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ABSTRACT 

 

The expansion of data collection from remote sensing and other geographic data sources, as well as from other technology such as 

cloud, sensors, mobile, and social media, have made mapping and analysis more complex. Some geospatial applications continue to 

rely on conventional geospatial processing, where limitation on computation capabilities often lacking to attain significant data 

interpretation. In recent years, GPU processing has improved far more GIS applications than using CPU alone. As a result, numerous 

researchers have begun utilising GPUs for scientific, geometric, and database computations in addition to graphics hardware use. This 

paper summarizes parallel processing concept and architecture, the development of GPU geoprocessing for big geodata ranging from 

remote sensing and 3D modelling to smart cities studies. This paper also addresses the GPU future trends advancement opportunities 

with other technologies, machine learning, deep learning, and cloud-based computing. 

 

 

1. INTRODUCTION 

Graphic Processing Unit (GPU) hardware has obtained 

significant advancement in geospatial applications in recent 

years. Such progress has been primarily fuelled by the expansion 

of data collection increments (remote sensing, point clouds, laser 

scanning, sensors). The development of big geodata 

geoprocessing using GPU parallel computation enables the 

computer capacity to accelerate the processing efficiently and 

dynamically.  

 

The widely availability of location-based data now becoming a 

growing service and have revolutionized in every industry. The 

datasets collection comes in variety of technology such as 

satellite, Unmanned Aerial Vehicle (UAV), Light Detection and 

Ranging (LiDAR), geotagging or even from web-scrapping. The 

application of these geospatial intelligence in e-commerce 

services for example, helped expanding e-commerce sites for 

better location visualization, analytical and operational decision-

support systems (Chowhan, 2017). This continuously data 

collection process has made the growth of data storage and gave 

birth to a relatively new term called big geospatial data. 

 

Big geodata analytics receives a lot of attention these days 

because it allows users to analyse massive amounts of geospatial 

data. Big geodata refers to spatial datasets that exceed the 

capacity to be processed by traditional computing systems (J. Lee 

& Kang, 2015). Handling these scalable datasets demands 

complex computational developments and robust computing 

technologies in order to accomplish the tasks efficiently (Adam 

et al., 2014). Various ways have been prepared by researchers to 

process these big geodata, and some have invested a lot of money 

and time to solve the challenges of processing this data such as 

High-Performance Computing (HPC), cloud computing and even 

GPU. 

 

Li (2020), reviewed HPC can be a new framework paradigm to 

accommodate this big geodata challenges. In fact, this HPC has 

been used for two decades for the management of this geospatial 

data (Clarke, 2003; S. Wang & Armstrong, 2003). The expansion 

computing technologies from serial computation using Central 

Processing Units (CPU) to HPC earned the benefits in geospatial 

field, particularly for big geodata. However, the biggest 

challenge of maintaining this HPC technology is very costly 

(Netto et al., 2018) and often this technology is played by large 

giant companies such as Google, and Amazon. To handle this 

cost issue, the deployment of Graphic Processing Units (GPU) is 

much more treasured as this hardware proposes the similar 

parallelism architecture as HPC, and as we aware very consumer 

cost friendly (Hasan & Chakraborty, 2021; Jagtap & Rao, 2020) 

and easily accessible (Chen et al., 2014).  

 

The remaining section is organized as follows: Section 2 provides 

an overview of GPU developments for big geodata varies from 

the remote sensing, 3D modelling and smart cities. Section 3 

presents the general concepts of parallel geoprocessing 

architecture, GPU for big geodata, existing GPU programming 

model and the best practice for speedup performance evaluation 

technique, Amdahl’s Law. Section 4 summaries the overall paper 

and future trends GPU utilization.    

 

2. RELATED WORKS ON GPU DEVELOPMENTS FOR 

BIG GEODATA 

The increasing potential usage of GPU hardware has 

demonstrated the GPU's capacity to give faster applications and 

excellent task-based parallelism that provides a significant 

increase in processing performance. This potential has been used 

in a variety of fields, including cryptocurrencies such as Bitcoin 

to mine digital money (Alkaeed et al., 2020; Iyer & Pawar, 2018), 

DNA analysis and modelling (Ahmed et al., 2020), large-scale 

simulations (Saprykin et al., 2019; Vu & Tan, 2019), large-scale 

tasks with combination of machine learning (Abadi et al., 2016; 

Nie et al., 2018) and of course, big geodata (Breunig et al., 2020; 

Zhou et al., 2019).  

