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ABSTRACT 

 

Electricity assets recognition and inventory is a fundamental task in the geospatial-based electrical power distribution management. In 

Malaysia, Tenaga Nasional Berhad (TNB) aims to complete their assets inventory throughout the country by 2022. Previous research 

has shown that a method for assets detection especially for TNB is still at an early stage, which mainly relied on manual extraction of 

the assets from different data sources including mobile laser scanner (MLS). This research aims at evaluating a geospatial method 

based on machine learning to classify the TNB assets using high density MLS data. The MLS data was collected using Riegl VMQ-1 

HA scanner and supported by the base station and control points for point cloud registration purpose. In the first stage the point clouds 

were classified into ground and non-ground objects. The non-ground points were further classified into different landcover types i.e. 

vegetation, building, and other classes. The points classified as other classes were used for overhead powerline and electricity poles 

classification using random forest-based Machine Learning (ML) approach in LiDAR 360 software. Based on the classified point 

clouds, detailed characteristics of electricity poles (i.e. number of poles, height, diameter and inclination from ground) and overhead 

powerlines (number of cable segments) were estimated. This information was validated using field collected reference data. The results 

show that the detection accuracy for electricity poles and overhead power line are 65% and 63% respectively. The estimation of length, 

diameter and height of the spun pole from point clouds has produced Root Mean Square Error (RMSE) value of 0.081cm, 0.263 cm 

and 0.372 cm respectively. Meanwhile for the concrete pole, the length, diameter and height has been successfully estimated with the 

value of RMSE of 0.034 cm, 0.029 cm and 0.331 cm respectively. The length of overhead powerline was estimated with 59.02 cm 

RMSE. In conclusion, the MLS data had show promising results for a semi-automatic detection and characterization of TNB overhead 

powerlines and poles in the sub-urban area. Such outcome can be used to support the inventory and maintenance process of the TNB 

assets.   

 

 

1. INTRODUCTION 

LiDAR technology has significantly changed the landscape of 

land surveying and mapping since the introduction of high 

processing power of computer and Global Navigation Satellite 

System (GNSS). The technology capable of delivering detailed 

and accurate three-dimensional point clouds data to support 

various terrestrial applications. Nowadays, the newly emerges 

LiDAR technology has shifted to multi-platforms approach 

namely UAV-based and mobile laser scanner (MLS). Commonly 

the MLS system is mounted to a vehicle and backpack, which 

provides detailed geometric information of terrestrial objects in 

the form of high-density point clouds. The MLS system works 

with the support from GNSS, inertial navigation system (INS) 

and distance measurement indicator (DMI) which georeferenced 

the point clouds. The MLS system commonly integrates camera 

sensor to colorize the point clouds. 

 

MLS technology that provides high density point clouds may 

accurately characterized a complete pole object. In Malaysia, the 

poles and overhead cables are owned either by local authorities, 

Telekom Malaysia or TNB. These poles and cables are different 

in size, materials and functionality. Most of the previous studies 

have been focusing on extracting light poles in urban 

environment (Ma et al., 2018). The existing light poles detection 

on point clouds can be grouped into data driven and knowledge 

driven approaches. The knowledge-driven method operates 

based on the facts that poles are commonly located near the road 

curbs and poles stand vertically on the ground within a certain 

height (Ma et al., 2018). The knowledge-driven method is further 

classified into matching-based and rule-based extractions. The 

matching-based extraction operates by matching the selected 

portions of point clouds with known object models. Yu et al. 

(2015) compared the pre-defined 3D model with point clouds 

based on a pair-wise comparison. Based on the comparison, the 

local and global dissimilarity is calculated. Cabo et al. (2014) 

partitioned the point clouds using voxel model, which help in 

reducing the initial data. Small two-dimensional segments were 

selected that are compatible with a target pole. The 3D voxel of 

the detected pole was determined to classify individual poles in 

the dataset. 

