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ABSTRACT 

Measuring high spatial/temporal industrial heat emission (IHE) is an important step in industrial climate studies. The availability of 

MODIS data products provides up endless possibilities for both large-area and long-term study. nevertheless, inadequate for monitoring 

industrial areas. Thus, Thermal sharpening is a common method for obtaining thermal images with higher spatial resolution regularly. 

In this study, the efficiency of the TsHARP technique for improving the low resolution of the MODIS data product was investigated 

using Landsat-8 TIR images over the Klang Industrial area in Peninsular Malaysia (PM). When compared to UAV TIR fine thermal 

images, sharpening resulted in mean absolute differences of about 25 °C, with discrepancies increasing as the difference between the 

ambient and target resolutions increased. To estimate IHE, the related factors (normalized) industrial area index as NDBI, NDSI, and 

NDVI were examined. The results indicate that IHE has a substantial positive correlation with NDBI and NDSI (R2 = 0.88 and 0.95, 

respectively), but IHE and NDVI have a strong negative correlation (R2 = 0.87). The results showed that MODIS LST at 1000 m 

resolution can be improved to 100 m with a significant correlation R2 = 0.84 and RMSE of 2.38 °C using Landsat 8 TIR images at 30 

m, and MODIS LST at 1000 m resolution can still be improved to 100 m with significant correlation R2 = 0.89 and RMSE of 2.06 °C 

using aggregated Landsat-8 TIR at 100 m resolution. Similarly, Landsat-8 TIR at 100 m resolution was still improved to 30 m and used 

with aggregate UAV TIR at 5 m resolution with a significant correlation R2 = 0.92 and RMSE of 1.38 °C. Variation has been proven 

to have a significant impact on the accuracy of the model used. This result is consistent with earlier studies that utilized NDBI as a 

downscaling factor in addition to NDVI and other spectral indices and achieved lower RMSE than techniques that simply used NDVI. 

As a result, it is suggested that the derived IHE map is suitable for analyzing industrial thermal environments at 1:10,000 50,000 scales, 

and may therefore be used to assess the environmental effect. 

1. INTRODUCTION

Heat loss is an important environmental variable and measure of 

air quality (Veefkind et al., 2007; Energy, 2008; Rani et al., 2018). 

the influence of energy loss in economic sectors and vigorous waste 

heat loss from industrial plants have substantial implications for 

human health and climate change (Vollrath, 1987). Therefore, 

various phenomena such as urban up-to-date, forest fire, and more 

recently industrial related thermal objects have become issues of 

concern. Hence, to understand the dynamics of energy loss, 

industrial heat emission (IHE) should be holistically comprehended 

as it is considered as one of the most significant physical-

environmental variables (Huo et al., 2014; Yao et al., 2019). 

Currently, in an epoch of technological revolution, progress in data 

acquisition is quite crucial and remained relevant in the thermal 

domain. However, the influence of energy loss in economic sectors 

and vigorous waste heat loss from industrial plants for many 

possible applications such as industrial inspection (Nikolic et al., 

2013; Baena et al., 2017; Boesch, 2017), environmental monitoring 

(Turner et al., 2014; Chmaj and Selvaraj, 2015; Harvey et al., 2016; 

Torres-rua and Hipps, 2019), have substantial implications for 

human health and climate change (Vollath, 1987). 

Thermal imagine is an authoritative means for exploding the 

thermal information used to repossess Surface Temperature (ST) 

(Ferrari et al., 2020). The cognition of the ST is an indicator that 

can offer valuable data from various geophysical environmental 

applications (geological studies, mineral exploration, and 

evapotranspiration) (Tan et al., 2017; Dahiru and Hashim, 2020)  

[2, 3]. Consequently, The advancement in remote sensing 

technology offers an opportunity to provide a reliable, consistent, 

and repeatable approach within the working frame from local to a 

global scale, as well as long-term monitoring of oil spillage 

operations (Bromley et al., 2015; Casagli et al., 2017) The 

development and changes related to land cover and urban features 

have been associated with industrial heat emission, where the 

surface air temperature is becoming higher compared to the 

surrounding environment (Lee et al., 2003). There is a need for 

industrial heat regulations which will attach to green space to 

monitor the heat intensity from industrial heat emissions through a 
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descriptive technology (Liu et al., 2018; Zhang et al., 2019) In 

connection with ground truth measurement of air temperature 

(Takebayashi, 2017). 