 

The current challenges of increasing geospatial datasets 

magnitude has encouraged researchers all over the world to 

contribute their simulation approaches and techniques for 

processing these scalable datasets derived from a variety of high 
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resolution information sources, such as satellite imageries, 

remote sensing products, aerial photographs, and web scrapping 

location extraction (Hoang & Mothe, 2018). The research 

development can be seen in a few applications such as satellite 

imageries processing, building conversation, and modelling.  

 

2.1 Remote Sensing 

The use of GPU in remote sensing has presented significant 

computing problems as remote sensing datasets have grown in 

term of capacity. Traditional geoprocessing methods are no 

longer capable of supporting these large datasets. (P. Liu et al., 

2014). Previously, the utilization GPU functions included 

satellite imageries classification (Sharma et al., 2020), real-time 

radiometric correction (Fang et al., 2014), soil parameter 

inversion (Yin et al., 2020), noise removal (Granata et al., 2020) 

and hyperspectral image classification (Yusuf & Alawneh, 

2018). Some of these applications are being optimised using 

NVIDIA’s application programming interface (API), Compute 

Unified Device Architecture (CUDA) (Fang et al., 2014; Sharma 

et al., 2020; Yin et al., 2020) and OpenCL (Granata et al., 2020), 

an open-source API  used for NVIDIA or AMD manufactured 

GPU. These studies displayed satellite image processing able to 

demonstrate a good flexibility to GPU computational elements.   

 

Using GPU to accelerate satellite image processing has a huge 

influence on the remote sensing industry. Sharma et al., (2020) 

investigated the feasibility of employing GPU to accelerate batch 

processing of spatial raster data. They concluded that the GPU is 

capable of drawing conclusions about its applicability in solving 

various problems related to geoinformation and its efficiency 

processes by using neutral network training for segmenting 

images of 10 classes that included ground, non-ground, and man-

made features of 1601 images. 

 

 Li et al., (2019) have created a parallel computing toolkit for 

terrain analysis that makes use of GPUs to accelerate the 

processing of large-scale LiDAR datasets when compared to the 

CPU alone, the experiment showed good speedup ratios 

performance with a maximum memory size of 8 GB. The toolkit 

can analyse points and doing statistical calculations. The toolkit 

demonstrated considerable time savings and addressed how 

computing costs may be lowered by making it available through 

GPU, particularly for LiDAR geoprocessing and other derived 

products. 

 

2.2 3D Modelling 

Condorelli et al., (2020) proposed a method for automatically 

recognising lost architectural heritage in video footage to build a 

metrically validated 3D model. The experiment focuses on 

reducing human effort in the detection of the searched object and 

increasing the operator's efficiency in the archive. Machine 

Learning techniques were recognised as viable solutions to 

reduce the time required to search for monuments in historical 

video footage, and the usage of GPU has increased the 

computational efficiency of such algorithms. 

 

2.3 Smart Cities 

3D point cloud technology enables the automated (Paffenholz et 

al., 2021) and extremely detailed digital capture of real-world (Y. 

Li et al., 2021) settings such as assets (S. Y. Lee et al., 2013), 

sites area (Shih & Wang, 2014), cities (Buyuksalih et al., 2019; 

Park & Guldmann, 2019), and vegetation (Mesas-Carrascosa et 

al., 2020; Yang et al., 2015); the obtained 3D point clouds 

represent an important type of geospatial data that categorized 

and utilised in wide range of geoinformation applications and 

systems (Ariff et al., 2020; Discher et al., 2018; Richter et al., 

2015). 

 

Ariff et al., (2020) experimented 3D model meshing of 2.77 GB 

Putrajaya city using two different GPU, NVIDIA GEOFORCE 

GTX 1070 and NVIDIA GEOFORCE GTX 850M and they 

concluded that a graphic card with a higher graphic and 

computing performance is essential for smoother and faster 

visualization of 3D model and shorter time processing and lesser 

technical issue.  

