergensen et al., 2020). 

 

The majority of real-world data are not linearly separable. 

Consequently, nonlinear kernels (Cortes & Vapnik, 1995; 

Vapnik, 1995) are frequently used to transform the predictor 

space implicitly.  

 

In this study, the linear kernel, which is defined in equation 5, 

was used: 

 

𝐾𝑙𝑖𝑛𝑒𝑎𝑟 = (𝑥1𝑤1 +  𝑥2𝑤2 + ⋯ + 𝑥𝑀𝑤𝑀) + 𝑐  

 

= 𝑥 . 𝑤 + 𝑐                                                         (5) 

 

where  𝑥 and 𝑤 = are predictor vectors for two examples, both 

of length M. 

 𝑀 = is the number of predictors. 

𝑐 = is a hyperparameter, which encourages the model 

to overfit when too small and underfit when too large. 

 

2.4 Methodology Adopted 

The methodology used in this study consists of two major parts 

(Figure 2): The first one aims to predict the different 

characteristics of storms (wind speed, pressure, humidity, 

temperature, and wave height), which represents a univariate 

time-series prediction, and the second part focuses on predicting 

the occurrence of storms based on their characteristics. 

 
Figure 2. Methodology adopted in this study. 

To achieve these goals; the following steps were taken: First, data 

collection: a storm database containing all storm events that have 

occurred in the study area over the last 25 years was used, in 

conjunction with buoy data that represents hourly records of wind 

speed, pressure, humidity, temperature, and wave height. Daily 

values for each characteristic were calculated from these records 

and then combined with the storm database to create a final time-

series data that represents a day-by-day record of weather and 

marine data, in addition to the exact days that have known the 

occurrence of a storm. The final time series data created can be 

used to predict storm occurrence and characteristics. 

 

Then, data pre-processing, which aims to prepare the data for the 

implementation of the algorithms. This step involves dealing 

with missing values and then scaling the features to normalize all 

independent variables. Next, the data was divided into training 

and testing sets; 80% of data was used for the training, and the 

last 20% was used to test the effectiveness of the developed 

models. 

 

The third step is data processing. Five GRU models were 

developed to predict storm characteristics (wind speed, pressure, 

humidity, temperature, and wave height). Each model was 

specified for the prediction of a particular feature (a univariate 

time series prediction). Then, an SVM-based classifier was 

developed and used to predict storm occurrence by identifying 

and extracting storm-specific patterns. 

 

Finally, performance evaluation is the last step of the study. The 

GRU models used to predict storm characteristics were evaluated 

using three evaluation metrics: mean absolute error, mean square 

error, and root mean square error, and the SVM classifier used to 

predict storm occurrence was evaluated using the confusion 

matrix and ROC (receiver operating characteristics) curve. 

 

3. EXPERIMENTAL RESULTS 

In this study, GRU and SVM were introduced to predict storm 

occurrence and characteristics. The GRU model has first used for 

predicting the different characteristics of storms, and then an 

SVM classifier was used to predict storm occurrence based on 

their characteristics. The results of the developed GRU and SVM 

models are presented separately below. 

 

3.1 Prediction of Storm Characteristics 

Brittany buoy data, which contains historical records of wind 

speed, pressure, humidity, temperature, and wave height from 1 

January 1996 to 31 May 2021, was used to predict storm 

characteristics. Since the task is a univariate time series 

prediction, the values for each storm characteristic should be 

predicted separately. Therefore, a unique model was created for 

each of them. 

 

Taking wind speed prediction as an example, a GRU model was 

created based on the univariate dataset of past wind speed, and 

all other characteristics were predicted in the same manner. 

Finally, five GRU models were developed, each designed to 

predict a particular characteristic (wind speed, pressure, 

humidity, temperature, and wave height). 

 

The data was split into training and testing sets, with a ratio of 80 

to 20. 80% was used to train the model and find the best 

hyperparameters, then the last 20% of data was used to test the 

robustness of the final model developed. The prediction results 

for other characteristics (pressure, humidity, temperature, and 

wave height) will be presented later in this section. 
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Figure 3 depicts the GRU prediction results. A light blue curve 

represents the actual wind speed, while a light brown curve 

represents the predicted wind speed. As can be observed, the 

GRU model was successful in following the pattern and 

accurately predicting the general variability of wind speed. 

The GRU model doesn’t yield the exact values of actual storm 

wind speeds. However, the results obtained are still promising as 

the model was able to predict higher wind speed values than the 

usual values on other days, which can help indicate the 

occurrence of a storm. For example, the wind speed of storm 

Zeus, which hit the study area on 6 March 2017, with a value of 

19.72 m/s, was predicted by the GRU model to be 13.07 m/s. 

