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ABSTRACT 

This paper introduced a novel method of landslide activity mapping using vegetation anomalies indicators (VAIs) obtained from 

high resolution remotely sensed data. The study area was located in a tectonically active area of Kundasang, Sabah, Malaysia. High 

resolution remotely sensed data were used to assist manual landslide inventory process and production on VAIs. The inventory 

process identified 33, 139, and 31 of active, dormant, and relict landslides, respectively. Landslide inventory map were randomly 

divided into two groups for training (70%) and validation (30%) datasets. Overall, 7 group of VAIs were derived including (i) tree 

height irregularities; (ii) tree canopy gap; (iii) density of different layer of vegetation; (iv) vegetation type distribution; (v) vegetation 

indices (VIs); (vi) root strength index (RSI); and (vii) distribution of water-loving trees. The VAIs were used as the feature layer 

input of the classification process with landslide activity as the target results. The landslide activity of the study area was classified 

using support vector machine (SVM) approach. SVM parameter optimization was applied by using Grid Search (GS) and Genetic 

Algorithm (GA) techniques. The results showed that the overall accuracy of the validation dataset is between 61.4–86%, and kappa 

is between 0.335–0.769 for deep-seated translational landslide. SVM RBF-GS with 0.5m spatial resolution produced highest overall 

accuracy and kappa values. Also, the overall accuracy of the validation dataset for shallow translational is between 49.8–71.3%, and 

kappa is between 0.243–0.563 where SVM RBF-GS with 0.5m resolution recorded the best result. In conclusion, this study provides 

a novel framework in utilizing high resolution remote sensing to support labour intensive process of landslide inventory. The nature-

based vegetation anomalies indicators have been proved to be reliable for landslide activity identification in Malaysia. 

* Corresponding author 

1. INTRODUCTION

Landslides are one of the frequent natural disasters in the world, 

causing substantial economic losses and casualties (Dehnavi et 

al., 2015, Gaidzik et al., 2017, Tiranti and Cremonini, 2019). 

About 7000 deaths and more than 1,000 million USD in 

economic losses have been documented based on reported 

landslide occurrences in Asia (2005 to 2016) (Sanderson and 

Sharma, 2016). Landslides impact on many aspects (socio-

economic, ecological, etc.) of the affected inhabitants. This 

phenomenon is mainly caused by the urbanisation process, 

deforestation, and uncontrolled development (Scaioni et al., 

2014, Schuster, 1996). An effective risk assessment framework 

is required, which involves susceptibility and hazard modelling, 

vulnerability assessment, and risk assessment (Van Westen et 

al., 2008). Landslide inventories are the initial and fundamental 

steps for susceptibility, hazard, and risk assessments which 

consider the rule that the past is the key to the future (Highland 

and Bobrowsky, 2008). In this case, future landslides will 

probably happen under similar conditions (Van Westen et al., 

2008). Therefore, landslide-prone areas with a different state of 

activity need to be assessed for mitigation purposes.   

However, previous studies have shown that landslide mapping 

in a vegetated area is very challenging due to the covering effect 

of dense vegetation (Jaboyedoff et al., 2012), its widespread 

distribution in an undulating area (Tien Bui et al., 2018), and 

rapid vegetation growth (Mezaal et al., 2017, Pradhan et al., 

2015) that will remove the landslide signature. Furthermore, the 

hilly and inaccessible area complicates the actual boundary 

identification of landslide. Conventionally, recognition of 

landslide type and activity conducted by an interpreter depends 

on various diagnostic features like morphology or shape, 

drainage, and structural conditions. For instance, an active 

landslide is commonly fresh, in which their morphological 

features, such as scarps and ridges, are readily identifiable due 

to gravitational movement and have not been substantially 

altered by weathering and erosion processes (Varnes, 1978). 

Besides, synthetic aperture radar (SAR) technology is primarily 

used to measure surface deformations, which creates time-series 

data of surface deformations, at single points (Berardino et al., 

2002). However, the quality of data depends on various factors 

such as foreshortening, layover effects, atmosphere propagation 

effects, and vegetation decorrelation in forested terrain (Scaioni 

et al., 2014). Furthermore, the techniques of the conventional 

survey are also widely used for landslide activity mapping and 

analysis (Artese and Perrelli, 2018). In Malaysia, landslide 

analysis requires frequent site visits, real-time deformation 

monitoring, and expensive instrument such as electronic 

distance meter (EDM) that is installed in the landslide area for 
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monitoring purposes (Tsai et al., 2012). This method, however, 

produces some hurdles, especially for active landslide zones in 

which enormous financial allocation and instruments can lead to 

costly damage once the landslide strikes. For this reason, the 

application of vegetation as one of the indicators of landslide 

activity may lead to an effective, natural, and inexpensive 

approach for landslide inventory and monitoring processes 

especially in tropical region.   