Therefore, the study of ST contributes to identifying the extent of 

high temperature from the thermal information over the different 

urban land cover boundary which is limited to a comparatively 

small area in which concurrently measured air temperature through 

the full stretch. Thus, the remotely sensitive approach for ST 

offered an option to capture the relatively small area as well as a 

larger area. However, the special solution for such datasets which 

ranging from 60m to 100m TIRS and < 1 m UAV TIRs is 

insufficient to capture a large lot of industries that emit heat 

concerning heterogeneous ground features (Zawadzka, et al., 

2019). Established in the preview literature on prominent research, 

downscaling studies of coarse spatial resolution LST of the 

developed areas were relatively targeted with 

final downscaling special resolution comprising 1000 m,  480-

120m, 6m-90m, 50m, and 30m (Sharma et al., no date; Jos et al., 

2018; Wu et al., 2019)   with downscaling factors, recently attempt 

on downscaling to 2m special resolution. The spatiotemporal 

trends of LST are investigated and contrasted using several indices 

such as NDVI, NDBI, and the Normalized Difference Water Index 

(NDWI). The modern benefit of this research was the application 

of remote sensing data in broader issues concerning the effects of 

IHE on the industrial surrounding and human health. 

In this paper, we apply high and medium resolution data from 

Landsat 8 TIR bands (10 and 11) to generate heat emission image 

for Pulau Indah industrial area based on the relationship with 

MODIS product data, which is the technique for multiple adaptive 

regression splines (MARS) was tested to suit diverse regression 

function into different n-dimensional data (Mukherjee et al., 2015). 

Nevertheless, the MARS techniques predict the special distribution 

of environmental activities, mostly limited to soil mapping (Piikki 

and Söderström, 2019) and landslide detection (Wang et al. 2015). 

Therefore, we undertake to use MARS in heat emission 

downscaling for the industrial area of Pasir Gudang. The objectives 

of this study present as follow; (i) To explore the techniques for 

downscaling spatial resolution images for both UAV and Landsat-

8 TIRS for enhancing the accuracy of the downscaled map (ii) to 

investigate the sensitivity of Landsat-8 TIR for detecting industrial 

thermal energy heat emission within various range of targets for 

different temperatures (iii) and to evaluate the link between the 

industrial material and thermal energy at microscales (1:10,000 ~ 

50,000 scales) (Burdun et al., 2019; Zawadzka, Corstanje, Harris, 

Truckell, et al., 2019; Dahiru and Hashim, 2020).  Therefore, the 

potential of the Multivariate Adaptive Regression Splines model is 

suitable for study industrial thermal energy for impact assessment. 

Therefore, detecting, mapping, and monitoring industrial heat 

energy sources to support understanding toward improving 

disparities on existing industrial substances for policymaker’s 

implementation. 

2. STUDY AREA

The study was conducted in the industrial district of Klang in the 

Selangor state of Peninsular Malaysia (2°59’ N, 101° 20’ E) in 

2020 as shown in Figure 1. The Pulau Indah (456,379.90 m2) is 

multi-industry parks of heavy, light, and simple that some operate 

24 hrs. The area was predominantly a tropical climate zone that lies 

within 5m above the datum surface with a significant amount of 

rainfalls with an ordinary temperature of about 26.8 °C /80. 3°F.  

About 2208mm /86.9 inch of precipitation during the twelvemonth. 

