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ABSTRACT:

A new statistical model designed for regression analysis with a sparse design matrix is proposed. This new model utilizes the
positions of the limited non-zero elements in the design matrix to decompose the regression model into sub-regression models.
Statistical inferences are further made on the values of these limited non-zero elements to provide a reference for synthesizing these
sub-regression models. With this concept of the regression decomposition and synthesis, the information on the structure of the
design matrix can be incorporated into the regression analysis to provide a more reliable estimation. The proposed model is then
applied to resolve the spatial resolution enhancement problem for spatially oversampled images. To systematically evaluate the
performance of the proposed model in enhancing the spatial resolution, the proposed approach is applied to the oversampled images
that are reproduced via random field simulations. These application results based on different generated scenarios then conclude
the effectiveness and the feasibility of the proposed approach in enhancing the spatial resolution of spatially oversampled images.

1. INTRODUCTION

Via continuously scanning the Earth surface, remote sensing
images provide regional observations for monitoring environ-
mental parameters. However, to ensure that these regional ob-
servations depict the details of the scanned areas, the unit area
that the sensor scans needs to be small enough to describe the
textures of the objects of interest. In other words, depending on
the application, different levels of the spatial resolution of a re-
mote sensing image are required to provide useful information.
For retrieving information on sea surface temperatures, passive
microwave images with a spatial resolution of tens of kilomet-
ers are acceptable [O’Carroll et al., 2008,Reynolds et al., 2007].
For monitoring land covers, optical remote sensing images with
a spatial resolution of hundreds of meters are required [Hall et
al., 2002, Strahler et al., 1999, Zhang et al., 2003]. For numer-
ically simulating floods in urban areas, digital elevation models
with a spatial resolution of tens of meters are not sufficient for
providing the required information on buildings [Haile and Ri-
entjes, 2005, Schubert and Sanders, 2012]. Consequently, the
mechanism to control spatial resolution is the key to the applic-
ations of remote sensing images.

For this purpose, controlling the distance between the sensor
and the Earth surface is the most direct approach. However, this
direct approach is difficult to implement in practice since choos-
ing the platform that mounts the sensor to adjust the spatial res-
olution of remote sensing images for a specific application is
unrealistic. Instead, the speed of scanning the Earth surface
can be designed to reduce the distance between adjacent areas
to be scanned, to offset the deficit due to insufficient spatial
resolution. However, the direct usage of the images obtained
from a sampling frequency that is higher than the required min-
imum frequency to scan continuously the Earth surface without
gaps, still provides limited improvements in spatial resolution.
The main reason is that the unit area that the sensor scans is
not broken down to a smaller unit via increasing the sampling
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frequency. In other words, to effectively use this additional in-
formation that comes from the high scanning frequency for en-
hancing spatial resolution, a post-process procedure is required.

With the information on the positions of the sensor relative to
the Earth surface, the viewing directions of the sensor, and the
visual fields of the sensor, the relationship between the observed
records collected by the sensor and the to-be-converted image
with the desired spatial resolution can be formulated. How-
ever, since the spatial resolution enhancement problem is es-
sentially a disaggregation problem that aims to spatially decom-
pose each signal observed by the sensor, this formulated rela-
tionship based on the properties of the sensor cannot guarantee
a unique conversion from the observed records of the sensor
to the spatial-resolution-enhanced image. In order to identify
an appropriate conversion for enhancing the spatial resolution,
additional information that comes from temporally related im-
ages [Yu et al., 2006] and spatially related images [Aiazzi et
al., 2002, Gross and Schott, 1996, Hu et al., 2019] can be used
as a reference. By using the matrix decomposition techniques,
the matrix that describes the relationship between the observed
records collected by the sensor and the to-be-converted image
with the desired spatial resolution, can be modified to obtain a
unique conversion [Arai and Matsumoto, 1994, Wiman, 1992].
By applying constrained optimization, a corresponding conver-
sion can be found via controlling the variation of the pixel val-
ues in the to-be-converted image [Farrar and Smith, 1992, Yan-
ovsky et al., 2014]. However, these image conversion selection
approaches do not fully utilize the spatial information collec-
ted via the increased sampling frequency, because the informa-
tion on the distances between the pixels in the to-be-converted
image and the locations on the Earth surface to which the ob-
servations collected by the sensor correspond, is not taken into
consideration.

