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ABSTRACT 

The marine environment provides many ecosystems that support habitats biodiversity. Benthic habitats and fish species associations 

are investigated using underwater gears to secure and manage these marine ecosystems in a sustainable manner. The current study 

evaluates the possibility of using deep learning methods in particular the You Only Look Once version 3 algorithm to detect fish in 

different environments such as; different shading, low light, and high noise within images and by each frame within an underwater 

video, recorded in the Atlantic Coast of Morocco. The training dataset was collected from Open Images Dataset V6, a total of 1295 

Fish images were captured and split into a training set and a test set. An optimization approach was applied to the YOLOv3 

algorithm which is data augmentation transformation to provide more learning samples. The mean average precision (mAP) metric 

was applied to measure the YOLOv3 model’s performance. Results of this study revealed with a mAP of 91,3% the proposed 

method is proved to have the capability of detecting fish species in different natural marine environments also it has the potential to 

be applied to detect other underwater species and substratum. 

1. INTRODUCTION

The marine ecosystem represents significant esteem in terms of 

biodiversity and economics (Costanza, 1999) through fisheries, 

mining resources, renewable energies and other products 

determined from the ocean (Pauly & Zeller, 2017). Seafloor 

habitat and fish species around the world are beneath danger 

and endure from over-exploitation (Hutchings, 2000) with 

significant impact on human wellbeing (Worm et al., 2006). 

Several studies have been carried out to explore seafloor habitat 

and biodiversity to conserve and promote a sustainable use of 

fisheries resources (Lynch et al., 2016). Some researchers have 

investigated seafloor habitat in open sea (Lene Buhl-Mortensen 

et al., 2016). Others explored coastal areas as estuarine 

ecosystem (van Niekerk et al., 2020), and lagoons (Brodie et al., 

2020). In addition, mapping strategies have been created to 

explore and document seafloor habitat such as, the MAREANO 

Program (Marine Areal Database for Norwegian Coasts and Sea 

Areas). This program used data from a variety of sampling 

gears to map the benthic environment and communities from all 

types of seabed in order to fill knowledge gaps in relation to the 

implementation of management plans for the Norwegian EEZ 

(L. Buhl-Mortensen et al., 2015). Among the gears used to 

explore and map the seabed, the platforms for taking underwater 

videos. The recent use of these underwater exploration gears has 

made it possible to fill in the lack of information due to 

traditional sampling by fishing gears. Data collected by 

underwater videos provides significant information to 

understand the benthic ecosystem (Sung et al., 2017). 

Nevertheless, it is also a challenging task because of the 

movement speed of fish underwater and their overlapping 

(Lumauag & Nava, 2019). In addition, the quality and variation 

in water condition makes this task even more complicated 

(Sharif et al., 2016). However, Computer vision and deep 

learning algorithms have shown a great success in image 

classification (Li et al., 2019), text interpretation (Iqbal & 

Qureshi, 2020) and data security (Amanullah et al., 2020), so 

new possibilities are opening up to automate the workflow. 

Several computer vision applications have been carried out in 

the marine environment such as harbor surveillance (Casalino et 

al., 2009), (Palmieri et al., 2013), and collision avoidance 

(Caccia, 2006), (Campbell et al., 2012). However, these 

efficient and contemporary techniques have been used not only 

identifying marine creatures and objects, but also classifying 

various marine species (Olsvik et al., 2019). Many deep 

learning algorithms have been applied in the marine (Wang et 

al., 2020) and aquaculture environments (M. Sun et al., 2020), 

such as mask RCNN for the segmentation and measurement 

scheme of fish morphological features (Yu et al., 2020),  U-net 

for the attenuation of marine seismic interference noise (J. Sun 

et al., 2020), and YOLO algorithm which shows its efficiency 

especially in fish detection (Cui et al., 2020), and was applied 

for marine data to detect various species in the Norwegian 

fjords and ocean (Stavelin et al., 2021).  “You Only Look Once” 

(YOLO) (Redmon & Farhadi, 2018) is one of the most efficient 

deep learning algorithms for object detection (Du, 2018), it has 

shown its good performance for detecting many different 

objects, such as detecting apples during different growth stages 

in orchards (Tian et al., 2019), cars (Putra et al., 2018), and 

human detection in thermal imaging (Ivašić-Kos et al., 2019). 