Figure 1. Shown the location of the industrial sites. Though, 

considering the study location which is relatively small in size, the 

altitude, and the satisfactory climatic conditions during the flight 

campaign, the atmospheric corrections were neglected during the 

flight. Pulau Industrial area is one of the populous industrial parks 

located in the Klang area was established in 1994 with the hope to 

improve the economic sectors of Malaysia.

The area was predominantly a tropical climate zone at an elevation 

of 5 m with a mean rainfall of 2208 mm with a daily temperature 

range of 27 ~ 32 °C. In the highlands, the temperature is lower and 

ranges from 16 ° C to 24 ° C as defined by (Syafrina et al., 2015; 

Tang, 2019). Peninsular Malaysia is considered to be an area where 

waste heat loss can occur due to its proximity to many industries 

in the state (Energy Commission, 2017; Goleman et al., 2019). The 

major energy sources include primary fuel gas and secondary fuel 

oil, which is recognized as the biggest gas turbine power station in 

Malaysia. The temperature of the study area is influenced by the 

two main seasons; Winter period (Northeast monsoon) brings 

heavy rainfall mostly to the east coast states during November to 

March, and the Summer period (Southwest monsoon) signifies 

relatively drier weather during May to September (At et al., 2015). 
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Figure 1. Studies at Pulau Indah, Klang District, Selangor, Peninsular Malaysia. 

3 Material and Method 

In this study, satellite-based data from Landsat-8 TIR and 

MODIS LST products shown in (Table 1) was acquired. The 

satellite data acquired from the Landsat-8 OLI/TIR sensor were 

subset to limit the data size. The preprocessing stage included 

geometrically and radiometrically corrected in the datum 

WGS84 and projection UTM zone N48 using the first order 

(linear) of the polynomial function. The thermal infrared band 

(band 10 and 11) image has a spatial resolution of 100 m which 

was resampled using the nearest neighbour algorithm with a 

pixel size of 30 m to match the optical bands, which was chosen 

to preserve the radiometry and spectral information in the 

imagery. These images have a spatial resolution of 30 meters per 

pixel to enhance the image quality. Landsat 8 data consisted of 

independent distinct band images which were the first layer 

stacked and combined into a multi-band image. To analyse the 

changes in temperature in the study area, The OLI/TIRS data for 

red, near-infrared, and middle infrared bands (bands 4, 5, and 6) 

have been used for the estimate of the Normalized Difference 

Vegetation Index (NDVI), Normalized Difference Built-up 

Index (NDBI), Normalized Differential Water Index (NDWI) 

while thermal bands (bands 10 and 11) were used for retrieval 

of the correlation with derived IHE for 21st February 2020. 

through implementing the SW algorithm, we have described the 

entire method of extracting these features from satellite data 

using ArcGIS software in the subsequent sentences, and finally, 

the statistical analysis was carried out using the empirical 

regression analysis function. 

Table 1. Specification of the data used in the study. 
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3.1 Analysis of NDVI, NDSI and NDBI 

The terms NDVI and NDBI relate to vegetation and constructed 

area indicators that are widely used to explore the correlation 

between LST, vegetation, and constructed areas (Guha et al., 

2018)(Jamei et al., 2019). Because of its benefits, such as high 

sensitivity to chlorophyll and noise reduction by normalization 

between -1 and +1, NDVI is widely used. However, this index has 

drawbacks, such as a high sensitivity to vegetation changes.  

Besides it as well, NDBI was developed by (Zha et al., 2003) to 

analyze the reflectance changes on TM 5 bands 4 and 5 for images 

of urbanized and barren land areas NDBI (Zhao and Chen, 2005) 

is considered as a significant variable and indicator of LST. The 

NDBI is highly scalable from -1 to 1. Positive numbers reflect 

densely urbanized areas, while negative values represent other 

forms of land cover. 