To utilize this distance information for enhancing the spatial
resolution, the concept of the regression decomposition and
synthesis is proposed. By using this distance information to de-
compose regression models, the appropriate conversions from
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the observed records of the sensor to the spatial-resolution-
enhanced image can be identified. By synthesizing these iden-
tified conversions, this distance information can further be in-
corporated as weights to reinforce the reliability of the spatial-
resolution-enhanced image.

2. METHODOLOGY

To ensure that the signals received by a sensor are stronger than
the corresponding noises when sensing, the sensor should have
an instantaneous field of view (IFOV) that can collect enough
radiance. This IFOV and the corresponding sensing distance
then limit the spatial resolution of the sensed image. In order
to retrieve more information for practical needs, an alternative
solution is to allow oversampling to have overlaps between the
instantaneous footprints of the sensor. However, the resulting
image is blurred with limited information that can be read when
displaying. To resolve this problem, an appropriate mesh grid
can first be defined on the Earth surface. Then, the radiance
value for each grid can be solved via the linear equation set that
represents the at-sensor radiances as the weighted sums of the
values of these non-overlapped grids. With this approach, the
information that comes from oversampling can be fully utilized.

To solve this linear equation set is essentially to find the
weighted sum of all the at-sensor radiance observations that
represents the radiance value of each grid. However, when the
total area on the Earth surface scanned by the sensor to form
the sensed image is large, this weighted-sum estimation does
not make sense. In this situation, most of the at-sensor radi-
ance observations used to estimate the radiance value for each
grid does not contain any radiance information on the corres-
ponding grid. The reason for the inclusion of the redundant
at-sensor radiance observations in this weighted-sum estima-
tion is because of the overlaps between the instantaneous foot-
prints of the sensor. Due to the overlaps, estimating the radi-
ance value of a grid requires the radiance values of the grids
next to it. Estimating these adjacent grids again relies on the
grids next to them. Eventually, all the grids are tied together
in one estimation. Estimating the radiance value of each grid
needs all the at-sensor radiance observations. Nonetheless, for
each grid, the inclusion of these redundant at-sensor radiance
observations has little to no contribution to the weighted-sum
estimation. Often, the weighted-sum estimation becomes un-
reliable or unsolvable due to these redundant observations. To
ensure that the solution to each grid is reliable, the redundant
observations need to be excluded from the linear equation set
to define a local scope for the weighted-sum estimation. The
accuracy of the resulting weighted-sum estimation needs to be
evaluated as the reference for the reconstruction of the optimal
estimation in the global scope.

Radiance signal. Based on the definition of radiance, the ra-
diance signal received by the sensor can be represented as the
total radiant energy collected by the sensor divided by the IFOV
of the sensor, the equivalent exposure area of the sensor surface,
and the exposure time of the sensor. As a consequence, the ra-
diance Lsp,ω received by the sensor s at the position p with the
viewing direction ω can be expressed as an integral of the radi-
ance Lh emitted by the point h on the Earth surface, over the
corresponding constant, as illustrated in Equation (1).