 

Vegetation may have a beneficial impact on the stability of 

slope because the roots reinforce the layer by binding the soil. 

Previously, several VAIs were used to determine the 

relationship between vegetation characteristics and landslide 

occurrences such as tree height irregularities, leaning trunk, 

tree-ring, etc. Razak et al. (2013) found that trees in landslide 

active areas are characterised by low vegetation, small crown, 

and irregular tree height. Tree trunks are often curved as a result 

of external factors including catastrophic events, availability of 

light, and soil creep (Zhang et al., 2016). The fact that the trees 

frequently grow with curved trunks on slopes where other 

evidence indicates there is an occurrence of creep, strongly 

suggests that their curvature is due to creep (geotropism) 

(Harker, 1996). Wang et al. (2016b) and Wang et al. (2016a) 

also demonstrated the application of Terrestrial Laser Scanning 

(TLS) in characterising tree stem curve. They found that most 

of the trees inside landslide (shallow) areas had curved stems 

due to the effects of soil movement. The utilisation of dendro-

chronological or tree-ring analysis methods could enhance or 

improve the understanding of landslide activity and risk 

(Łuszczyńska et al., 2017) since stem deformations affect the 

structure of wood and tree-rings (Stefanini, 2004). However, 

using tree-rings in studying the behaviour of landslides has its 

limitations; for example, some trees need to be cut down, which 

is impossible in some places such as forest nature reserves. 

Since very limited study conducted in tropical area, the primary 

objective of this study was to derive various VAIs from high 

resolution remotely sensed data i.e., satellite image and airborne 

LiDAR. The relationship between VAIs and the landslide 

activity can be further investigated in detail. In order to 

determine the status of landslide activity in the tropical area of 

Kundasang, Sabah, statistical and machine learning methods 

were implemented. Through this case study, the difficulties of 

landslide activity mapping over tropical vegetated area can be 

addressed. This can be useful to guide the in-situ landslide 

activity monitoring and labour-intensive manual image 

interpretation over large landslide zones in the tropical area. 

 

2. STUDY AREA 

Kundasang is located in the Northwest of Ranau, Sabah (Figure 

1). Generally, this area is well-known for its unstable hilly area. 

The study area covers 70.47 km2 which is situated between 500 

to 2000 m above mean sea level. The hilly terrain and ridges 

with high elevation and combinations of steep slopes were the 

consequence of violent tectonic activities in the past (Tating, 

2006). The climate of the study area is determined by its 

proximity to the equator; it is humid and tropical, with 

temperatures ranging between 25°C and 35°C in lowland areas. 

Since the area is located within what is known as the ever wet 

zone, it receives at least 60 mm of rainfall per month with the 

annual rainfall ranges from 1920 mm to 3190 mm (average 

2075 mm) (Tating et al., 2013). This area was selected to pursue 

the objective of this study covering the tropical environments 

and abundance of occurrences of landslides caused by natural 

and anthropogenic factors.  

 

 
Figure 1. Location of study area 

 

Landslides are increasing problem in Kundasang, as a result of 

natural or human interference to natural slopes (Sharir et al., 

2017). This area has been identified as a high-risk area for 

major landslides due to ongoing movement characterized by 

ground tension cracks, sudden localized failures, and ground 

creep (Zainal Abidin et al., 2012). Rocks located beneath 

Kundasang vary in age and type, which is the rock starting from 

Paleocene-Eocene rocks to alluvial rock. Based on the record, 

Kundasang has an average annual soil translation of 0.5m, and 

approximately 70% of the 50 square kilometers surrounding 

Kundasang Town has been identified as a high-risk area (Morpi, 

2011). On June 5, 2015, an earthquake measuring 6.0 Mw 

occurred in Sabah that had triggered the debris flow which 

disrupted roads, houses, and the vegetation along the channel. 