 

Many smart city applications, such as flood risk monitoring (Jing 

et al., 2019; W. Li et al., 2020), emergencies response (Alazawi 

et al., 2014), and solar energy potential (Amado & Poggi, 2012; 

Pilipczuk, 2020) of parcels and rooftops, require 3D maps to 

contain the height dimension. Making a city smart begins with 

the construction of a detailed 3D map of the entire city. This data 

magnitude can be enhanced by applying and utilized GPU for 

geospatial data processing for better decision-making.  

 

3. PARALLEL GEOPROCESSING FOR BIG GEODATA  

Concerning problems occur in big geodata because to the 

complexity of dataset architecture (Zhao et al., 2016), 

segmentation (Ruan & Liu, 2020), classification (Uy et al., 2019), 

and data interaction (Poux et al., 2016). For example, the nature 

of large 3-Dimensional (3D) dataset irregularity continues to be 

a barrier in terms of effectively collecting, processing, and 

storing these large semi-structured/unstructured information 

(Breunig et al., 2020).  Thus, prior studies have used Hadoop-

based frameworks (C. Wang et al., 2013), data compression 

(Javed et al., 2020), cloud computing (K. Liu & Boehm, 2015), 

and HPC (Zhenlong Li, 2020) to analyse and manage big 

geodata. Using GPU technology is another significant approach 

for dealing big geodata processing (Granata et al., 2020; Petrovič 

et al., 2020; Venugopal & Kannan, 2013). 

 

Some GIS developers (Franklin et al., 2018; Huang, 2012; 

Mineter et al., 2000; Puri & Prasad, 2015; Singh et al., 2019) 

developed programs to help solving geospatial problems. The 

geospatial processing challenges are normally related to storing 

(Sui, 2018), managing (Yao & Li, 2018), processing, analysing, 

visualizing (Sipe & Dale, 2003) and verifying the quality of data 

(S. Li et al., 2016).  

 

Satellites imageries processing (Yusuf & Alawneh, 2018), 

coordinate transformations (Chavez, 2016; J. Li et al., 2017; Zhu 

& Wu, 2021), building modelling (Ma et al., 2008; Schweizer, 

2015), and other GIS and remote sensing applications can benefit 

from the parallelism provided by GPGPU programming. For a 

history of parallel solutions for remote sensing applications 

spanning from multi-core CPU implementations to early GPU 

systems Christophe et al., (2011) attained up to 10 to 400 

performance gains for processing several gigabytes of remote 

sensing images by considering the data scalability and data 

streaming using two programming model, CUDA and OpenCL  

investing a USD200 GPU hardware. 

 

Aside from raster processing, vector processing has gained 

popularity in recent years. Since LiDAR technology has become 

more popular in recent years, the necessity for vector data 

processing for both raw and processed vector data cannot be 

overlooked. Mobile Laser Scanning (MLS) and Terrestrial Laser 

Scanning (TLS) sensors able to emits millions of pulses per 

seconds and this made data collecting denser and more accurate. 

H. Wang et al., (2017) used a heterogeneous CPU and GPU to 
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accelerate a massive point cloud to run a hybrid parallel Spatial 

Interpolation framework on their systems. They recognise that 

adopting this CPU-GPU hybrid accommodation will be more 

practicable for processing big point cloud collections in future. 

  

3.1 Concept of Parallel Architecture 

The hype and expansion of parallel processing came in response 

to process growing frequencies of the data and the alternative to 

improve the number of processors is no longer practical after a 

certain point. Therefore, the researchers try to tackle and address 

the issues by designing the parallel systems with the aim to 

produce more processing efficiency using multiple cores 

(Surakhi et al., 2018), manage the power consumption (Garcia et 

al., 2018; Jin et al., 2017) and CPU overheating (Jin et al., 2017; 

Rajachandrasekar et al., 2012).  

 

Parallel processing is the use of several processing cores to 

handle a job or tasks at the same time, whereas sequential 

processing is the use of a central processing unit (CPU) to carry 

out just one action at a time (Memon et al., 2017). Traditionally, 

software has been developed sequentially, which is a simpler 

technique but as the data magnitude keep increasing, the software 

become severely constrained by the processor's speed and 

capacity to execute each sequence of instructions (Rahmawati, 

2009). 