Lsp,ω =
1∫∫

f,h

cos θf,h dAf dΩf,h

∫∫
f,h

Lh cos θf,h dAf dΩf,h

(1)

where f and dAf represent a point on the sensor surface and the
corresponding area of the point f , respectively, h and dΩf,h are
a point on the Earth surface and the corresponding solid angle
of the field of view from f that h covers, respectively, and θf,h
represents the angle between the normal vector of the area dAf
and the vector from f to h. The cosine of θf,h is the ratio of the
exposure area at f that receives the radiance from h over the
area dAf . The double integrals represent the integration over
all the points f on the sensor surface. For each point f on the
sensor surface, this integration is over all the points h on the
Earth surface that are viewable by this point f when the sensor
s is at position p with the viewing direction ω. Essentially, the
numerator and the denominator are the total radiant energy re-
ceived by the sensor per unit time and the corresponding factor
that converts the unit of the numerator to the radiance unit, re-
spectively.

The at-sensor radiance expression illustrated in Equation (1) is
derived based on the assumption that the radiance emitted by
the Earth surface is uniform in all directions and remains the
same when received by the sensor. The information on the at-
mosphere and terrain can be added to Equation (1) to describe
the difference between the radiance emitted by the Earth surface
and the radiance received by the sensor to allow an at-sensor
radiance expression closer to the reality. However, as the atmo-
spheric and the topographic corrections for remote sensing im-
ages are not the main focus in this study, Equation (1) is an ap-
propriate at-sensor radiance model to continue the discussions.

If a mesh grid is defined on the Earth surface, and Lh repres-
ents the equivalent radiance emitted by the grid with the center
h, then Equation (1) can be approximated by and expressed as
the weighted summation that sums over all h that are viewable
by the sensor s at the position p with the viewing direction ω.
All the weights of this summation are positive and are summed
to one. The weight to which the grid center h corresponds is
proportional to the integration of ∆Ωf,h cos θf,h dAf over all
the points f on the sensor, where ∆Ωf,h is the solid angle of
the field of view from f that the grid with the center h covers.
By further considering the uncertainties related to the radiance
measurement error, the at-sensor radiance observations can be
modeled by Equation (2).

Ỹ = Xβ + ε̃ (2)

where Ỹ is a column vector with length n that collects all the
at-sensor radiances Lsp,ω measured by the sensor s at different
positions p with different viewing directions ω. β is a column
vector with length m that collects all the equivalent radiances
Lh emitted by the grids with different centers h that are view-
able by the sensor s, at least, in one of the position p and the
viewing direction ω combinations during sensing. X is a n×m
matrix in which the weights of the summations that approx-
imate Equation (1) are assigned to the corresponding elements
based on the definitions of Ỹ and β to write this approxima-
tion through linear algebra. Due to the fact that not all the grids
defined on the Earth surface are viewable by the sensor at a cer-
tain position with the corresponding viewing direction, X is a
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sparse matrix with few non-zero elements. However, there is
no column or row that is full of zeros in X since the elements
collected in β are the radiances emitted by the grids that are
viewable by the sensor during sensing. Furthermore, because
of the weight definition that follows the linear approximation
of Equation (1), all the elements in X are greater than or equal
to zero, and the sum of all the elements of each row inX is one.
ε̃ is a column vector with length n in which each element is a
random variable that represents the noise of the at-sensor radi-
ance observation in the same row in Ỹ during sensing. To trace
the source of the noise, each element in ε̃ is further assumed to
be the sum of all the random variables that represent the noises
that come from sensing the equivalent radiance emitted by each
grid on the Earth surface that is viewable by the sensor during
sensing. In other words, for each non-zero element xi,j in X ,
there is an associated random variable εi,j to represent the cor-
responding noise. The ith element εi in the vector ε̃ is the sum of
the random variable εi,j over all the possible subscripts j. Fur-
thermore, since the random variable εi,j represents the noise,
assuming that εi,j are mutually independent with zero mean is
reasonable. Otherwise, the sensor system may not be well de-
signed to retrieve information properly. To ensure that the level
of uncertainty is reflected by the weights, the standard deviation
of the noise εi,j is assumed to be proportional to the non-zero
element xi,j and expressed as xi,jσ via assuming that there is a
constant σ.