 

On the other hand, the rule-based detection method used 

geometric and spatial features of poles as rules in the process of 
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selecting the points. Teo & Chiu (2015) used rule-based approach 

with geometric features i.e. area of cross-section, position, size, 

orientation, and shape to remove other objects. Meanwhile, pole 

parameters (e.g., location, radius, and height) were computed to 

extract feature and the hierarchical filtering method was 

employed to remove the unwanted objects. Rodríguez-Cuenca et. 

al.(2015) applied vertical conditions of pole as parts of the rule-

based pole extraction process. The rule-based methods are 

efficient, simple and relatively fast to apply on the point clouds. 

However, there is not standard on the quantity of rules (Ma et al., 

2018). Furthermore, the quality of rules should be carefully 

determined either from the data or the knowledge of experts. 

Commonly the rule-based method tends to over segmented the 

point clouds with numerous rules or under-segmented with small 

number of rules. The data-driven method requires set of features 

to be designed and applied to train learning algorithms in 

detecting the poles. The training sets should be collected for 

different type of poles and the training process would involve 

massive labelled point clouds (Ma et al., 2018). Haiyan Guan, 

Yongtao Yu, Jonathan Li, & Pengfei Liu (2016) developed a 

contextual visual library of light poles from 50 training sets along 

a specific stretch of roads. The library was used to detect light 

poles from the ground filtered point clouds data. Wu et al. (2017) 

integrated two dimensional (2D) images with point clouds for 

poles detection. The pole features (i.e. the height, the average 

height, the standard deviation of height, the estimated volume, 

the number of pole points, pixel intensity and the number of the 

super-voxels whose area of the convex hull) were computed and 

used in the support vector machine (SVM) and random forest 

classifiers.  

 

Wang et al.(2018) classified MLS point clouds into powerline 

class using data driven approach over urban and rural 

environment. They highlighted that the major issue was the close 

and high vegetation canopy that blocked GNSS signal during 

data MLS observation process. The GNNS outage has caused 

10cm positioning errors for data observed in rural area. Another 

problem raised by the inhomogeneous point cloud distribution 

over the powerline for point clouds obtained from the backpack 

MLS system. This has significantly affected the powerline 

detection over rural area. This paper aims at evaluating the 

performance of high-density point clouds produced by MLS 

system over sub-urban area. The study area is characterized by 

residential zones which the point clouds include various objects 

i.e. cars, trees, heavy traffic. This might affect the homogeneity 

and density of point clouds over overhead powerline and poles. 

In addition, this may cause problems in the classification and 

extraction process of these electricity assets.   

 

 

2. MATERIALS AND METHOD 

2.1 Overall Methodology 

The methodology can be divided into 4 phases namely, 1) data 

acquisition, 2) data pre-processing, 3) classification of point 

clouds, 4) detection of overhead powerlines and electricity poles 

and 5) validation of results.  

Figure 1. Workflow of the research methodology 

 

2.2 Description of Study Area  

The main study area for this research is in Taman Sri Pulai, Johor 

(1°33´N 103°37´E) (peninsular Malaysia) as shown in a map 

(Figure 2). This study area was focused on the suburban area 

located in Taman Sri Pulai. Therefore, the data collection was 

taken from this covered area for the TNB asset which is utility 

pole and overhead cable. This area was selected as one of the 

study areas because as it can see the mixed-use or residential area 

is representing the land cover, hence there is a lot of TNB assets, 

especially electrical poles and overhead cable as one of the 

contributions of sources to distribute electric power to users. 

Moreover, these areas are easy to access because they are located 

in a road environment which is an important roadway asset. The 

data acquisition was collected by team field data capture from 

GPS Lands Sdn Bhd and Topcon Malaysia. 

 

Figure 2. Location of Study Area at Taman Sri Pulai, Johor 
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2.3 Data Acquisition  

The MLS data acquisition is made over sub-urban area of Taman 

Sri Pulai, Johor. The area consists of residential which is 

characterized by terrace houses, moderately cover by vegetation. 