 

Figure 1. General parallel processing architecture in a single 

machine (Source: OmniSci). 

 

Figure 1 shows the fundamental parallel architecture in general. 

The larger tasks are broken down into smaller tasks or 

calculations, which are individualistic and normally identical 

tasks that are executed at the same time by multiple processors 

communicating via machine shared memory, and the results of 

all small tasks are merged as the final product upon completion 

(Pervan & Knezovic, 2020). Giant corporations utilise many 

approaches for big scale structure and high-performance 

computation including distributed computing, multi-core 

computing, cluster computing, and grid computing, where this 

structure may handle the continuous usage (Kayum & Rogowski, 

2020) and high-capacity machines (Pavilion & Performance, 

2019). 

 

The essential of utilizing parallel processing for geospatial 

analysis functions is undoubtedly relevant gradually over time 

due to circumstances of datasets size and the efficiency for high 

performance processing. The challenges to process big geodata 

still underdeveloped by per function basis and not fully enhanced 

by geospatial researchers’ and community due to hardware 

complexity and underutilized (Kang et al., 2018; J. Lee & Kang, 

2015; Stojanovic & Stojanovic, 2013). 

 

Previous study on processing  big geodata, has proposed to utilise 

parallel processing for high efficiency large-scale geospatial 

processing (Zhou et al., 2019) and data memory management 

(Doraiswamy & Freire, 2020). Armstrong (2020) suggested by 

employing parallel processing to handle geographical 

information big datasets, the potential to stimulate the computing 

standard in spatial problem solving, analysis, and modelling will 

be clear developmental path in geospatial research.  

 

There are two types of parallel programming commonly used in 

GIS applications: data parallelism and tasks parallelism. Both 

types can be used simultaneously to increase parallelism, which 

is referred to as hybrid parallelism (H. Wang et al., 2017). The 

general tasks and data parallelism is shown in Figure 3 below. 

 

 

Figure 3. Parallelism in geospatial application: Task parallelism 

and data parallelism (Source: Google). 

 

In Table 1 shows the comparison summary between task 

parallelism and data parallelism. 

 
Parallelism 

Type 
Task Data 

Definition 

Processing on 

separate jobs to 

execute on the same 

data at the same 

time, a sequence of 

activities and gives 

tasks that can be 

done concurrently 

when there are 

several jobs (Qin, 

2017) 

Execution of the 

same task but 

different data 

partition 

(Krizhevsky, 2014). 

Also known as 

Spatial domain 

decomposition is the 

name for this 

procedure (Liang et 

al., 2020). 
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Datasets 

picture tiles in 

remote sensing, 

running dozens of 

spatial models, or 

conducting hundreds 

of simulations 

spatial statistics 

(Tzeng et al., 2012) 

vector features or 

raster pixels (J. 

Zhang & You, 2012) 

Advantages 

• the data remains 

unaltered,  

• task parallelism 

may be easier to 

construct  

Variety of 

techniques: 

• row column 

decomposition (J. 

Li et al., 2017)  

• matrix 

decomposition 

(Galoppo et al., 

2005),  

• grid 

decomposition 

(Caggianese & 

Erra, 2012) 

• Quadtree 

partitioning (J. 

Zhang & York, 

2019) 

• recursive bisection 

(Chisholm, 2020) 

Disadvantages 

• need enough jobs 

to divide and 

spread across 

several cores. 

• Partitioning spatial 

irregular data such 

as points, lines, 

and polygons into 

smaller partitions 

• Balancing the 

amount of data in 

each sub partition. 

Table 1. Task Parallelism and Data Parallelism summary 

 

3.2 GPU for Big Geodata 

The potential of using GPU is seen able to assist and expand the 

big geodata processing. Eckart et al., (2016) presented the 

potential of GPU parallelization during GTC Silicon Valley-2019 

for the use in large-scale 3D point clouds processing and 

beneficial for real-time computation over tens of thousands of 

points. The use of GPGPU to show significant impact on 

improving data processing efficiency in terms of time consuming 

(Gao et al., 2019) and data processing management (Yao & Li, 

2018; J. Zhang et al., 2019). 