Local regression. To fully utilize the information that comes
from the overlaps between the instantaneous footprints of the
sensor to improve the spatial resolution of the sensed image,
the size of the grids defined on the Earth surface should be ap-
proximately the same as the areas expended by the distances
from the center of a instantaneous footprint of the sensor to the
center of its adjacent instantaneous footprints of the sensor. In
other words, the length m of the vector β, which represents the
number of the grids, should be approximately the same as the
length n of the vector Ỹ , which represents the number of the
at-sensor radiance observations. When m is equal to n, β can
be estimated by the inverse of X multiplied by Ỹ . However,
there is no guarantee that X is invertible. Even if X is invert-
ible, this estimation approach for β is unreliable because of the
noises that are attached to the at-sensor radiance observations
and are propagated to the estimation of β via the inverse of X .

The inversion of X provides m sets of weights to sum over
the elements in Ỹ to estimate the corresponding m elements
in β. However, because of the noises attached to the at-
sensor radiance observations, for each element in β, not all the
elements in Ỹ contribute valuable information to the corres-
ponding weighted-sum estimation. To obtain a more reliable
weighted-sum estimation for each element in β, the elements
in Ỹ that contribute little information to the estimation of the
corresponding element in β should be removed from the estim-
ation of the corresponding element in β. To evaluate the use-
fulness of each element in Ỹ when estimating each element in
β, a direct approach is to use, whether or not the corresponding
grid is within the corresponding instantaneous footprint of the
sensor, as the criterion. However, since the estimation of each
element in β relies on the system of linear equations that char-
acterizes the relationship between the at-sensor radiance obser-
vations and the radiances emitted by the grids, independently
estimating each element in β is not possible. The removal of
the elements in Ỹ from the weighted-sum estimations for the
elements in β also depends on the criterion that defines the ele-
ments in β to be estimated at the same time.

Since the at-sensor radiance is the unit of the observations, the
instantaneous footprints of the sensor would be an appropriate
unit to define the local scope to exclude the at-sensor radiance
observations that do not contain useful information for estimat-
ing the equivalent radiances emitted by the grids defined on the
Earth surface. In other words, the ith local regression is defined
for the ith at-sensor radiance observation Yi in Ỹ to solve for
all the equivalent radiances emitted by the grids that are within
the instantaneous footprint to which Yi corresponds. To identify
the corresponding elements within β to be solved in the ith local
regression, the column vector c(i) that collects the positions of
the elements in β to be included in the ith local scope is defined.
These elements in the column vector c(i) represent the posi-
tions of the non-zero elements in the ith row of X . Then, the
column vector r(i) that collects the positions of the at-sensor
radiance observations in Ỹ to be used in the ith local regression
is the collection of the positions of the rows in X that contain
at least one non-zero element in the columns indicated in the
column vector c(i). With c(i) and r(i) that define the ith local
scope, the ith local regression can be expressed as Equation (3).

Ỹ (i) = X(i)β(i) + ε̃(i) (3)

where Ỹ (i) is a column vector in which the jth element is the
element in Ỹ at the position indicated by the jth element of r(i),
and β(i) is a column vector in which the jth element is the ele-
ment in β at the position indicated by the jth element of c(i).
X(i) is a matrix with the appropriate size that characterizes the
weighted-sum relationship between the at-sensor radiance ob-
servations in Ỹ (i) and the equivalent radiances emitted by the
grids in β(i). However, due to the exclusion of the elements in
β via c(i), directly filling the locations in X(i) with the corres-
ponding elements in X is not appropriate. The scale parameter
φ
(i)
j needs to be applied to the corresponding elements in X be-

fore assigning these elements to the jth row of X(i) to ensure
that the sum of the elements in each row of X(i) is one. This
sum-to-one adjustment forX(i) is based on the assumption that
the biased expressions for the elements in Ỹ (i) due to the ex-
clusion of the elements in β via c(i) can be corrected through
scaling the weights for the elements in β(i). However, this scal-
ing approach for the bias correction also amplifies the uncer-
tainty when expressing the elements in Ỹ (i) as linear functions
of β(i). Therefore, the jth element of the column vector ε̃(i) is
expressed as the scale parameter φ(i)

j multiplied by the sum of
the noise εk1,k2 associated with the non-zero element xk1,k2 in
X over all the possible k2 listed in c(i) where k1 is the position
indicated by the jth element of r(i).