Recent studies have investigated the use of yolo in fish 

detection and they show great performance of this object 

detection algorithm (Cui et al., 2020). So, in this paper, we 

present the result of the use of Yolo algorithm to identify fish in 

a natural environment. Firstly, we prepare fish images and their 

annotations, and we split our dataset into two section (training 

and testing). At that point, we utilize the YOLO (Redmon & 

Farhadi, 2018) model, which is trained by our own dataset to 

detect fish. Finally, we get fish movements detection by each 

frame within a video recorded in a natural marine environment. 
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1.1 Yolov3 Algorithm 

YOLOv3 (Redmon & Farhadi, 2018) is a developed version 

over its predecessors: YOLO v1 and YOLO v2 (named also 

YOLO9000) (Redmon & Farhadi, 2017). the YOLO network 

changes the detection issue into a regression problem. It doesn't 

need a proposal region, and it creates bounding box coordinates 

and probabilities of each class straightforwardly through 

regression. 

 

YOLO contains 24 convolutional layers followed by 2 fully 

connected layers. Some convolutional layers use convolutions 

of size 11 to diminish depth dimension of the feature maps. A 

faster form of YOLO, named Fast YOLO, utilizes just 9 

convolutional layers yet this effects the accuracy. The general 

YOLO architecture is represented in Figure 1. The concept is to 

partition the input image into a S×S grid, and to make 

recognitions in each grid cell. Every cell predicts B bounding 

boxes along the confidence of these boxes. The confidence 

depends on two important parameters; first one is the 

probability of the object’s existence in a grid cell. Second one is 

the intersection over union (IoU) of the ground truth boxes (GT) 

and predicted ones. Formally the confidence is represented as: 

                

                   Confidence = Pr(Object) × IoU(GT, pred)     (1)  

Where:        Pr (Object) ∈ [0, 1]. 

 

Five predictions will be done by each grid cell: x, y, w, h, 

confidence and C class probabilities. (x, y) are the center 

coordinates of the box, and (w, h) represent the width and 

height of the box. 

 

YOLOv3 has been improved by the use of the multi-label 

classification, which is not the same as the common labeling 

used in the previous versions. It utilizes a logistic classifier to 

calculate the likeliness of the object being of a particular label. 

Past versions utilize the softmax function to produce the 

probabilities structure the scores. For the classification loss, it 

utilizes the binary cross-entropy loss for each label, rather than 

the overall mean square error used in the previous versions. In 

addition to that, YOLOv3 has been evaluated by using different 

bounding box prediction. It relates the objectness score 1 to the 

bounding box anchor which covers a ground truth object more 

than others. It disregards others anchors that overlaps the 

ground truth object by more than a chosen threshold (0.7 is 

utilized in the implementation). Thus, YOLOv3 assigns one 

bounding box anchor for each ground truth object. Moreover, 

YOLOv3 has been ameliorated by the use of prediction across 

scales using the concept of feature pyramid networks. YOLOv3 

predicts boxes at 3 distinct scales and afterward separates 

features from those scales. The results of prediction is a 3-d 

tensor that encodes bounding box, objectness score and 

prediction over classes. This is why the dimensions of the tensor 

at the end are changed from past versions to: 

                     

                           N x N x (3 * (4 + 1 + C))     (2) 

 

Where:   N x N: is the number of the grid cells of the system 

               3: to decode the features extracted from each of the 3           

               scales  

               4 + 1: to decode the bounding boxes offsets +  

               objectness score 

               C: is the number of classes we train our model on.  

 

This permits to induce better semantic information from the up-

sampled features and finer-grained information from the earlier 

feature map.  

Furthermore, YOLOv3 has been made with another 

improvement, the new CNN feature extractor named Darknet-

53. It is a 53 layered CNN that uses 3x3 and 1x1 convolutional 

layers. It has demonstrated the advanced accuracy but with less 

floating-point tasks and better speed. For example, it has less 

floating-point operations than ResNet-152 but the same 

performance at a double speed. It utilizes also skip connections 

network inspired from ResNet. 

 

 

Figure 1. Yolov3 architecture. 