 
Figure 3. Wind speed prediction results from the GRU model. 

 

 

To test the prediction accuracy of the GRU model, three 

evaluation metrics were used: Mean Absolute Error (MAE), 

Mean Square Error (MSE), and Root Mean Square Error 

(RMSE), which are defined as follows: 

 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑃𝑚ᵢ − 𝑃𝑝ᵢ|𝑛

𝑖 = 1                                          (6) 

 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑃𝑚ᵢ − 𝑃𝑝𝑛

𝑖 = 1 ᵢ)²                                        (7) 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑃𝑚ᵢ − 𝑃𝑝𝑛 

𝑖 =1 ᵢ)²                                     (8) 

 

where  𝑛 = is the number of samples. 

 𝑃𝑚𝑖 = represents the real value. 

𝑃𝑝𝑖 = is the predicted value. 

 

The evaluation of error metrics shows that the GRU model has 

few prediction errors. It has generated MAE, MSE, and RMSE 

values of 1.829, 5.309, and 2.304, respectively. 

 

The prediction results for other storm characteristics (wave 

height, temperature, pressure, and humidity) are shown in Figure 

4. The GRU model has successfully predicted the general 

variability and all the characteristics of storms, as shown in the 

figure. Therefore, it appears that the GRU model can be used as 

an effective tool for the prediction of storm characteristics. 

 
Figure 4. Prediction of storm characteristics; wave height, 

temperature, pressure, and humidity using the GRU model. 

 

 

3.2 Prediction of storms 

In this second part, a binary SVM classifier was developed to 

predict storm occurrence based on their characteristics. To 

achieve this goal, multivariate time series data was created by 

combining the storm database and the buoy data to predict storm 

characteristics. The multivariate time series data represent 

historical measurements of wind speed, temperature, pressure, 

humidity, and wave height from 1 January 1996 to 31 May 2021, 

in addition to the target variable to be predicted, which is in the 

range of 0 and 1, where 1 represents the occurrence of a storm 

and 0 indicates that there is no storm. This time series data was 

divided into training and testing at the ratio of 80 to 20%; 80% 

for training and 20% for testing the model's performance. 

In this study, there were two classes; storms and no storms. The 

storm class represents the positive class with 68 samples, and the 

no storm class represents the negative class with 9215 samples. 

The prediction outcomes for the SVM model are shown in Figure 

5. The predicted storms are represented with points in light brown 

color, while the actual storms are represented with points in light 

blue color. 
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Figure 5. Storm prediction results from the SVM model. 

 

 

To assess the performance of the SVM classifier developed, five 

classification metrics were used: specificity, sensitivity, false-

positive rate (FPR), false-negative rate (FNR), and the area under 

the receiver operating characteristic curve (AUC) metric. These 

evaluation metrics are not sensitive to changes in data 

distribution and can be used effectively with imbalanced data, as 

is the case in this study (Tharwat, 2018). 

 

These assessment metrics can be calculated using the following 

equations: 

 

Specificity =  True negative rate (TNR) =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
   (9) 

 

Sensitivity =  True positive rate (TPR) =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (10) 

 

FPR (False positive rate) =  
𝐹𝑃

𝐹𝑃+𝑇𝑁
                               (11) 

 

FNR (False negative rate) =  
𝐹𝑁

𝐹𝑁+𝑇𝑃
                          (12) 

 

where  𝑇𝑃 = true positives where the model predicted samples 

correctly as positives. In this case, the storms were 

classified as storms. 

𝑇𝑁 = true negatives where the model predicted samples 

correctly as negatives, no storms predicted as no storms. 

𝐹𝑃 = false positives where the model mispredicted 

samples as positives, no storms predicted as storms. 

𝐹𝑁 = false negatives where the model mispredicted 

samples as negatives, storms predicted as no storms. 

 

Figure 6 depicts the confusion matrix of the SVM model. As 

shown, the number of correctly classified samples in the Storm 

and No-storm classes is 6 and 1844. The TN, TP, FN, and FP 

values are 1844, 6, 0, and 7, respectively. Consequently, the 

values of specificity, sensitivity, FPR, and FNR are the 

following: 0.996, 1, 0.003, and 0. 

 
Figure 6. Confusion matrix of the SVM model. 

 

 

The ROC curve is another evaluation method used in this study 

to assess the capability of the binary SVM classifier. It is a two-

dimensional graph in which the FPR (False positive rate) 

represents the x-axis and the TPR (True positive rate) represents 

the y-axis. It can be generated by changing the confidence score 

threshold (Tharwat, 2018). The AUC value is a metric extracted 

from the ROC curve and used to evaluate the model's 

performance. The AUC metric ranges from 0 to 1, and a bigger 

value indicates a better model. Finally, the SVM binary classifier 

has proven its efficiency for predicting storm occurrence since it 

has an AUC value of 1, as shown in Figure 7. 