Local estimation. By adopting the weighted least squares ap-
proach, the estimator β̂(i) for estimating β(i) in Equation (3)
can be expressed as Equations (4) and (5).

β̂(i) = P (i)Ỹ (i) (4)

with

P (i) = (X(i)TW (i)X(i))−1X(i)TW (i) (5)

where the matrix W (i) is a diagonal matrix in which the jth

diagonal element is inversely proportional to the variance of the
jth element of ε̃(i). Based on the definition of the ε̃(i) vector, the
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jth diagonal element of W (i) can be expressed as the reciprocal
of the sum of (φ

(i)
j xk1,k2)2 over all the positions k2 listed in

c(i) where k1 is the position indicated by the jth element of
r(i).

Based on Equations (3), (4), and (5), it is clear that the expecta-
tion of β̂(i) is equal to β(i). Based on this unbiased property of
the estimator β̂(i), the covariance between the jth element β̂(i)

j

in β̂(i) and the j′th element β̂(i′)
j′ in β̂(i′) can further be derived

and expressed as Equations (6) and (7).

Cov(β̂
(i)
j , β̂

(i′)
j′ ) = E

[
P

(i)
j ε̃(i)P

(i′)
j′ ε̃(i

′)
]

(6)

= σ2
∑

{(k,k′)|r(i)k=r(i′)k′}

(
φ
(i)
k φ

(i′)
k′ P

(i)
j,kP

(i′)
j′,k′

∑
{l|l∈c(i)∩c(i′)}

x2r(i)k,l

)
(7)

where P (i)
j and P (i′)

j′ represent the row vector of the jth row of
the projection matrix P (i) and the row vector of the j′th row of
the projection matrix P (i′), respectively. P (i)

j,k and P (i′)
j′,k′ repres-

ent the element in the jth row and kth column of the projection
matrix P (i) and the element in the j′th row and k′th column of
the projection matrix P (i′), respectively. r(i)k and r(i′)k′ are
the kth element of the position vector r(i) and the k′th element
of the position vector r(i′), respectively. To simplify the nota-
tions, the c(i) and c(i′) in Equation (7) represent the set that
collects all the position elements in the previously defined vec-
tor c(i) and the set that collects all the position elements in the
previously defined vector c(i′), respectively. Because the ele-
ments in ε̃(i) and ε̃(i

′) can be expressed as the sums of the mutu-
ally independent noises associated with the non-zero elements
in the matrix X , Equation (6) can be rewritten as the sum of the
expectations of the products of the pairs of these noises with
zero mean. Due to these independent and zero-mean proper-
ties, Equation (7) can be derived by excluding the expectations
that return zero in the summation.

Global estimation. For each local regression, a subset of the
elements in β is estimated. In other words, each element in β
can be estimated via different local regressions. Based on the
weighted least squares estimation approach, these estimations
that come from different local regressions for an element in β
are all unbiased estimators with different dependencies between
each other as described by Equations (6) and (7). To fully utilize
all the information that comes from different local regressions,
the global estimation for each element in β should be a linear
combination of all the local estimators for that element by using
the dependencies between the corresponding local estimators
as the reference. Therefore, the global estimator β̂j for the jth

element in β can be expressed as Equation (8).

β̂j =
η(j)

T

1T η(j)
γ(j) (8)

where γ(j) is a column vector that collects the kth element of
β̂(i) for all i and k that satisfy the relationship that the kth ele-
ment of the position vector c(i) is j. The column vector η(j)

represents the eigenvector to which the largest eigenvalue of the
correlation matrix of the column vector γ(j) calculated from

Equations (6) and (7) corresponds. 1 is a column vector, in
which all the elements are one, with the same length as the vec-
tor η(j) to ensure that β̂j is an unbiased estimator of the jth

element in β.