The data collection was done during the off-peak time to reduce 

traffic obstacle during MLS data collection. The MLS system 

employed Riegl VMQ-1 HA scanner and supported by the base 

station and control points for point cloud registration purpose.  

 

2.4 Data Pre-Processing 

Data Pre-Processing is one of the most crucial parts in the 

methodology of flowchart. In this phase, performing 1) 

Georeferenced data, 2) Land use land cover classification and 3) 

Feature extraction is using LiDAR360 software. The method 

used for this research study is Machine Learning (ML) method 

using random forest algorithm because it aimed at classifying a 

model that the user defined. The way ML works is based on the 

parameters setting of height and size of the training model. 

 

2.5 Classification of Point Clouds 

Raw LiDAR point clouds consist of individual points that 

represent the 3D spatial positions of the pulse-reflecting targets 

of the laser scan present at the time of data capture in the survey 

area. Details related to the echo return number (in multiple return 

laser scanners), intensity metrics, RGB image values, and 

classification codes may be attributed to these coordinate value 

sets. 

 

2.5.1 Georeferenced Data 

 

Three-dimensional point cloud data files from Mobile LiDAR 

Scanning data systems include not only X, Y, and Z point 

coordinates, but additional information such as GPS time, scan 

angle, or reflectance intensity information for the millions of 

points found in the point cloud. The geo-referenced or recorded 

point clouds are formed in a desired coordination system once the 

trajectory has been produced based on observation of DMI and 

IMU. In this research paper, the coordinate system that will be 

used is WGS 84 / UTM zone 48N, EPSG:32648 as it located in 

Johor, Malaysia. 

 

2.5.2 Land Use Land Cover for Point Cloud Data  

 

Land use land cover for point cloud data is second phase of the 

methodology where to get the results for extracted TNB assets, 

land use land cover and ground points filtering should be done 

first before the feature extraction for poles and power lines were 

conduct. One of the important factors which affects the accuracy 

of mobile LiDAR data is a data filtering technique, which is the 

process of isolating LiDAR point clouds so that only ground 

point will be use. In other words, ground points and non-ground 

points must be separated. Besides, the land use land cover was 

also conducted to minimize the others features of point cloud 

such as ground, building, and trees were detecting as pole and 

powerline. Hence, this phase will perform the classification for 

ground, building and trees, then follow with the pole and 

powerline. Therefore, the chances to other features to detect pole 

and powerline is low and it will be eased to clean the data for the 

next process.  

 

2.6 Detection of Overhead Powerlines and Electricity Poles 

Using Machine Learning  

ML approach we use to classify LiDAR point clouds. LiDAR360 

provides a ML approach to point cloud classification. The ML 

classification tool makes use of a random forest method for 

determining individual point classifications based on a statistical 

model of user-defined feature types. To apply the ML approach, 

the training model must be developed first by defining the pole 

and powerline. The way ML works are based on the building 

parameters of maximum building size: 60m and minimum 

building height: 3m. After the training data is ready, using 

classify by trained ML model, it can be applied to classify all the 

point clouds features to detect pole and powerline. 

2.6.1.1 Filtering Data 

 

In this part of the methodology, the software that is used to filter 

the data is ArcGIS and MATLAB. Both software use the same 

method of Minimum Bounding Geometry using circle fitting for 

Spun Pole Low Voltage and rectangle fitting for Concrete Pole. 

The Minimum Bounding Geometry creates a feature class 

containing polygons which represent a specified minimum 

bounding geometry enclosing each input feature or each group of 

input features. The output polygon features, and their attributes 

will vary depending on the specified geometry type and grouping 

choices. For the powerline, the height was filtered based on the 

aggregation method using ArcGIS software to get the exact 

height of the pole. Aggregation method is one of the tool 

resamples that works to multiply the cell resolution of the input 

raster by the factor specified by the cell factor parameter.  