 

 
Figure 7. ROC curve of the SVM model. 

 

 

4. SUMMARY AND DISCUSSION 

Artificial intelligence, specifically machine learning and deep 

learning methods, has recently exploded in popularity in many 

fields, including meteorology (McGovern et al., 2019). The 

remarkable results obtained by these methods have prompted 

experts to introduce this concept into their various research 

directions in meteorology. For example, a deep learning approach 

is currently being used to forecast severe convective weather in 

China (Zhou et al., 2019). 

 

The high performance of machine learning and deep learning 

methods in meteorology is also supported by findings from (Lu 
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et al., 2020), who showed a Mask region-based convolutional 

neural network (Mask R-CNN) model accurately identified 

extratropical cyclones with strong winds along the Northern 

Hemisphere Ocean coasts. (Lu et al., 2020) also found that the 

number of identified cyclones increased by 8.29% compared to 

the results obtained by the traditional method. Consequently, we 

also examine the efficiency of an artificial intelligence approach 

in the context of storm prediction. Therefore, this study targeted 

the building of time series prediction models to predict storm 

occurrence and characteristics, which could be used globally to 

mitigate the disastrous consequences of these extreme events by 

taking the necessary precautions. 

 

The paper's main contribution is applying a new artificial 

intelligence approach using two of the most advanced machine 

learning and deep learning algorithms, Support Vector Machine 

(SVM) and Gated Recurrent Unit (GRU) Neural Network. 

 

Experiments were carried out using a database of storm events in 

the western regions of France over the past 25 years and buoy 

data representing historical measurements of wave height, wind 

speed, temperature, pressure, and humidity since 1996. 

 

As a first step, the GRU model was used to predict the different 

characteristics of storms (wind speed, pressure, humidity, 

temperature, and wave height). Each storm characteristic was 

predicted separately, and a GRU model was created for each of 

them based on past data. (Khosravi et al., 2018) also developed a 

time-series prediction model using machine learning algorithms 

to predict wind speed over Brazil based on past measured wind 

speed data values. The results demonstrated that the adopted 

method could successfully predict wind speed with high 

accuracy. 

 

Wind speed prediction is one of the most critical aspects of storm 

events in recent years. (Yang et al., 2017, 2019) have recently 

proposed the Bayesian linear regression to predict wind speed for 

storms that impacted the northeast United States based on a 

database composed of historical storms. The lower values of root 

mean square error indicate the models' high performance for 

storm wind speed prediction. 

 

Our analyses extend these recent studies by considering the 

prediction of other storm features in addition to wind speed. The 

method used will result in the prediction of different storms 

characteristics (wind speed, wave height, temperature, pressure, 

and humidity) and the exact days of their occurrence, which can 

help reduce and anticipate the impacts of upcoming events. 

Several evaluation criteria are applied to evaluate the 

performance of the developed GRU models in terms of prediction 

accuracy. Mean absolute error, mean square error, and root mean 

square error between actual data and predicted ones were used. 

The developed models were found to make few prediction errors, 

which proves the efficiency of these models for predicting all 

storms characteristics. 

 

In the second step of this study, an SVM-based classifier was 

applied to identify storm-specific patterns and predict storm 

occurrence. The same hypothesis was applied by (Nayak & 

Ghosh, 2013) to predict extreme rainfall events using a support 

vector machine to identify those specific patterns for extreme 

rainfall events and then apply an SVM-based classifier for 

extreme rainfall classification and prediction. 

 

The SVM-based classifier developed in this study effectively 

predicted storm occurrence and achieved high performance in 

terms of all the evaluation metrics adopted (specificity, 

sensitivity, and AUC score). 

 

The findings revealed that the models mentioned above (GRU 

and SVM) could serve as an effective tool for predicting storm 

occurrence and characteristics, as both models have performed 

very well and produced good generalization ability with unseen 

data. Although future studies will be needed to address the lack 

of skill in making a long-term prediction of storms 

characteristics, the GRU model can only generate short-term 

predictions. Also, the GRU model predicted lower values than 

the actual values of storms characteristics. Therefore, further 

investigations into which models other than GRU and SVM can 

improve the prediction are necessary. 

 

Finally, considering the results obtained, our results appear 

promising overall. The adopted methodology can predict future 

storms characteristics and occurrence, which can help avoid the 

severe damage of these extreme events. 
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