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ABSTRACT   

 

A large oil spill in Iloilo Straight that occurred on July 3, 2020, as well as a possible deliberate, small but frequent oil spill and surfactant 

contamination in Manila Bay, were mapped. The method employs the Sentinel 2-1C image, which is transformed into principal 

components to reveal the presence of oil spills and possibly surfactants. Additionally, a gradient boosting algorithm was trained to 

discriminate between pixels that were contaminated with oil and those that were not. The multi-band image with three principal 

components with a 99% cumulative explained variance ratio highlights the occurrence of an oil spill in Iloilo Straight. Further, the 

classified image produced by pixel-based classification clearly distinguishes between water and oil pixels in the said area. The 

methodology was applied to a Sentinel 2-1C image of Manila Bay, with pixels observed/identified as oil and classified as well. The 

highest density of supposedly oil-contaminated pixels (large or small but frequent) was observed on the eastern side of Manila Bay 

(Bataan). While there were no documented oil spills concurrent to the satellite image used, historical reports on the area indicate that 

the likelihood of an oil spill is extremely high due to the massive amount of shipping activity. Pixels supposedly contaminated by oil 

spills also occur in areas near ports where oil spills could occur as a result of ship operations. Pixels with the same properties as oil 

contamination are also visible in areas adjacent to fishponds and aquaculture, where phytoplankton and fish contribute to surfactant 

contamination. 

 

1. INTRODUCTION 

An oil spill accident results in the rapid leakage of a large amount 

of oil. Oil slicks caused by accidents float to the surface of the sea, 

wreaking havoc on the marine environment (Zhao et al., 2018). 

Some oil pollution is caused not by ship collisions, but by routine 

ship operations such as tank cleaning and engine effluent 

discharges. In 2010, the Deepwater Horizon platform oil spill in 

the Gulf of Mexico raised major environmental concerns (Leifer 

et al., 2012; Garcia-Pineda et al., 2013 as cited by (Alpers et al., 

2017). Contrary to the 1983 MARSPOOL 73/78 International 

Convention for the Prevention of Pollution from Ships, large 

amounts of mineral oil are still illegally discharged into the sea. 

Tank washing and engine effluent discharges cause the majority 

of anthropogenic oil pollution at sea (sludge) (Alpers et al., 2017).  

Offshore oil platforms and refineries are anthropogenic sources of 

pollution (Alpers et al., 2017). On the other hand, biosurfactants 

are amphiphilic compounds produced by bacteria that can help 

break down oil. These surfactants form slicks on the sea surface, 

altering the physical properties of the near-surface layer of the 

ocean by damping short gravity-capillary waves and suppressing 

turbulence structures (Parks et al., 2020). Biota in the water 

column, including phytoplankton and fish, secrete surfactants 

below the wave-stirred water layer. Only in the form of biogenic 

surface films can biogenic surface films exist on the sea surface. 

They are monolayers, with a thickness of only one molecular layer 

(typically 2.4–2.7 nm). They are made up of surface-active 

material (or surfactants) secreted by biota in the water column, 

such as phytoplankton and fish, and are typically located below 

the wave-stirred water layer (Wurl et al., 2016; Kurata et al., 2016 

as cited by Alpers et al., 2017) 

 

When it comes to spectral properties of oil in water surfaces, Li et 

al., (2012 studied the spectral range of 550nm to 750nm between 

crude oil and other objects to detect crude oil floating on the sea 

surface. Using Sentinel 2 image, the best results for detecting 

pixels contaminated with oil spills were using the bands difference 

between 660 and 560 nm, division of 660 and 560 nm, and 

division of 825 and 560 nm, normalized by 480 (Taravat and Del 

Frate, 2012 as cited by Kolokoussis and Karathanassi, 2018). In 

near real-time data, the wavelength region around 344.51 nm is 

most suitable for oil type discrimination. This wavelength region 

has constant signature ratios between oil reflectance and pure 

water reflectance for each oil type. Oil spill reflectance values and 

thickness are highly correlated in a specific wavelength region. 

These regions are found between 474 and 917 nm. For each oil 

type, there is a high correlation between reflectance values and 

age. These regions are found between 576 and 919 nm (Andreou 

et al., 2011). Several literatures indicate that oil film has a 

reflectance in the 400-700 nm wavelength range, in contrast to 

background seawater (Rajendran et al., 2021).  

 

Oil pollution of the sea surface is a major environmental concern. 