The earthquake was caused by movement on a Southwest-

Northeast (SW-NE) trending normal fault and the epicenter was 

near Mount Kinabalu. The shaking caused massive landslides 

around the mountain (Tongkul, 2017). Therefore, it can be 

concluded that Kundasang area is located in the geohazard zone 

consist of complex geological structures involving chaotic 

geomaterials with highly jointed rock, fault in a zone of intense 

seismic activity (Komoo and Lim, 2003, Tjia, 2007). 

 
3. MATERIALS AND METHOD 

3.1 Overall Methodology 

Overall, the first phase concentrates on the data acquisition and 

pre-processing of high resolution remotely sensed data, field 

data and ancillary data. The remotely sensed data, i.e., airborne 

LiDAR, aerial photos and high-resolution satellite images were 

geo-rectified into the same coordinate system. The point clouds 

obtained from the airborne LiDAR data were filtered to remove 

the non-ground points. The ground points were interpolated to 

produce Digital Terrain Model (DTM). Digital Surface Model 

(DSM) was produced by interpolating the non-ground points. 

The normalised point clouds were generated by normalising the 

original point clouds based on DTM. The field data included 

data collection of landslide inventory and vegetation 

characteristics. Intensive literature review was done on the 

vegetation anomalies that could be used to describe different 

landslide activities in tropical regions. The second stage focused 
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on the development of landslide inventory using manual 

interpretation of high resolution remotely sensed data. The 

landslide inventory map was validated using field-based 

landslide technique. The third stage emphasised on the 

development of VAIs using high resolution remote sensing data. 

The VAI can be grouped into 7 main groups with five different 

spatial resolution (i.e. 0.5m, 1m, 5m, 10m, and 20m): 1) tree 

height irregularities; 2) canopy gap; 3) density of different layer 

of vegetation; 4) vegetation type; 5) vegetation indices; 6) root 

strength index (RSI); and 7) distribution of water-loving trees. 

All the VAI maps and landslide inventory maps obtained from 

the manual interpretation were used in the fifth stage that aimed 

at classifying the landslide activities based on different landslide 

types using Support Vector machine approach. Finally, the 

classified activities of landslide were evaluated using several 

performance indicators.  

  

3.2 Data acquisition and Pre-processing 

3.2.1 Airborne LiDAR Data: Airborne LiDAR data were 

obtained by the Integrated Geospatial Innovations (IGI) Lite 

Mapper 6800-400 mounted onto a helicopter. The data 

capturing process was done over the steep debris flow terrain 

along the Mesilau River using multiple returns setting of laser 

scanning. The data were collected in 2014 for about two months 

after the debris flow that reached the Mesilau River. The 

LiDAR system utilised RIEGL LMS-Q680i laser scanner 

system that is capable of generating point clouds based on full 

waveform analysis. This scanner provides point clouds with the 

accuracy and precision of 20 mm, a maximum range of 3,000 

m, and measurement up to 266,000 pulses per second on the 

ground. The final average point density (m2) of the airborne 

LiDAR data was 160 points per m2 Table 1 shows the complete 

specifications of the IGI Lite Mapper 6800-400 with RIEGL 

LMS-Q680i laser scanning system. The airborne LiDAR data 

were filtered using the Triangular Irregular Network (TIN) 

densification method by Axelsson (2000) to separate ground 

and non-ground points. The DTM of the study area was 

generated by interpolating the ground points to 0.5 m spatial 

resolution. The non-ground points were interpolated to produce 

the DSM. The Canopy height model (CHM) was produced by 

subtracting DTM from DSM. Finally, normalised point clouds 

were produced by subtracting the DTM value from the height 

information in each point.   

 

3.2.2 Satellite Images: Pleiades high resolution satellite 

image consisted of four spectral bands (blue, green, red, and 

NIR) with a spatial resolution of 2 m and 0.5 m for 

multispectral and panchromatic images, respectively. The 

multispectral images were spatially fused to the panchromatic 

image to produce high spatial resolution multispectral image. 

Both airborne LiDAR and Pleiades image were georeferenced 

to the same coordinate system. 