3. NUMERICAL SIMULATIONS

Stochastically simulated artificial image. To evaluate the per-
formance of the proposed method in retrieving the information
that comes from oversampling, artificial images that are con-
stituted by pixels with stochastically simulated values are ad-
opted as the image that displays the true equivalent radiances
emitted by the grids defined on the Earth surface. To create
textures in these artificial images to simulate ground objects,
the pixel values in each artificial image are simulated sequen-
tially from the top left corner to the bottom right corner. The
first pixel value is simulated from the standard Gaussian distri-
bution. The value of the subsequent pixel is simulated from the
Gaussian distribution that is conditional on all the pixel value(s)
that has(have) been simulated within a radius of R pixels from
the current pixel, with the assumption that all the pixel values
follow the standard Gaussian distribution and jointly follow the
multivariate Gaussian distribution. The required correlation(s)
between pixel values for calculating the mean and the variance
of this conditional Gaussian distribution is(are) evaluated via
the spherical variogram model V (.) indicated in Equation (9).

V (d) =

(
3d

2R
− d3

2R3

)
1(0,R)(d) + 1[R,∞)(d) (9)

where d represents the Euclidean distance in pixel units
between two pixels in the images. To control the image his-
togram, each pixel value in an artificial image simulated based
on the Gaussian assumption is converted to the correspond-
ing standard Gaussian percentile via the cumulative distribution
function of the standard Gaussian distribution. This calculated
percentile is then converted into the corresponding Gamma
quantile, via the inverse of the Gamma cumulative distribution
function with a fixed shape parameter α and a fixed scale para-
meter λ that are adopted to all the pixels in this artificial image,
as the final pixel value. As an illustrative example, a simulated
artificial image is provided in Figure 1.

Spatially oversampled image. To create spatially oversampled
images for evaluating the performance of the proposed ap-
proach, one of the three resampling schemes illustrated in Equa-
tions (10), (11), and (12) is applied to the simulated artificial
images, with stochastically simulated noises attached. For each
pixel in an oversampled image, the weighted average based on
the selected resampling scheme is obtained by first matching
the center element of the selected resampling matrix to the same
pixel location in the corresponding artificial image. Then, via
applying each weight specified in the selected resampling mat-
rix to the pixel value in the artificial image at the corresponding
location that is relative to the center of the matrix, this weighted
average value can be calculated. To simulate and attach the
noise to this weighted average as described in Equation (2), a
value is independently simulated for each element in the selec-
ted resampling matrix, from the Gaussian distribution with zero
mean and the standard deviation that is equal to the value of this
element multiplied by a fixed constant σ̈ that is adopted to all
the pixels in this oversampled image. Then, the sum of all these
independently simulated values and this weighted average value
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Figure 1. An illustrative example of the stochastically simulated
artificial images. The radius R, the shape parameter α, and the

scale parameter λ are 6 pixels, 16
9

, and 3
4

, respectively.

is assigned to the corresponding pixel of this oversampled im-
age as the final pixel value. Furthermore, since the noise level
of an oversampled image is controlled by the constant σ̈, the
ratio of the variance αλ2 of the Gamma distribution used for
generating the corresponding artificial image to σ̈2 is defined as
the signal-to-noise ratio of the oversampled image in this study.
As an illustrative example, the corresponding oversampled im-
age obtained from the artificial image demonstrated in Figure 1
is provided in Figure 2.



0.0267 0.1489 0.0267
0.1489 0.2976 0.1489
0.0267 0.1489 0.0267


 (10)

where the value of each element is proportional to the cosine of
the product of π

3
and the Euclidean distance from that element

to the center of the matrix.