Monitoring accidental or illegal oil discharges is critical to 

reducing marine pollution. However, most research on oil 

detection algorithms focused on large oil spills, while deliberate 

and frequent small oil spills were rarely studied.  

 

The goal of the study is to detect pixels contaminated by oil spills 

or by possible surfactants. Because both oil and surfactants 

dampen the gravity-capillary waves, the presence of the latter will 

be detected in effect. The study has the following objectives: (1) 

transform Sentinel 2 bands and other derived layers into principal 

components, and (2) create an RGB multiband composite to 

highlight oil contaminated pixels (3) using a gradient boosting 

algorithm, classify the uncontaminated and oil contaminated 
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water pixels, and (4) apply the developed methodology to the 

Sentinel 2 image of Manila Bay.  

 

2. STUDY AREA AND DATA 

 

2.1. Study area 

This study considered two areas. The first is in Iloilo Straight, 

where a large accidental oil spill has been reported. This was 

where oil-contaminated pixels were selected as regions of interest 

and then trained using a gradient boosting classifier with principal 

components as variables. The second is in Manila Bay, where the 

first area's data transformer and trained classifier will be 

implemented. While there was no known large oil spill in Manila 

Bay at the time of Sentinel 2 acquisition that were used in this 

study, pixels detected as oil contaminations were considered to be 

surfactants because surfactants, like oil, dampen capillary waves. 

Detected oil-like pixels could also be caused by operational and 

unintentional oil spills by small boats and ships. 

 

The Province of Iloilo is located on Panay Island's southern and 

northeastern coasts. It is bounded on the north by the Province of 

Capiz and the Jintotolo Channel; on the south by the Panay Gulf 

and the Iloilo Strait; on the east by the Visayan Sea and the 

Guimaras Strait; and on the west by the Province of Antique 

(Province of Iloilo, 2014). The Iloilo Strait connects the Panay and 

Guimaras Islands and connects the Panay Gulf to the Guimaras 

Strait. On July 3, 2020, around 48,000 liters of oil spilled into 

waters off Iloilo City on Friday following an explosion at a power 

barge owned by AC Energy corporation and the estimated spill 

affected an area of 1,200 square meters (CNN Philippines, 2020). 

 

Manila Bay is an estuary that is partially enclosed. The bay is 

located on the southwest coast of Luzon Island, one of the 

Philippines' major islands. It is located between the longitudes of 

120°28 and 121°15 East and the latitudes of 14°16 and 15° North. 

It has a roughly 190-kilometer-long coastline and a surface area 

of approximately 1,800 square kilometers. It is bounded by the 

National Capital Region's coastal cities and municipalities, as well 

as the coastal provinces of Bataan, Pampanga, and Bulacan in 

Region 3, and Cavite in Region 4. The Pasig and Pampanga River 

basins are the two primary contributory areas. Discharges vary 

significantly by season and year, with the highest input occurring 

in August and the lowest in April (PEMSEA, 2001). Agriculture, 

forestry, and fishing are the main economic activities in the bay's 

catchments. Industrial activities include manufacturing, mining, 

and quarrying. Food and beverage, chemical, pharmaceutical, 

petrochemical, and electronic industries are major manufacturers. 

The fishing trade is heavily reliant on both local and distant fishing 

grounds. The shipping industry transports passengers, oil, and 

various containers. Activities like reclamation and construction 

can impact habitats and contribute to suspended materials in the 

bay. Agriculture and forestry, especially in river catchment areas, 

can contribute to agrochemical, agricultural waste, and soil 

erosion pollution. Manila Bay is drained by a 17,000 km2 

watershed with 26 catchment areas. The Pasig and Pampanga 

River basins contribute significantly. Most rivers in Pampanga, 

Bulacan, and Nueva Ecija drain into the Pampanga (PEMSEA, 

2004). Freshwater inflow is estimated at 25 km3/year, but this is 

likely an overestimate. Seasonal and annual variations in 

discharges are notable, with August being the highest and April 

the lowest. Freshwater retention time in the bay varies from two 

weeks to one month depending on the season (PEMSEA, 2004). 

The tidal range is 1.2 m during spring tide and 0.4 m during neap 

tide. Weather patterns, especially in shallow water, are influenced 

by seasonal and diurnal winds. During the wet season, the water 

column's salinity increases from surface to bottom. Median 

salinity is between 30 and 35%, slightly less than the open ocean, 

with levels dropping during the rainy season. A slight seasonal 

and temporal variation of around 30° C (PEMSEA, 2004). 