 

The continuous demand for faster and more efficient 

development via graphics drives appears to bode well for the 

future. Due to a few constraints, GPU implementation is still 

underdeveloped for existing GIS processing products and tools. 

Stojanovic & Stojanovic (2013) identify the increment 

geographic data collection have gathering the impacts of analyses 

and geoprocessing complexity and computational intensity in 

many GIS application domains due to a lack of parallel GIS 

algorithms, application libraries, and toolkits in parallel 

architectures. With the evolution of GPU production, 

manufacturers launched a range of models with varying total 

CUDA cores and specialties; as a result, periodic driver updates 

are required to ensure the drivers operate at their full capacity. 

Additionally, as bitcoin mining has grown in popularity, miners 

have discovered that using GPUs to mine the digital currency 

enables them to expedite their mining, which has impacted the 

market's GPU pricing as a result of the increasing demands. 

 

The initial application of GPU is mostly been utilised to render 

the gaming pipeline (Mišić et al., 2012) so that the images 

visualizing more realistic, and the image texture is more 

smoother (Crow, 2004). The largest manufacturers of GPU 

hardware that are in the market right now are NVIDIA and AMD. 

Each GPU model released has different cores, depending on the 

price. For the low-end NVIDIA GPU has about 700 CUDA cores 

while the high end has more than 4000 CUDA cores (NVIDIA, 

2021). Performance for each model is affected by the number of 

cores (K. H. Choi et al., 2014) and GPU frequency clocks speed 

(H. J. Choi et al., 2014). 

 

 
Figure 2. Comparisons between CPU core and GPU core 

(Source: Google). 

 

Figure 2 shows the CPU architecture structure is built to handle 

various types of tasks and functions in series while the GPU is 

more data intensive and processed simultaneously. Measuring 

performance in sequential programming is considerably less 

complicated and essential than benchmarking in parallel 

computing since it generally involves finding bottlenecks in the 

system (Chandrashekhar et al., 2021). To bypass bottleneck issue 

in sequential processing, transferring data across the memory 

hierarchy is remarkably helping to perform parallel processing 

onto data science, machine learning, and artificial intelligence. 

While parallel computing is more difficult and has a higher initial 

cost, the benefit of being able to solve a problem quicker, 

frequently surpasses the expenses of purchasing parallel 

computing hardware. Benchmarks in parallel computing may be 

accomplished using execution time (Hoefler & Belli, 2015; Lam 

et al., 2014), performance regression (Jia et al., 2015; Nagasaka 

et al., 2010) and measuring techniques, such as statistical (Y. 

Zhang et al., 2011) and repetitions transfer cycle (Bridges et al., 

2016).  

 

3.3 GPU Programming Model  

Many GPU programming approaches, and data structures are 

shared by programming model such as CUDA, created and 

maintained as a product by NVIDIA (NVIDIA, 2021), and Open 

Computing Language (OpenCL), an open-source language 

supervised by the Khronos Group (OpenCL, 2021). Because 

CUDA are limited to NVIDIA hardware, OpenCL is more often 

used for cross-platform development. However, to attain the 

same degree of speed as a functionally similar CUDA 

application, OpenCL programming language may require more 

manual tuning (Filipovič et al., 2017; Petrovič et al., 2020; 

Thoman et al., 2011; van Werkhoven, 2019). Many mainstream 

programming languages, including C, C++, and Python, have 

CUDA and OpenCL library bindings supported (Jacob et al., 

2010; Sarkar, 2007). 
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3.4 Speedup Performance Evaluation   

Measuring the level of performance in parallel computing 

architecture, the best practice is to utilize Amdahl’s Law formula 

is always be used., Amdahl’s Law calculates how much a 

computation can be speeded up by running the computation in 

parallel. Amdahl’s Law is named after Gene Amdahl who 

proposed the formula in 1967 (Amdahl, 1967).   