 

3.2.3 Landslide Inventory: Landslide inventory was made 

based on the combination of remote sensing data interpretation 

and field observation. The remote sensing-based landslide 

inventory was done using several airborne LiDAR-derived 

datasets, i.e., topographic openness, hillshade, and colour 

composite. These datasets were generated using DTM and 

orthophoto with 7 cm spatial resolution. Topographic openness 

was used to observe the clear contrast between the planar 

surface and down-slope surface (Razak, 2014). It can be one of 

the landslide features that can be recognised through colour 

ramp observations.  

 

Orthophoto image is capable of exhibiting any evidence of 

landslide occurrence either in a clear form of landslide polygon 

or other evidence leading to landslides, for example road crack, 

soil erosion, and bad surface or ponding in niches or back tilting 

area. 

 

Next, the inventory process continued with landslide 

delineation. The delineation process was based on a scarp and 

accumulation area where the scarp area covered from the crown 

part until the head, while the accumulation area covered from 

the main body until toe. The signatures which related to 

morphology, vegetation, and drainage characteristics would be 

used in classifying landslide type and activity. For active 

landslides, the scarp and crown are obvious, and the 

accumulation zone is visible. The area is mostly characterised 

by less or almost no vegetation cover. A dormant landslide is an 

inactive landslide that may be reactivated due to its original 

causes or other causes. The scarp and body of the failure are 

still visible in the LiDAR image with low density vegetation 

and does not show any recent activity. A relict landslide is an 

inactive landslide, where the slope has been stabilised due to 

natural factors or mitigation measures. The scarp and body of 

the landslide area are not distinguishable through LiDAR 

image. Meanwhile the area is densely covered by vegetation or 

has been mitigated by any structural measures. The results of 

remote sensing-based landslide inventory were verified and 

corrected using the field-based inventory. 

 

3.3 Parameterization of vegetation anomalies indicators 

(VAIs) using remotely sensed data 

In this study, seven groups of VAIs were used in landslide 

activity modelling i.e., tree height irregularities, canopy gap, 

different layers of vegetation, vegetation type distribution, 

vegetation indices, root strength index, and distribution of 

water-loving trees. All the VAIs were derived from airborne 

LiDAR and high-resolution satellite images. The next section 

describes the detail explanation for each of the VAI.  

 

3.3.1 Tree Height Irregularities: Tree height is defined as 

the perpendicular distance between the top and base of a tree 

(Verma et al., 2016). The height value varies across different 

stands and/or species. The distribution of the tree height 

significantly reflects the quality and quantity of tree stand and 

its future growth. Trees in landslide areas have relatively low 

height, small crown, and more irregularities (Mohd Salleh et al., 

2019). Tree height irregularities were calculated using the 

standard deviation of tree height within a selected area size (i.e., 

a grid of 10 m). This calculation was applied to the LiDAR-

derived CHM of the study area. High standard deviation 

indicates highly irregular tree height in a specific area.  

 

 
 

where  is individual height value of the pixel,  is mean 

height value within the 10 m grid. 
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3.3.2 Canopy Gap: Canopy gap is an empty area within 

forest canopies caused by natural disturbances where these areas 

can be filled by other trees (Muscolo et al., 2014). A strong 

relationship can be found between landslide and forest canopy 

gaps (Moos, 2014). The presence of landslides under the 

forested area is believed to be detectable by measuring the gaps 

in the area. Production of tree canopy gap involve several 

important steps including separation of forested areas from non-

forested areas, individual tree crown delineation, and tree 

canopy gap generation. The separation of the forested and non-

forested area was performed by manual identification from 

Pleiades images. The delineation of individual tree crowns was 

done from the CHM layer within the forested area using the 

inverse watershed segmentation method (Rahman and Gorte, 

2009). The tree canopy layer was converted into grid format and 

the density of tree canopy gap was calculated within a grid of 10 

m using Equation (2). An area with a low number of canopy 

pixel was considered as having high density of canopy gap.   

 

 
 

3.3.3 Density of Vegetation Layers: The vegetation density 

layer at a certain height from the ground was measured using 

the density of vegetation points method (Rahman and Gorte, 

2009). This method utilised point clouds obtained from the 

airborne LiDAR data and the density of the reflected laser 

pulses above a certain height from the ground. The vegetation 

layers were then classified into four classes i.e., low vegetation, 

young woody vegetation, matured woody vegetation, and old 

forest. The process started by calculating the height of non-

ground point clouds also known as normalized point clouds. 