0.0069 0.0302 0.0388 0.0302 0.0069
0.0302 0.0573 0.0672 0.0573 0.0302
0.0388 0.0672 0.0776 0.0672 0.0388
0.0302 0.0573 0.0672 0.0573 0.0302
0.0069 0.0302 0.0388 0.0302 0.0069




(11)

where the value of each element is proportional to the cosine of
the product of π

6
and the Euclidean distance from that element

to the center of the matrix.




0.0032 0.0111 0.0163 0.0181 0.0163 0.0111 0.0032
0.0111 0.0199 0.0257 0.0277 0.0257 0.0199 0.0111
0.0163 0.0257 0.0318 0.0340 0.0318 0.0257 0.0163
0.0181 0.0277 0.0340 0.0364 0.0340 0.0277 0.0181
0.0163 0.0257 0.0318 0.0340 0.0318 0.0257 0.0163
0.0111 0.0199 0.0257 0.0277 0.0257 0.0199 0.0111
0.0032 0.0111 0.0163 0.0181 0.0163 0.0111 0.0032




(12)

where the value of each element is proportional to the cosine of
the product of π

9
and the Euclidean distance from that element

to the center of the matrix.

Figure 2. An illustrative example of the spatially oversampled
images. Equation (11) is adopted for the resampling. σ̈2 is set to

1
2

for the simulated noises. Two pixels are missing from each
side of the image due to the application of Equation (11).

Reconstructed image. By rearranging the pixels in an over-
sampled image and the pixels in the corresponding artificial im-
age to form the column vector Ỹ and the column vector β indic-
ated in Equation (2), respectively, the matrix X can be obtained
accordingly based on the weighted average calculation proced-
ure that adopts one of the three resampling schemes indicated
in Equations (10), (11), and (12) to obtain the oversampled im-
age. Then, Equations (4) and (5) can be adopted to calculate
the local estimator β̂(i) for each row i in Ỹ . With the calculated
local estimators, the global estimator β̂j for each row j in β can
be evaluated via Equations (7) and (8). By assigning the value
of each evaluated global estimator to the corresponding pixel
in the artificial image, the reconstructed image can be obtained.
As an illustrative example, the image reconstructed from the
oversampled image shown in Figure 2 is provided in Figure 3.

As demonstrated in Figure 3, the application of the proposed
method is able to recover the texture of the artificial image il-
lustrated in Figure 1 from the oversampled image shown in Fig-
ure 2. In addition, the noises that are simulated and attached
to the oversampled image for mimicking the sensor noises are
spatially randomly distributed by the proposed approach in the
reconstructed image. The collection of the pixel-wise differ-
ences between the reconstructed image demonstrated in Figure
3 and the artificial image illustrated in Figure 1 further indic-
ates that these spatially-randomly-distributed noises are evenly
distributed around zero as well. This capability of recovering
the texture and this capability of evenly distributing the noises
suggest the effectiveness of the proposed method in improving
the spatial resolution of an image via oversampling.

Feasibility. To further evaluate the feasibility of the proposed
approach in different scenarios, different values of α and R
are adopted to generate artificial images with different textures.
Oversampled images with different degrees of oversampling are
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Figure 3. An illustrative example of the reconstructed images.

created via Equations (10), (11), and (12). Different values of λ
and σ̈ are applied to reproduce different signal-to-noise ratios.
For each setting of the combinations of the textures, the de-
grees of oversampling, and the signal-to-noise ratios, 100 artifi-
cial images are simulated with a length of 40 pixels and a width
of 40 pixels. For each simulated artificial image, the corres-
ponding oversampled image is created via applying the corres-
ponding resampling matrix and simulating noises based on the
corresponding value of σ̈ to attach. Then, the mean, the stand-
ard deviation, and the skewness of the pixel-wise differences
between the reconstructed image obtained via applying the pro-
posed method to this oversampled image and the artificial im-
age adopted for creating this oversampled image, are calculated.
The three averages of these three metrics calculated from the
100 sets of the collected pixel-wise differences then summarize
the performance of the proposed approach for this particular
combination of the textures, the degrees of oversampling, and
the signal-to-noise ratios. By collecting the comparison results
from all the scenarios examined in this study, Table 1 is formed
to summarize the feasibility of the proposed method.