The NDVI (Kumari et al., 2018)(Mia et al., 2017) was employed 

in this study since it is the most effective and frequently used 

indicator for vegetation extraction. In this investigation, NDBI 

(Guha et al., 2018)(Jamei et al., 2019)(Gillani et al., 2019)values 

ranging from -1 to 1 were used to detect the industrial area. These 

two indices may be used to classify different sorts of Land data 

using appropriate threshold values (Khandelwal et al., 

2018)(Shumilo et al., 2019). On the spectral bands of the indices, 

multispectral bands operators were utilized to achieve more 

reliable classification. For instance, NDVI > 0.2 and NDBI 0 can 

be combined to extract vegetation  (Malik et al., 2019). Likewise, 

NDVI 0 and NDBI 0 can be used to retrieve water bodies, while 0 

NDVI 0.2 and NDBI > 0.1 can be used to extract built-up area and 

bare land (Kumari et al., 2018)(Kumari et al., 2018). However, 

owing to atmospheric circumstances, these threshold values may 

differ. 

The NDBI is a widely used index for mapping urban and rural 

regions. The reflectance of built-up regions increases dramatically 

in the Shortwave Infrared (SWIR) wavelength range (1.55-1.75) m 

and decreases dramatically in the Near Infrared (NIR) wavelength 

range (0.76-0.90) µm. Built-up pixels have positive values as a 

result of the difference between these two wavelength ranges 

(Malik et al., 2019) as follows: 

𝑁𝐷𝐵𝐼 =
𝑀𝐼𝑅 (𝑏𝑎𝑛𝑑 6) − 𝑅(𝑏𝑎𝑛𝑑 4)

𝑀𝐼𝑅 (𝑏𝑎𝑛𝑑 6) + 𝑅(𝑏𝑎𝑛𝑑 4)
 (1) 

Where, MIR is middle infrared reflectance, which is band 6 of 

Landsat-8, Red is band 4 for Landsat-8; NDBI values (Guha et 

al., 2018; Gillani et al., 2019; Jamei et al., 2019) range from -1 to 

1. The greater the NDBI is, the higher the proportion of the built-

up area

According to combines, vegetation and water bodies may be easily 

retrieved based on the spectral variations. The normalized 

difference soil index (NDSI) can then be used to differentiate bare 

areas, including main bare land, supplementary bare land, and 

agricultural areas, from other surface covers, particularly 

constructed areas and wetlands, which had similar spectral 

reflectance but were not classified in the spectral profiles. The 

normalized difference soil index is defined as: 

𝑁𝐷𝑆𝐼 =
(𝑏𝑎𝑛𝑑6 − 𝑏𝑎𝑛𝑑5)

(𝑏𝑎𝑛𝑑6 + 𝑏𝑎𝑛𝑑5)
 (2) 

wherein band 5and band 6 indicate the reflectance of band 5 and 

band 6, respectively, because only soil is more reflective in band 6 

than band 5.Landsat-8 OLI/TIR data (Wulder et al., 2019).  

The Normalized Difference Vegetation Indicator (NDVI) is a 

vegetation index that is frequently used to measure the spatial 

extent and health of vegetation in a given area. It is frequently used 

to examine a spectral band in the near-infrared wavelength and 

another in the red wavelength (Kumari et al., 2018)(Mia et al., 

2017). NDVI was computed in ArcGIS software using NIR Band 

5 and Red Band 4 data from Landsat-8 using Equation 2. The NIR 

and red band used to estimate the NDVI values: This study realized 

the NDVI for soil as -0.0002 (NDVImin), while for vegetation as 

0.4744 (NDVImax). 

NDVI =
NIR(band5) − R(band4)

NIR(band5) + R(band4)
 (3) 

The Normalized Differential Water Index (NDWI) was employed 

to monitor the state of soil moisture and water bodies in the 

research area. The ratio of Band 3 (R) to Band 5 (short-wave 

infrared (SWIR): 1.55-1.75 µm). Water bodies were enhanced in 

the spectral area, resulting in brighter pixels (Rogers and Kearney, 

2004)(Fadhil, 2011). 