The normalized point clouds were then categorised based on 

height classification scheme and the vegetation density of each 

layer class was calculated with a final resolution of 0.5 m.  

 

3.3.4  Vegetation Type Distribution: According to 

Malaysian Standard 1759 (MS 1759:2004), many categories of 

vegetation type can be classified. In the current study, four 

vegetation types were used, such as grass, secondary forest, 

primary forest, and agriculture. Landslide occurrence was 

higher in logging areas, secondary forest and settlement areas, 

and lower in primary forest areas (Shahabi and Hashim, 2015). 

This indicator was mapped from satellite imagery and LiDAR-

CHM. 

 

3.3.5  Vegetation Indices: Vegetation indices can be defined 

as the form of band ratios related to vegetation. Vegetation 

indices can be used in the identification of landslide. Six indices 

were used in this study, namely NDVI, DVI, SAVI, OSAVI, 

GDVI, and GNDVI. The vegetation indices were extracted from 

the Pleiades satellite images. These indices were derived from 

mathematical expressions based on the combination of visible 

light bands and Near Infrared (NIR) band as shown below:  

 

(NIR R)
NDVI

(NIR R)

−
=

+

   (3) 

DVI = NIR - R     (4) 
(NIR - R)

SAVI =  x (1 + L)
(NIR + R + L)

    (5) 

(NIR - R)
OSAVI =  x (1 + 0.16)

(NIR + R + L)
    (6) 

GDVI = NIR - G      (7) 

(NIR - G)
GNDVI = 

(NIR + G)
                                                      (8)   

 

3.3.6 Root Strength Index: Root strength is one of the 

factors of soil reinforcement (Abdi, 2018). Increasing the 

strength will increase the soil reinforcement. Changing the tree 

root strength affects slope stability. Root strength index (RSI) 

was derived based on the estimated tree height and tree density. 

The estimated tree height was obtained from the airborne 

LiDAR data, while tree density was defined as the number of 

trees in a 30 m grid. Equation (8) shows the product of tree 

height and the square root of estimated tree density in 

calculating the RSI.  

 

RSI = H x D                                                                    (9) 

 

where H is the tree height, and D is the estimated tree density. 

 

3.3.7 Water-Loving Trees: Water-loving trees, also known 

as hydrophytes, are usually found in wetlands of all sorts, either 

in or on the water, or where soils are flooded or saturated long 

enough to establish anaerobic conditions in the root zone 

(Cronk and Fennessy, 2016). Distribution of water-loving trees 

indicates the high presence of active landslides. In this study, 

the distribution of water-loving trees was produced by 

combining the aerial photographs, satellite imagery, CHM, and 

topographic wetness index (TWI) datasets, which were derived 

from the high resolution DTM over the study area.  Water 

loving trees were characterised by their lower height value, i.e., 

1 m to 3 m. The vegetated pixel area was classified 

automatically from satellite imagery. The height value of 

vegetation pixel was extracted from the CHM dataset and the 

pixel value of 1 m to 3 m was used for estimation of water 

loving trees. The presence of low vegetation and high TWI 

value for certain area indicates a high density of water-loving 

trees.  

 

3.4 Support Vector Machine (SVM) for Landslide Activity 

Classification 

SVM was initially developed to find a hyperplane that separates 

two classes optimally (i.e., landslides with a specific activity 

class and other landslides with activity class) (Vapnik, 2013) by 

maximising the margins of class boundaries for linearly 

separable cases]. The optimum hyperplane was derived from 

support vectors with the closest values to the classification 

margin. The classification of new data can be performed once 

the decision surface is acquired. In this study, given a training 

set of instance-label pairs (xi, yi), i = 1,…,m where xi ∈ R n and 

yi ∈ {1,-1}, xi is a vector of input space that represent all the 

VAI such as tree height irregularities, canopy gap, and 

vegetation indices. Meanwhile, {1,-1} represents landslide and 

non-landslide pixels, which are categorised into different state 

of activities (i.e., active, dormant, and relict). In the SVM 

classification approach, several parameters needed to be 

configured such as kernel function, regularisation parameter I, 

gamma (γ), and degree of polynomial (d). The parameters are 

crucial to find a model that performs a good classification task 

Therefore, the selection of parameter value of C, γ, and d are 

defined by applying Grid Search (GS) and Genetic Algorithm 

(GA) techniques. The following pseudocode demonstrates the 

implementation of GS-SVM and GA-SVM techniques in SVM 

parameter optimization. 