 

2. DATA SET  

Dataset of this study is broken down into two sections; the 

training and testing data and the detection data. The training and 

testing data used in this study were collected from Open Images 

Dataset V6 (storage googleapis website). The images were 

captured in different environments with a 1024 × 768-pixel 

resolution. All the images were taken under other natural and 

artificial light conditions, including several disturbances: 

illumination variation, occlusion, and overlap. A total of 1295 

Fish images were captured and divided into a training set and a 

test set. The training set consisted of 70% of the total images, 

and the remaining 30% of images made up the test set. Figure 2. 

shows some samples from the dataset under different 

environments. To assure the validity of our experiment and to 

test the genericity of the algorithms, we used an underwater 

video that allowed us to experiment the model's performance in 

a natural marine environment. Figure 6. shows an example of a 

frame image from the underwater video that has been recorded 

in the Moroccan Atlantic coast precisely in a region called 

Skhirat. 

 

 
 

Figure 2. Fish samples with different environment 

circumstances: (a) separated fish in seagrass, (b) a shoal (a 

group of fish), (c) tiny fish, (d) occlusion by corals, and (e) 

shading and light conditions. 
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2.1 Data Augmentation 

The data augmentation technique was used in this study, which 

help to extend the amount of information by adding adjusted 

copies of already existing data, and it acts as a regularizer and 

makes a difference to reduce the overfitting. While training, 

before input into the model, each image was randomly sampled 

by one of the following options; the entire original image, 

horizontal flip, grayscale, blur, noise and cropping. So, each 

image was horizontally flipped, grayscale was applied to 25% 

of images, blur was up to 10px, noise was up to 10% of pixels, 

and for the cropping operation, a patch with the same size as the 

original image was randomly cropped from image. Some 

examples of the data augmentation step are illustrated in Figure 

3. 

 
 

Figure 3. Some examples of the data augmentation step: (a) 

original image, (b) horizontal flip, (c) image cropping, (d) 

grayscale, (e) image blur up to 10px, (f) image noise up to 10% 

of pixels 

 

3. METHODOLOGY 

The flowchart of training and detection process of YOLO-fish 

model is shown in figure 5. The methodology of this study can 

be broken down into two phases, first one is the training phase; 

this step consists of three stages. Firstly, data collection, data 

used in this research is represented by several fish images, then 

data pre-processing which includes image augmentation and 

resizing, these images will be split in two sections (the training 

section which represents about 70% and the testing section 

which is about 30%). Secondly, data processing, where the 

training will be started after making the ground truth bounding 

boxes and the images as inputs to our training model, as a result 

the predicted bounding boxes plus the confidence scores will be 

obtained. Thirdly, model’s evaluation, so to evaluate our 

model’s performance, the mAP will be calculated based on GT 

bboxes (Ground truth bounding boxes) and the predicted 

bboxes. The second phase in methodology is the detection 

phase, after splitting the video into frames and resizing these 

unseen frames, we fed the already trained model yolo-fish, in 

order to predict the bboxes and get the final detection results as 

a video detection. The experiment was conducted on google 

collab on a computer that has Intel i7, 64-bit 3.30 GHz CPUs, 

and a virtual NVIDIA GeForce GTX 1070Ti GPU. The model 

receives images of 640 × 640 pixels as inputs. The model has 

been trained for 200 epochs with an initial learning rate of 0.001 

and a batch size was set to 64. 

 

 

Figure 5. A flowchart of training and detection process of 

YOLO-Fish model. 

 

A series of experiments were conducted to evaluate the 

performance of the model. The indexes for evaluation of the 

trained model are defined as follows: 

 

                           Recall = TP / TP + FN           (3) 

                           Precision = TP / TP + FP       (4) 

 

where TP, FN, and FP are the true positives (correct detection), 

the false negatives (miss), and the false positives (false 

detection). The picture in reality may or may not contain any 

fish but when it contains, the area containing the fish is 

additionally labelled. In case a specific area contains a fish and 

the model predicts it accurately, we have a so called True 

Positive (TP). If the model does not detect any fish in the area 

and the labelled data confirms that, then this can be referred to 

as a True Negative (TN). False Positives (FP) tells that fish is 

identified by the model when none existed within the labelled 

picture. False Negatives (FN) means that the model failed to 

distinguish a fish that was there within the picture. To 

understand this confusion matrix Fig.6 shows all these 

possibilities. 

 

Another evaluation metric for object detection which is, the 

Average Precision (AP) was also used in this study. It can show 

the overall performance of a model under different confidence 

thresholds, and is defined as follows: 

 

                           AP = ∑n (rn+1 − rn) pinterp (rn+1)     (5) 

 

With:                   pinterp (rn+1) = max 

                           r˜: r˜≥rn+1, p(r˜) 

Where:               p(r˜) is the measured precision at recall r. 