Mangroves and fisheries are among Manila Bay's natural 

resources. Below is a map of the two study areas. 

 

 
Figure 1. Location map of Manila Bay (left) and Iloilo Straight 

(top right). Source: OpenStreetMap  

 

2.2. Data 

Sentinel 2's surface reflectance product was not used because the 

atmospheric correction algorithm removed water reflectance 

values; instead, both sites used Sentinel 2-1C or top of atmosphere 

reflectance. Both datasets were processed prior to being 

downloaded from Google Earth Engine (Gorelick et al., 2017). 

Cloud masking was applied to both images using the bitmask layer 

and land masked using Normalized Difference Water Index 

(NDWI). For Iloilo Straight, a single image was chosen which was 

July 8, 2020, or five days after the oil spill occurred, while for 

January 2020 data, a monthly composite with a cloudy pixel 

percentage of less than 5% was used. A monthly composite image 

of Manila Bay was created to create a seamless and nearly gap-

free image. Figure 2 shows the true color and false color 

composites of Iloilo Straight.  

 

 

 
Figure 2. Sentinel-2 true color (left) and false color composite 

(right) of Iloilo straight (top) and Manila Bay (bottom). The 

arrows indicate oil-contaminated water because of the large oil 

spill that occurred accidentally. Sentinel 2 sensing date: July 8, 

2020 for Iloilo Straight and January 2020 composite for Manila 

Bay 
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3. METHODOLOGY 

 

3.1. Data reduction 

Principal component analysis (PCA) is a multivariate statistical 

technique for identifying uncorrelated linear combinations of 

variables with smaller variances (Loughlin, 1991). PCA is an 

unsupervised linear transformation technique used to reduce 

dimensionality. PCA finds patterns in data by correlating features 

and transforming high-dimensional data into a subspace of equal 

or fewer dimensions. Given that the new feature axes are 

orthogonal to each other, the orthogonal axes (principal 

components) of the new subspace are the directions of maximum 

variance. A 𝑑 𝑥 𝑘- dimensional transformation matrix 𝑊 will be 

constructed to map a sample vector 𝑥 into a 𝑘 -dimensional feature 

subspace that has fewer dimensions that the original 𝑑- 

dimensional features space:  

 

𝒙 = [𝑥1, 𝑥2, … 𝑥𝑑], 𝒙 ∈ 𝑅𝒅, (1) 

 

𝒙𝑾, 𝑾 ∈ 𝑅𝒅𝒙𝒌  , (2) 

 

𝒛 = [𝑧, 𝑥2, … 𝑥𝑘], 𝒛 ∈ 𝑅𝒌 (3) 

 

Transforming the original 𝑑- dimensional into 𝑘 -dimensional 

subspace will result in the first principal component that has the 

highest variance, and all subsequent principal components have 

the highest variance because they are uncorrelated (Raschka, 

2016). When variables are multispectral image channels, both the 

spatial abundance of various surface materials and image statistics 

influence the ordering of principal components(Loughlin, 1991). 

In this case, principal components were used to compress the 

layers and then create a composite. The number of principal 

components to use was based on explained variance percentage.  

 

Three components were chosen to be included in the composite. 

The multiband composite was used to highlight water pixels 

contaminated with oil when visualized in an RGB composite 

image. PCA was implemented in Scikit-learn library (Varoquaux 

et al., 2015) in Python using the fit function of the PCA module 

after scaling the values to 0-1. The PCA transformer was then 

saved that was used to images Layers that were transformed into 

principal components were the visible range, near infrared, and 

short-wave infrared. Moreover, the ratio of blue and short-wave 

was also added since it was found out through visual inspection 

and the study conducted by Kolokoussis and Karathanassi (2018) 

shows that oil contaminated pixels can be distinguishable from the 

ratio of the said bands. This is because longer wavelengths, like 

shortwave, have less reflectance, resulting in darker pixels.  

 

The spatial relationship between gray levels/DNs in an image 

contains textural information. Texture reflects image properties 

like smoothness, coarseness, and regularity. The texture context is 

described by statistical, structural, and spectral principles. 

Statistical techniques characterize textures as smooth, coarse, 

grainy, and other qualitative measures. The spatial relation is the 

covariance of pixel values with distance and direction. These 

matrices can be used to extract information from images (C). 