 

 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVI-4/W3-2021 
Joint International Conference Geospatial Asia-Europe 2021 and GeoAdvances 2021, 5–6 October 2021, online

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVI-4-W3-2021-247-2022 | © Author(s) 2022. CC BY 4.0 License.

 
250



 

Algorithm GS-SVM 

1 Input: A training set: T, Kernel parameter set: Γ, , Penalty set: {C1, 
C2, … Ck},     Gamma set: { γ1, γ2, … γk}, Degree set: {d1, d2,…, dk} 

2 where C1 < C2 <…< Ck, 0 < η < 1 

3 Output: Optimal parameters: γ*, C* and the final model: M 

4 Initialize the best cross validation accuracy, CV = 0 

5 for each (y ∈ Γ) do 

6     for C in [2-5, 2-3, …, 25] 
7            for γ in [2-5, 2-3, …, 25] 

8          Train an SVM model, M, using γ and C, with T    

9         SVi = Support vectors of M, 
10          CVi = cross validation accuracy for Mi 

11         if CVi > CV then 

12              CV = CVi; 
13              γ* = γ; 

14              C* = Ci; 

15          end if 

16          end for 

17       end for 

18 end for 

19 Train an SVM model, M using γ* and C* with T 

 

Algorithm GA-SVM 

1   Input: A training set: T; tmax: maximal number of iterations; Mp: 

mutation probability; Cp: crossover; Np: The size of the search 
population 

2   Output: Optimal parameters: γ*, C* and the final model: M 

3   initialize 

4      Np: random sample individuals within the search size; 

5      t: current iteration 
6          r1, r2: randomly selected solutions 

7    while t ≤ tmax do; 

8          select chromosomes by selection operation; 
9          for chromosomes(i) in Np do     

10            if r1 ≤ Cp then 

11                  crossover operation; 
12            end if  

13            if r2 ≤ Mp then 

14                   mutation operation; 
15            end if 

16        end for 

17  update population 

18  end while 

19  return optimal solution  

20 Train an SVM model, M using γ* and C* with T 

 

3.5 Accuracy Assessment 

The measures of overall accuracy (OA) and kappa coefficient 

(Kappa) were used to assess the performance of the SVM 

algorithm in classifying the landslide activity based on VAIs. 

OA is the percentage of correctly classified samples. Kappa is a 

widely-used and powerful multivariate technique for accuracy 

assessment. Kappa coefficient is a measure of overall statistical 

agreement of a confusion matrix. Therefore, it provides a more 

rigorous assessment of classification accuracy. 

 

4. RESULTS AND DISCUSSION 

The results of this study cover two landslide depths: (i) deep-

seated, and (ii) shallow translational landslides. Overall, 54 

deep-seated translational landslide was successfully delineated 

while 149 for shallow translational.  Figure 2 illustrates the 

distribution of some deep-seated and shallow translational 

landslides with specific activity over the study area. 

 

 

 
 

Figure 2. Distribution of translational landslide with classified activity from the modelling results 
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4.1 Deep-Seated Translational Landslide 

Figure 3 shows the overall accuracy and kappa coefficients of 

the classified activity for deep-seated translational and the 

comparison between different spatial resolution. The overall 

accuracy of the training dataset is between 72.3-88.7%, kappa is 

0.534–0.812, and the overall accuracy of the validation dataset 

is between 61.4–86%, and kappa is between 0.335–0.769. 

Sample visualisation comparison of classified landslide with 

different spatial resolution can be found in Figure 4.  

 

 

 
  (a)                                                                      (b)                                                                   (c) 

 
                                 (d)                                                                      (e)                                                                   (f) 

Figure 3. Overall accuracy and kappa coefficient of classified landslide activity for deep seated, translational landslide with different 

spatial resolution using (a) SVM Linear-GS, (b) SVM Polynomial-GS, (c) SVM RBF-GS, (d) SVM Linear-GA, (e) SVM 

Polynomial-GA, and (f) SVM RBF-GA 

  

 
                     (a)                                      (b)                                       (c)                                      (d)                                     (e) 

 
                      (f)                                      (g)                                       (h)                                      (i)                                     (j) 

 
                      (k)                                      (l)                                       (m)                                      (n)                                     (o) 