 

2.7  Validation of Results 

From the mobile LiDAR data, accuracy assessment can be made 

according to the data feature extraction results using ML 

classification tools. By performing accuracy examination, it can 

figure out how accurate the mobile LiDAR data is to detect pole 

or power line extraction. It also can detect the location of the TNB 

assets, the height of poles, and diameter of poles. All of these 

must be validated by using a few approaches based on the 

completeness of data reduction. In this paper, the assessment and 

comparison of the classification and feature extraction results 

will be carried out using complete confusion matrix to prove the 

overall accuracy of the method used. Table 1 shows the example 

of confusion matrices that will be used for this research paper. 

The purpose of using this confusion matrices is to evaluate 

metrics for ML approach or to evaluate the model’s performance. 

This is considered as the predicted point clouds detected using 

mobile LiDAR data vs actual point clouds. 

 

Predicted 

Actual 

 Non-Pole Pole 

Non-Pole True Negative 
False 

Positive 

Pole 
False 

Negative 

True 

Positive 

 

Table 1. Example confusion matrices to evaluate data. 

 

The assessment method to calculate the accuracy is based on the 

precision and recall. The following formula were used to 

compute precision, recall and accuracy (Braun, 2020): 

. 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

(𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 +

𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)

 

 

To perform the accuracy assessment to identify the accuracy of 

the diameter, circumference, length, height of pole and the 

number segment of powerline detected in mobile LiDAR data is 

by computing the Root Mean Square Error (RMSE) (Braun, 

2020) 

. 

𝑅𝑀𝑆𝐸 = √∑
(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝐴𝑐𝑡𝑢𝑎𝑙)²

𝑁
 

 

To know whether the validation of extraction pole and powerline 

achieve the target of TNB’s requirements, and the accuracy 

needed by TNB are based on Table 2 that shows TNB’s 

measurement of pole size according to the requirements of 

getting the accuracy. The highlighted part is the one that focuses 

on this study area at Taman Sri Pulai, Johor because it only 

consists of concrete pole and spun pole low voltage. All the 

assessments are made based on the measurement that has been 

fixed.  

 

 
Table 2. TNB’s measurement of pole size 

 

 

3. RESULTS AND DISCUSSION 

This section will show the result in detail of data acquisition for 

mobile LiDAR Data. Two (2) main types of data have been used 

in this study. First, Mobile LiDAR Data that has been acquired in 

LAS format that provide GPS time, point source ID, scan 

direction flag, number of returns, scan angle rank, edge of flight 

line, minimum and maximum x, y, z. The second data used in this 

study is ground truth data that came from field survey manually 

using digital inclinometer which is Nikon Forestry Pro II Laser 

Rangefinder to measure the height of pole and measuring tape to 

measure the circumference of pole.  

 

The characteristics and description of this Mobile LiDAR Data 

are shown in the Table 3 below while the result of Mobile LiDAR 

Data Acquisition is shown in Figure 3. 

 

Characteristics Description 

Total Points Count 250,116,110 

Coordinate System WGS 84 / UTM zone 48N 

Return Number 250,116,110 

LiDAR System RIEGL VMX-1HA 

(vehicle) 

Geoslam ZEB Discovery 

(backpack) 

Cover Area (per m²) 77,259 

Average Point Density (per m²) 203,285 

File Format LAS Format 

Table 3. Description of Mobile LiDAR Data 

 

 

 
 

 
 

Figure 3. The result for Mobile LiDAR Data Acquisition 

 

 

3.1 High Density MLS point clouds 

This section will explain in detail about the significant result 

based on the experimental result that used random forest (RF) 

method to detects and validate how good Mobile LiDAR data 

based on the accuracy of point cloud of pole and point cloud of 

powerline. The result of classification for Mobile LiDAR Data is 

shown in Figure 4. Figure 5 shows the the pole and powerline 

detected using the ML approach, Figure 6 shows the extracted 

result for pole and powerline after cleaning data and Figure 7 

shows the types of TNB assets after features extraction. 