Homogeneity is a measure of C uniformity, and it is high if most 

elements are on the main diagonal (Navulur, 2007). Thus, pixels 

with capillary waves dampened by oil/surfactants will have high 

homogeneity due to less reflectance and therefore less variation in 

values. Table 1 and Figure 3 lists and shows, respectively the 

layers that were used for PCA. 

 

 

 

Layers Wavelength/Formula 

Blue 496.6nm (S2A) / 492.1nm (S2B) 

Green 560nm (S2A) / 559nm (S2B) 

Red 664.5nm (S2A) / 665nm (S2B) 

Near-infrared 835.1nm (S2A) / 833nm (S2B) 

Shortwave infrared 1613.7nm (S2A) / 1610.4nm (S2B) 

B/SWIR 𝐵𝑙𝑢𝑒/𝑆𝑊𝐼𝑅 

 

Homogeneity 
Homogeneity = ∑𝑖∑𝑗𝐶𝑖𝑗

2  

𝑤ℎ𝑒𝑟𝑒 𝐶 =
𝐵

𝑆𝑊𝐼𝑅
𝑙𝑎𝑦𝑒𝑟 

Table 1. Layers that were compressed into principal 

components. 

 

3.2. Training CatBoost 

Boosting adds new models to the ensemble sequentially. Each 

iteration trains a new weak base-learner model based on the 

ensemble's error. The learning procedure continuously fits new 

models to improve the response variable estimate. This 

algorithm's main idea is to build new base-learners that are 

maximally correlated with the ensemble's negative gradient loss 

function (Natekin and Knoll, 2013). A powerful gradient boosting 

algorithm is CatBoost (Categorical Boosting). It is a decision tree 

gradient boosting algorithm developed by company Yandex. It 

achieves cutting-edge results without the need for extensive data 

training. It reduces the need for hyper-parameter tuning and 

overfitting, leading to more generalized models (Prokhorenkova 

et al., 2018). To optimize models, the Optuna module was used 

where 100 trials were tested to find the optimal set of hyper 

parameters. Optuna is a software framework for automatic 

hyperparameter optimization (Akiba et al., 2019). Regions of 

interest were selected for oil and non-oil pixels as shown in Figure 

4. Selection for each class were based on visual interpretation 

where dark pixels correspond to oil slicks. Binary classification 

was done using the CatBoost classifier. The overall workflow 

used for mapping oil spill is shown in Figure 5. 

 

 
Figure 3. Layers that were transformed to principal components. 

The low reflectance of oil-contaminated pixels in the Sentinel 2 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVI-4/W3-2021 
Joint International Conference Geospatial Asia-Europe 2021 and GeoAdvances 2021, 5–6 October 2021, online

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVI-4-W3-2021-33-2022 | © Author(s) 2022. CC BY 4.0 License.

 
35



bands can be seen in the visible, near-infrared, and shortwave-

infrared. High values can be observed for the blue-to-shortwave-

infrared ratio and its Homogeneity texture. 

 

 
Figure 4. Location of pixels selected as oil and non-oil. 

 

 
Figure 5. The overall workflow for mapping oil spill  

 

4. RESULTS 

 

4.1. PCA transformation and classification result 

The variance ratio explained below shows that the first component 

alone accounts for 90% of the variance and with the second and 

third components combined account for 99%. Thus, the seven 

layers (visible, near-infrared, shortwave infrared, B/SWIR, and 

homogeneity) can be reduced to three. Using the tuned CatBoost 

classifier model, the classification result achieved a 99 percent 

accuracy on test data (accuracy is computed as the total number 

of pixels correctly classified divided by total number of pixels). 

This demonstrates the effectiveness of classifying oil spills in 

Iloilo Straight using the principal components of the selected 

layers. The raster representation of principal components is shown 

in Figure 6 and Figure 7 is the RGB composite of the 3 PCAs.  

 

 
Figure 6. Principal components represented as a raster in Iloilo 

Straight. The explained variance ratios for PC1, PC2, and PC3 

were 90%, 10%, and 1%, respectively. 

 

 

 
Figure 7. Multi-band composite consisting of PC1, PC2, and 

PC3 arranged in the following: Red: PC2, Green: PC1, and Blue: 

PC3. On the right is the result of pixel-based classification. The 

PCA multiband composite contains bright red pixels that 

correspond to the oil classified pixels. 

 

 

The blue-to-shortwave-infrared ratio and homogeneity of the 

image of Manila Bay were calculated. Following that, principal 

components were derived using the PCA transformer generated 

from Iloilo Straight. Figure 8 illustrates the multi-band composite 

and the result of the pixel-based classification.  