 

 

Figure 6. Confusion matrix relating TP, TN, FP and FN. 
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4. EXPERIMENT 

Fish training and testing dataset in this study was provided from 

Open Images Dataset V6 (storage googleapis website). It 

consists of 1200 images and their annotations. To train and 

validate the Yolo model we divided dataset into two sections: 

70% for training and 30% for testing. Figure 8 shows some 

samples of the images used in training.    

 

In order to train the model, it is important to provide not only 

the class of the object but also the bounding box data of the 

object as correct answer. In this context, we parsed the x, y 

coordinates, width and height of the fish in the annotation of the 

image’s dataset. In addition, we used data augmentation to 

extend the amount of data. 

 

The model has better performance as number of epochs 

increases. However, when number of epochs exceeds 200, the 

network seems to be overfitted to training data. As a result, 

Table I shows the hyper-parameters used to train and validate 

the Yolo model. 

 

 

Number 

of 

iterations 

Number 

of 

epochs 

Learning 

rate 

Batch 

size 

Subdivisions 

4000 200 0.001 16 64 

Table 1. Hyper-parameters to train the Yolo model. 

 

The video that will be processed by the model in the detection 

phase, has been provided by the National Institute of Fisheries 

Research of Casablanca (INRH) and it has been taken under-

water by scuba diving. This video is a great real example of an 

underwater fish movements in different environments. 

 

 

Figure 6. example of a frame image from the underwater video. 

 

5. RESULTS AND DISCUSSION 

The training result is shown in Figure 7. which represent a 

graph of the relationship between training iterations and average 

loss. 

 

 

Figure 7. The average loss function of the training. 

 

The graph illustrates the loss while training the neural network 

and the average loss is reduced to 0.54%. That means the model 

is affected by training data. A total of 4000 iteration were run 

and it took 14 hours to complete the training. The model 

improved swiftly in terms of precision, recall and mean average 

precision before plateauing after about 1000 iterations, and 

around 1000 iterations the loss showed a rapid decline. 

 

For each epoch, 64 images are randomly selected and used to 

train the model. Each image is used multiple times due to the 

limited number of samples. Figure 8, shows some training 

samples, and the number zero indicates the fish class. 

 

  

Figure 8. Training samples. 
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5.1 Image Detection 

After training our YOLO model, we tested the network with 

30% of the test set, which consists a new and unseen image. The 

model recognizes fish in given images in different environments 

and performs bounding boxes around the detected fishes. As 

shown in Figure 9 results of fish detection in still images. 

 

 
Figure 9. Detection results in different environments: (a) 

detected fish in seaweeds, (b) detected fish in rocky seabed, (c) 

detection of two separated. 

 

 

5.2 Video Detection 

The detection results within a video and frame images when the 

proposed method finally detects small and big Fish are shown in 

Figure 10. The underwater video has been spilt into multiple 

frames and it is composed of 1032 frames in total, many fish 

has been detected and classified positive, so Figure 10. will 

represent some examples of fish detection results within a video 

frame. It took 532 frames until the fish appeared on the screen 

and disappeared to the right edge (Figure 10. (a), (b), and (c)), 

and in the frame image 639, another fish was recognized 

correctly (Figure 10. (e), (f), and (g)). The detection 

performance is represented by the cumulative average of the 

classification performance up to the last frame, even if the 

model didn’t detect some tiny fish in frame 563 (c). Therefore, 

the proposed method is less likely to yield incorrect 

classification results. In particular, it has a high classification 

probability for very slow-moving fish. 

 

 

 

Figure 10. Detection results for video frames: (a) Frame 532, 

(b) Frame 542, (c) Frame 563, (d) Frame 639, (e) Frame 650, 

and (f) Frame 657. 

 

In order to evaluate our model, we added some effect and noise 

to the underwater video to see if the yolo-fish model is accurate 

in different environments. We have applied the greyscale effect 

and we lowed the brightness of the original video. As a result, 

the model recognize correctly fish in different frames, Figure 

11. shows the same frames as (Figure 10) so we can compare 

the detection results between the original video and the edited 

one. In Frame 639 (d), Frame 650 (e), and Frame 657 (f) the 

model misclassified the fish, but in the other frame images, ((a) 

Frame 532, (b) Frame 542, and (c) Frame 563) 50% of fish has 

been classified positive and misclassified the rest, which is 

obviously not the same result as the original underwater video. 