 
Figure 4. Sample of classified landslide activity for deep-seated translational landslide with different spatial resolution using SVM 

RBF-GS method where, (a) – (e) for active, (f) – (j) for dormant, and (k) – (o) for relict landslides. 
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Based on the results, SVM RBF-GS with 0.5m spatial 

resolution produced highest overall accuracy (86%) and kappa 

coefficient (0.76) values for validation dataset while SVM 

Polynomial-GA produced the lowest overall accuracy (61.4%) 

and kappa coefficient (0.335) values with 20m spatial 

resolution. The difference of 24.6% indicates the effect of 

spatial resolution, where decreasing the cell size producing 

higher accuracy of classified data. However, there is no 

significant increase of overall accuracy for spatial resolution in 

between 0.5m to 10m since small increasing values were 

recorded. The lowest overall accuracy recorded by all the 

methods under 20m resolution, particularly for validation 

dataset indicates that coarse resolution tend to generalize the 

pixel value in the landslide location.  For active landslide, 

combination of active and dormant classified pixel were 

observed from the results especially for 10m and above, 

meanwhile most of dormant landslide was correctly classified 

for all spatial resolution. For relict landslide, combinations of 

dormant and relict pixels were clearly observed since it share 

similar vegetation characteristics. 

4.2 Shallow Translational Landslide 

For shallow translational landslide, the overall accuracy of the 

training dataset is between 51.4-82.8%, kappa is 0.245–0.738, 

and the overall accuracy of the validation dataset is between 

49.8–71.3%, and kappa is between 0.243–0.563. As shown in 

Figure 5, SVM RBF-GS with 0.5m spatial resolution recorded 

highest overall accuracy (71.3%) and kappa coefficient (0.563) 

values on validation dataset while SVM RBF-GS also with 10m 

resolution obtained the lowest overall accuracy (49.8%) and 

kappa (0.243) values. Similar to deep-seated category where the 

difference of 21.5% indicates higher spatial resolution give high 

reliable results. This can be seen in Figure 6 where high spatial 

resolution produced more accurate classified pixel. For active 

landslide, combination of active and dormant pixel were found 

which similar to dormant landslide. Meanwhile, combinations 

of dormant and relict pixels were clearly observed since it share 

similar vegetation characteristics. 

 

 

 

 

   
  (a)                                                                      (b)                                                                   (c) 

    
                                (d)                                                                      (e)                                                                   (f)  

Figure 5. Overall accuracy and kappa coefficient of classified landslide activity for shallow, translational landslide with different 

spatial resolution using (a) SVM Linear-GS, (b) SVM Polynomial-GS, (c) SVM RBF-GS, (d) SVM Linear-GA, (e) SVM 

Polynomial-GA, and (f) SVM RBF-GA 

 

 

 
                     (a)                                      (b)                                       (c)                                      (d)                                     (e) 
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                      (f)                                      (g)                                       (h)                                      (i)                                     (j) 

 

 
                      (k)                                      (l)                                       (m)                                      (n)                                     (o) 

 
Figure 6. Sample of classified landslide activity for shallow translational landslide with different spatial resolution using SVM RBF-

GS method where, (a) – (e) for active, (f) – (j) for dormant, and (k) – (o) for relict landslides 

  

5. CONCLUSION 

Accurate landslide activity map is necessary to ensure a 

complete and good quality of landslide inventory process. This 

consequently increases the reliability of landslide susceptibility, 

hazard, and risk mapping based on the geospatial approach. 

Previous studies concentrated on utilising morphological 

drainage pattern interpretations for landslide activity mapping. 

In this study, VAI obtained from remotely sensed data proved to 

be very useful as a bio-indicator for landslide activity 

determination. The classification process revealed that VAIs are 

significant in determining landslide activity as they give reliable 

results. The ability of machine learning algorithms to automate 

in analysing the datasets (i.e., VAI) and identify the relationship 

between variables increases the effectiveness of landslide 

activity classification.  The effect of spatial resolution on the 

classified results can be seen for all activities. High resolution 

data give more accurate results rather than low resolution.  

Therefore, the resulting landslide activity maps may provide 

powerful tools for landslide hazard assessment and could assist 

decision-makers during site selection and planning processes. 

This product could also be used as a basis for landslide 

inventory mapping, especially for a forested area.
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