 

 

 
Figure 8. A multi-band composite for Manila Bay is created 

(left) after application of the PCA transformer developed for 

mapping oil spill in Iloilo Straight. The red coloration 

corresponds to oil-like features. A binary image showing the oil 

contaminated and uncontaminated areas is shown in the right. 

 

A 

B 

C 
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Figure 9.  Zoomed in images of the areas in Manila Bay with 

possible oil slicks. Left is Metro Manila and Cavite; Middle 

image is Bataan and right image is Pampanga where aquaculture 

where widespread aquaculture practices exist 

 

The presence of oil-like features in the westside portion of Manila 

Bay (Bataan) may indicate small but frequent oil spills. While 

there have been no reports of large and accidental oil spills in the 

area during the acquisition of Sentinel 2 images, it has been 

reported historically that the likelihood of an oil spill in the Bataan 

(middle image in Figure 9) coast is very high due to the massive 

amount of shipping activity. Additionally, numerous fishing boats 

operating in the area can cause operational and unintentional oil 

spills (PEMSEA, 2017). In 1992 and 1993, a sample from Amo, 

Mariveles, Bataan, had the highest level of oil and grease. Oil 

refineries in Mariveles and Limay, Bataan, may explain the 

observations. Globally, oil is thought to enter the marine 

environment via land-based sources such as refineries, municipal 

and institutional wastes, and urban runoff (GESAMP, 1993 cited 

in MPP-EAS, 1999b). The relative contribution of land-based and 

sea-based sources varies depending on the site's circumstances. 

Oil spills from land and sea sources contribute to the oil in Manila 

Bay (PEMSEA, 2004). 

 

Pixels with the same properties as oil contamination are also 

visible in areas adjacent to fishponds and aquaculture (northeast 

side, rightmost image in Figure 9), where phytoplankton and fish 

contribute to surfactant contamination (Alpers et al., 2017). Pixels 

supposedly contaminated by oil spills also occur in areas near 

ports (Metro Manila and Cavite area, leftmost image in Figure 9) 

where oil spills could occur as a result of ship operations. 

 

Since ships contribute to possible oil spills, a preprocessed 

Sentinel 1 GRD composite (reduced using max value of 

backscatter) of the same month was generated and correlated to 

the presence of detected ships by the radar satellite. Only images 

from January to March were generated due to cloud contamination 

in the following months. The following images are shown below: 

 

 
 

 
 

 
 

Figure 10. Top: January 2020 - Oil/surfactant pixels were found 

in the same area as increased ship occurrence in Bataan. Middle: 

February 2020 - Like the previous image, oil/surfactant pixels 

were found in Metro Manila near increased ship occurrence. 

Bottom: March 2020 – Unlike the previous two images, the radar 

image did not contain any formations resembling ships. While no 

evidence of strong backscatter indicative of ships was found, a 

strong backscatter indicates strong winds (Gao et al., 2021), 

which resulted in the wide distribution of possibly surfactants 

originating in aquaculture areas. 

 

5. CONCLUSION 

This study was able to map events that could dampen capillary 

waves by transforming the visible, near-infrared, shortwave 

infrared, the ratio of blue and shortwave infrared (BSWIR), and 

the homogeneity texture of BSWIR into principal components. 

Ninety-nine percent of the variance in the multiband distribution 

was explained by the first three principal components. Through 

the use of red coloration, the aforementioned multiband 

demonstrates the presence of oil-like pixels and possibly 

surfactants in the RGB image, indicating the presence of oil spills 

in the Iloilo Strait. Additionally, the aforementioned PCA 

multiband was classified using the CatBoost algorithm (which 

achieved a 99 percent accuracy in the test data) to distinguish 

between pixels contaminated with oil/surfactants and 

uncontaminated pixels. The multiband and classified images both 

demonstrated the ability to detect oil spills. Additionally, 

surfactants are mapped in effect because they dampen the 

capillary waves of water in a manner similar to oil. The resulting 

PCA data transformer and trained model were then applied to 

Manila Bay, and the resulting PCA multiband image of the area, 

as well as the binary image result of the CatBoost model, both 

contained the same red coloration. While there were no reports of 

a large oil spill at the time of the image acquisition used in this 

study, oil may have been present due to ship and small fishing boat 

operations. Surfactants were also considered, given Manila Bay's 

abundance of aquaculture areas. Due to COVID-19 restrictions, 

no ground validation of oil presence was conducted. 

 

 

 

 

B C A 
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