 

 
Figure 4. The result of classification for Mobile LiDAR Data 

 
Figure 5. The pole and powerline detected using the Machine 

Learning approach 
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Based on Figure 4, it classifies the pole and powerline according 

to the classification of pole and powerline in training data. Hence, 

it only detects poles and powerlines that are covered by the study 

area. Based on Table 4, the overall result for this Machine 

Learning approach using random forest method for pole and 

powerline are 0.65 and 0.63 respectively for the accuracy of the 

assessment method.  

 

3.2 Detection of Overhead Powerlines and Electricity Poles  

The overall accuracy assessment for automatic extraction using 

random forest method for pole and powerline that consists of the 

precision, recall and accuracy for pole and powerline after 

performing the machine learning approach. The range of values 

for the correlation coefficient is 0.0 to 1.0. The closer the value 

to 1.0, the higher the accuracy of mobile LiDAR detected the 

point clouds of pole and powerline. 

 

Assessment Method Pole Powerline  

Precision 0.830 0.801 

Recall 0.751 0.746 

Accuracy 0.650 0.630 

Table 4. The Precision, Recall and Accuracy of Pole and 

Powerline 

 

 
 

Figure 6. The extracted result for pole and powerline after 

cleaning data 

 

 

This result is obtained from the previous result which is pole and 

powerline extraction using random forest method. From these 

results, there are two types of TNB poles in this study area which 

are Spun Pole (Low Voltage) in (a) and Concrete Pole (b) in 

Figure 7, that have both different shapes and sizes. Therefore, 

from these findings, the assessment method is performed by 

calculating the root mean square error (RMSE) for the diameter, 

circumference, and height of pole for spun pole low voltage and 

the length, width, and height for concrete poles. 

 

 
Figure 7. The types of TNB assets 

 

Figure 8 shows the result of circle fit by Taubin where the point 

clouds of the pole detected using Mobile LiDAR data have been 

used to analyze the radius of pole in the field. There were 13 poles 

observed as spun pole low voltage and it gives the radius and 

coordinate of the pole. The radius value is based on the point 

clouds detected. 

 
Figure 8.  Circle Fitting using MATLAB 

 

 

3.3 Detection and Inventory Accuracies  

Based on Figure 9 below, there are 50 poles of concrete pole in 

the field study and the shape of the concrete pole is rectangle, 

hence it uses a rectangle fit in ArcMap using minimum bounding 

geometry. This result was providing the length and the area of the 

pole based on the point clouds detected. The same assessment as 

spun pole low voltage was used by applying to form the attribute 

table hence, the RMSE can be computed and validate the result 

that shows in Table 5 for spun pole low voltage, Table 6 for 

concrete pole and Table 7 for powerline segment. 
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Figure 9. Rectangle Fitting using ArcMap. 

 

 

Assessment Method 

Root Mean Square Error 

(RMSE) (cm) 

Spun LV Pole 

Diameter 0.081 

Circumference 0.263 

Height 0.372 

 

Table 5.  RMSE for Spun Pole Low Voltage 

 

 

Assessment Method 

Root Mean Square 

Error (RMSE) (cm) 

Spun Concrete Pole 

Length 0.034 

Width 0.029 

Height 0.331 

Table 6. RMSE for Concrete Pole 

 

 

Assessment Method 

Root Mean Square 

Error (RMSE) (cm) 

 Spun Low Voltage (LV) Pole 

Length 59.02 

Table 7.  RMSE for Powerline Segment 

 

 

From the result obtained, the overall accuracy of point cloud 

classification using RF method were 0.650 and 0.630 for pole and 

powerline, respectively. Most of the misclassified point clouds 

occurred in poles and powerlines adjacent to trees. It detects point 

clouds that do not represent poles and powerlines. There are a few 

factors that affect this result, which is first, there are a few errors 

in the training data that may wrong classify the point cloud, for 

example, classify poles that are close to the tree that causes the 

tree to be detected as a pole. In addition, the second factor that 

affects the result is the classification of ground and building is not 

100 percent accurate because there is a point cloud of the building 

that is not recognized as a building.  