(1)  

Where,  

Slatency = the theoretical speedup of the execution of the whole 

task 

s = the speedup of the part of the task that benefits from improved 

system resources 

p = the proportion of execution time that the part benefiting from 

improved resources originally occupied 

However, the number of simultaneous processes practically 

grows in proportion to the complexity of the task because the load 

is fixed according to Amdahl's Law, the execution time decreases 

as the number of processors rises. Amdahl's law is useful in 

situations when response speed is important (Rocha et al., 2016).  

In relation to time that takes to execute a given routine, the CPU 

outperforms the GPU for smaller workloads. As the magnitude 

of the workload and the number of datasets arise, the execution 

time of the GPU begins to decrease in comparison to that of the 

CPU. Such as for 100% occupancy, the GPU did the addition 

work faster than the CPU alone. In terms of throughput, or the 

number of activities executed per second, GPU has always 

outperformed CPU in many applications. As GPU architecture 

will remain to progress, GPUs will be fully utilized for 

throughput rather than latency. 

 

4. CONCLUSION 

This paper has discussed the development of GPUs for big 

geodata, ranging from remote sensing to 3D modelling and smart 

cities. There are some researchers have seized the graphics 

hardware platform to accelerate their geoprocessing functions 

and tools and the results promising a positive performance 

efficiency. In this paper also introduces the fundamental ideas of 

parallel geoprocessing architecture, GPU for big geodata, 

existing GPU programming models, and the best practise for 

speedup performance evaluation, Amdahl's Law. At the end of 

the paper, a remarkable view on future trends of the GPU 

utilisation in other platform such as machine learning, deep 

learning, TPU, AI, cloud computing and the beneficial use in 

geospatial and remote sensing aspect.  

 

Processing big scale datasets is commonly used as an evaluation 

criterion since it shows how quickly a parallel application can 

solve a problem. However, for enormous issues like processing 

satellite imageries or other big geodata, without proper data and 

tasking management assigned during processing may weaken the 

efficiency results and allowing you to assess how well a parallel 

programme can scale a massive geospatial processing.  

 

GPUs processing are fast because their high-bandwidth features 

and technology performed arithmetic processing substantially 

faster than conventional CPUs. The primary function of GPUs is 

to do the calculations required to render three-dimensional (3D) 

computer graphics. The GPU's ability to process massive datasets 

is consistent with the nature of machine learning. Processing 

large scale of datasets is essentially what Machine Learning (ML) 

and Deep Learning (DL) does, which is why GPUs are 

advantageous for machine learning jobs. TensorFlow and 

Pytorch are two libraries that make advantage of GPUs that users 

can now manipulate the data frames and perform machine 

learning algorithms on GPUs as well.  

 

The emergence of artificial Intelligence (AI) and autonomous 

systems have brought breakthroughs in processing capacity, 

whether GPUs, TPUs, or CPUs, and algorithmic advancements. 

Google introduced their first Tensors Processing Units (TPU) 

processing, ASIC, as a solution for their datacentre’s 

computation demands. The heterogenous between CPUs, GPUs, 

TPUs could enhance more on cost-performance processing.  

 

With the rise of cloud computing, several businesses have offered 

a cloud-based service as a service. Where users are not required 

to run a processing on their machine using hardware or software. 

As a result, significant resources are spent on idle GPUs, while 

insufficient GPUs are used to run jobs. Manifold is one of the 

successful companies providing on-the-cloud GPU processing 

services where the users can automatically run their code on 

Manifold SQL server and experience the embarrassingly 

parallelism and performance acceleration.  

 

As GPU advancements become more prevalent in the near future, 

it is reasonable to anticipate an increase in the number of 

solutions and geoprocessing tools that leverage GPU platform 

implementations in geospatial and remote sensing applications. 

This is likely to broaden the range and complexity of available 

geoprocessing tools, as well as facilitate geospatial and remote 

sensing projects that involve large collections of spatial datasets. 

The integration of artificial intelligence and geospatial 

technologies has created tremendous unimaginable potential. The 

advancement of AI, machine learning, deep learning, and other 

technologies enables researchers and authorities to make more 

precise town development decisions by deploying predictive 

town planning in all aspects and future insights and proactive 

planning for Covid-19 pandemic by harvesting and archiving 

geo-located crowdsourcing, human movement 

mapping/tracking, and projection of spatial and temporal trends.  
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