With the feasibility summary described in Table 1, the pixel-
wise performance evaluation of the parameter setting adopted
to generate Figure 1, Figure 2, and Figure 3 can be identified.
This identified performance evaluation information can then be
used as a comparative base for interpreting Table 1. With this
comparative base, whether or not the proposed method is able
to recover the textures in the artificial images from the over-
sampled images, should be evaluated by using, whether or not
the mean and skewness metrics of the pixel-wise differences
are close to zero, as the criterion. Then, the standard deviation
metric of the pixel-wise differences simply reflects the level of
the noises attached to the reconstructed images. As illustrated
in Table 1, the skewness metric of the pixel-wise differences
decreases when 2√

α
increases, R decreases, or the size of the

resampling matrix decreases. This decrease in the skewness
metric implies that the proposed approach relies on, obtaining
an appropriate expression for at-sensor radiance observations
by using the radiances emitted by fractions of the correspond-
ing instantaneous footprints of the sensor, to enhance the spatial
resolution of oversampled images. When making inferences on
the pixel values in an image to be reconstructed by using the

Table 1. The summary of the feasibility of the proposed method.
The pixel-wise differences are obtained via subtracting the pixel

values in the artificial images from the corresponding pixel
values in the corresponding reconstructed images. Two, three,
and four pixels from each side of the images are excluded from

the pixel-wise-difference calculations when the size of the
resampling matrix is three-by-three, five-by-five, and

seven-by-seven, respectively. As a comparative base, the values
in parentheses are the corresponding results when the elements
in Equations (10), (11), and (12) are replaced by the values: 1

9
,

1
25

, and 1
49

, respectively.

adjacent pixels is not appropriate, due to the high image skew-
ness of the image to be reconstructed, the low spatial depend-
ence within the image to be reconstructed, or the low overlap
rate of the applied oversampling scheme, the application of the
proposed method without an additional correction to the dis-
tortion of the image histogram of the reconstructed image may
not be appropriate. Furthermore, as demonstrated in Table 1,
the standard deviation metric of the pixel-wise differences in-
creases when αλ2

σ̈2 decreases, or the size of the resampling mat-
rix increases. This increase in the standard deviation metric
indicates that, to effectively adopt the proposed approach to re-
trieve information via oversampling, arranging an appropriate
oversampling scheme is essential when designing a sensor to
ensure that the noises attached to the reconstructed images are
controlled at a reasonable level.

4. CONCLUSIONS

To enhance the spatial resolution of oversampled images, the
concept of the regression decomposition and synthesis is pro-
posed. With the concept of the regression decomposition, the
spatial resolution can be enhanced by using the segments of an
oversampled image as units, to improve the reliability of the
enhancement result of each segment. With the concept of the
regression synthesis, the enhancement results of these segments
can be integrated via the statistical inferences on the estimation
variances to ensure the consistency of the spatial resolution en-
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hancement throughout the entire image to further reinforce the
reliability of the enhancement result.

To evaluate the performance of the proposed method, over-
sampled images are generated via applying oversampling
schemes to stochastically simulated images, with stochastic-
ally simulated noises attached. The implementation of the pro-
posed approach to these generated oversampled images demon-
strates the effectiveness of the proposed method in enhancing
the spatial resolution, when comparing the resulting images
with the corresponding stochastically simulated images. Based
on different combinations of the simulated image textures, the
degrees of oversampling, and the signal-to-noise ratios, these
comparison results further conclude the feasibility of proposed
method in practical applications. With the simulated scenarios
examined in this study as the reference, the exact procedures to
process the at-sensor radiance observations for the application
of the proposed approach to actual remote sensing images, can
be discussed in detail in future research.
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