Furthermore, the RMSE values of height for both types of poles 

is relatively high which caused the error of DTM estimation that 

is not highly accurate and also influenced the results. At the end 

of this research study, all the information obtained can be 

performed on a 3D map in desktop web with the information that 

fits with TNB’s requirements. 

The line graph shows in Figure 10 till Figure 15 is based on the 

attribute table acquired after cleaning data is performed to see the 

pattern of the graph for each number of poles detected as observed 

with mobile LiDAR compared to the actual number of poles 

detected in the field.  

There are 6 figures of graph where the first 3 graphs is for spun 

pole low voltage and the other 3 graphs is based on concrete pole. 

3.3.1 Result for Spun Low Voltage Pole 

 

 

Figure 10. The Diameter of Spun Low Voltage Pole 

 

Figure 10 shows the diameter of spun pole low voltage. Based on 

the graph, the value of diameter that observed in pole number 4 

and pole number 9 are higher than the actual value which is 

0.42m for both pole number 4 and pole number 9. The actual 

value for diameter is 0.24m.  

 

 

Figure 11. The Circumference of Spun Low Voltage Pole 

 

Figure 11 shows the circumference of spun pole low voltage. 

Based on the graph above, the same cases as the diameter where 

pole number 4 and pole number 9 are also has the higher value of 

circumference compared to the actual value which is 1.3188m. 

The actual value for circumference is 0.73m.  

 

 

Figure 12. The Height of Spun Pole Low Voltage 
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Figure 12 shows the length of concrete pole. Based on the graph 

above, the actual length of spun concrete pole is 0.23m. There are 

five poles that has the higher value and overall, the observed 

value is nearly to the actual value. 

  

3.3.2 Result for Spun Concrete Pole 

 

 

Figure 13. The Length of Concrete Pole 

 

Figure 13 shows the length of concrete pole. Based on the graph 

above, the actual length of spun concrete pole is 0.23m. There are 

five poles that has the higher value and overall, the observed 

value is nearly to the actual value.  

 

 

Figure 14. The Width of Concrete Pole 

 

Figure 14 shows the width of spun concrete pole. Based on the 

graph above, there are one pole that has higher observed value 

which is pole 4, 0.323106m compared to the actual value which 

is 0.2m. Overall, most of the observed pole value is nearly to the 

actual value.  

 

 
Figure 15. The Height of Concrete Pole 

 

Figure 15 shows the height of concrete pole. Based on the graph 

above, the patterns of the graph showing there is the higher and 

the lower value of observed compared to the actual value.  

 

There are several assessment methods that has been made in this 

study, which is compute the precision, recall getting the accuracy 

of the mobile LiDAR point clouds that detect pole and powerline. 

Moreover, from the extracted features itself were computed the 

RMSE value for pole and powerline to identify how good the 

mobile LiDAR data classify and detect the TNB asset.  

 

4. CONCLUSION 

The accuracy results for this Machine Learning approach using 

random forest method for pole and powerline are 65% and 63%, 

respectively. The validation result obtained does not achieve the 

target at least in 80% of the accuracy of Mobile LiDAR detects 

the point clouds. However, the result is still considered in good 

range because it considers a few factors which is most of the 

misclassified point clouds occurring in poles and overhead cables 

adjacent to trees.  

 

In conclusion, the aim and objectives of this study have been 

achieved by employing geospatial approach for TNB asset 

mapping using mobile LiDAR data in Taman Sri Pulai, Johor. 

The study has shown that point clouds obtained from high density 

point clouds can be successfully used to support the semi-

automatic approach of TNB asset extraction and inventory. In 

addition, the outcomes can be used to support the TNB asset 

maintenance routine. 
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