So, the proposed method is 50% accurate even in difficult video 

recording’s circumstance. 

 

 

 

Figure 11. Detection results for video frames in greyscale and 

low brightness: (a) Frame 532, (b) Frame 542, (c) Frame 563, 

(d) Frame 639, (e) Frame 650, and (f) Frame 657. 

 

5.3 Model’s Evaluation  

We used three metrics to measure the performance of the 

model. First, we measured the accuracy of the classification to 

see how well the neural network detects the fish. We have 

prepared 100 images, some of them containing fish and labeled 

‘positive’, and others did not contain fish and labeled 

‘negative’. We then checked that the network detected the fish 

in the positive image and did not detect the fish in the negative 

image. Moreover, in 100 images the total number of predicted 

bounding boxes was about 371. 7% of them was false positive 

and 93% was true positive as shown in Figure 12. So as a result, 

sensitivity was 96% and specificity was 93%. 

 

 

Figure 12. False positive and true positive for 100 images. 
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Second, the precision–recall curve (P–R curve) Figure 13. This 

metric was performed to appears the tradeoff between precision 

and recall for distinctive threshold. The markers indicate the 

points where recall and precision are obtained when the 

confidence threshold equals 0.9. High precision reflects a low 

false positive rate, and high recall relates to a low false negative 

rate. 

 

 

Figure 13. Precision and Recall curve of the model. The 

markers indicate the points where recall and precision are 

obtained. 

 

Finally, We evaluated our Yolo-Fish model by calculating the 

mAP (mean average precision) score; it’s a metric for object 

detection evaluation models, combines both a location and a 

classification task, and it is calculated by taking the mean AP 

over our fish class and overall IoU (intersection over union 

between the grounth truth boundings boxes and the predicted 

ones) thresholds. In our study the mAP was 91,30% as 

presented in Figure 14.  

 

 

Figure 14. Mean Average Precision. 

 

5.4 Discussion 

The marine natural environment is characterized by an 

important biodiversity made up of species (fauna and flora) of 

different sizes and shapes. This composition of marine species 

makes the automatic detection of these marine creatures very 

difficult, but we can have the greatest potential for improving 

performance in adjusting the data collection and in improving 

the data annotation. Our model could detect fish in different 

natural marine environments, but to improve this detection in a 

difficult video recording circumstance, it is necessarily to have a 

wider-angle camera to capture more and more complete fish 

characteristics, and avoid obstacles in the camera’s field of view 

to increase the resolution of the images.  

 

In the continuity of this work, and to improve our results, we 

will investigate specifically the difficult recording 

circumstances where the detection network has failed, as is the 

case with the detection results for video frames in greyscale and 

low brightness in Figure 11. Moreover, this work will be 

expanded to deep learning-based marine species detection with 

multiple classes. We are going to work on real underwater 

videos taken for the mapping of benthic bottoms and which 

allow us to invest in the detection of several objects (species, 

substrate, etc.) 

 

Through this first experience, we recommend: 

1. To continue using high-resolution cameras as it is 

possible to have a great image or video to identify 

detailed fish characteristics. Furthermore, the camera 

should deliver usable images for all light and climate 

conditions that occurred during the period of the 

marine information collection project.  

2. Increase the number of observations (number of 

videos) to take advantage of the strategy of increasing 

the sample size. 

3. To slightly modify the architecture of this model to 

improve the detection rate accuracy. 

  

Finally, we will also study how to adapt our experiment to the 

new version of YOLO (i.e., YOLOv5), which has recently 

appeared. 

 

6. CONCLUSION 

In this paper, the Yolo-V3 based fish detection method was 

proposed. We adopted architecture of YOLO for object 

detection, and trained the network using custom fish images. In 

addition, we trained the network using non-fish organisms and 

various type of seabed to enhance specificity of the network.  

As a result, we could detect fish precisely in different natural 

environments. To detect object using neural network, the 

network is trained using various images of target object. For 

fish detection, due to the body fish protective coloration, there 

are many cases that seabed was misclassified as fish. Therefore, 

training the network using data augmentation was helpful to 

enhance the accuracy. The network can be improved to be 

applied for multiple marine class objects for marine videos 

analysis and image information extraction. In addition, our 

model classifies all fish as a ‘positive’ class regardless of 

species. However, it uses multiple images captured in different 

environments, so if we collect more images by species, we 

would be able to detect, observe and classify fish species. 
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