𝑁𝐷𝑊𝐼 =
𝑅𝑒𝑑 (𝐵𝑎𝑛𝑑 4) − 𝑆𝑊𝐼𝑅 (𝑏𝑎𝑛𝑑 6)

𝑅𝑒𝑑(𝐵𝑎𝑛𝑑 4) + 𝑆𝑊𝐼𝑅 (𝑏𝑎𝑛𝑑 6)
 (4) 

Various mathematical techniques were utilized and processed in 

ArcGIS software to estimate IHE from Landsat-8 satellite data. The 

following stages are involved in the evaluation of IHE from thermal 

bands in ArcGIS raster processing: 

3.2 Conversion of digital number (DN) to radiance 

The top of atmospheric (TOA) of the OLI band (2-7) and TIRS 

sensor band (10 and 11) are estimated separately. The sensor 

converts a raw image into the spectral radiance, the Equ.5 is 

realized using ArcGIS 10.5 software package 

𝐿𝜆 = 𝑀𝐿 × 𝜑𝑐𝑎𝑙 + 𝐴𝐿 − 𝑄𝑖    (5) 

where, Lλ     is the TOA spectral radiance (watts/(𝑚2srad ∗  μm))

;  𝑀𝐿 – band-specific multiplicative rescaling factor obtained from

the metadata Table 3 (Barsi et al., 2014). 

3.3 Conversion to At-Satellite Brightness temperature (BT) 

BT is the electromagnetic radiance moving upward from the top of 

the earth’s atmosphere to allow the thermal calibration conversion 

(The DN values of TIR band 10 and 11 to TOA spectral radiance), 
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(USGS Handbook, 2013) Equ.6. therefore, The BT is not a 

temperature on the ground rather is the temperature at the satellite. 

𝑇𝐵 =
𝐾2

𝐿𝑛 [(
𝐾1
𝐿𝜆

) + 1]⁄
− 273.15   (6) 

where: 𝑇𝐵- At satellite brightness temperature (K); 𝐾1-Calibration

constant 1 (watts/(𝑚2srad ∗  μm); 𝐾2 -Calibration constants 2,

However, the values are in Kelvin (K), to have it in Celsius degree, 

it is necessary to consider by adding absolute zero which is equal 

to -273.15.

3.4 Heat Emissivity 

Accurate Industrial heat emission (IHE) estimation from  TIR 

bands (10 and 11) relies on atmospheric effect features with 

adequate knowledge of LSE (Smith, 1997). The LSE and ambient 

temperature are two substantial variables used to identified land 

surface processes and charge of radiation budget. Therefore, in this 

paper, the NDVI-based emissivity process was implemented to 

estimate the NDVI derived from TIR bands (10 and 11) data. The 

NDVI was categorized into bare soil (𝑁𝐷𝑉𝐼 < 0.2), mixture of 

bare soil and vegetation (0.2 ≤ 𝑁𝐷𝑉𝐼 ≤ 0.5), and fully vegetation 

(𝑁𝐷𝑉𝐼 > 0.5), each of these classes is estimating using the 

following equation [27, 28].  

FVC = [
(𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛)

(𝑁𝐷𝑉𝐼𝑚𝑎𝑥 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛)
]2   (7) 

𝜀𝜆 = 𝜀𝑣𝜆𝐹𝑉𝐶 + 𝜀𝑠𝜆(1 − 𝐹𝑉𝐶) + 𝐶𝜆   (8) 

Where;  𝜀𝑠 𝑎𝑛𝑑 𝜀𝑣 represent the emissivity of vegetation and soil

respectively, 𝐹𝑉𝐶 represent proportional vegetation, and C 

represents the surface roughness with a constant value of 0.005 

(Algorithms et al., 2020). 

3.4 Industrial heat emission (IHE) Retrieval 

The IHE can be retrieved using the SW algorithm developed by 

(Jimenez-Munoz et al., 2014) for Landsat -8 TIRS. According to 

(Ren et al., 2014), the Split-Window methods use two TIRs bands 

classically located in the atmospheric window between 10 and 

12 𝜇𝑚, The mathematical structure for estimating the LST Landsat 

8 can be articulated as [25, 28], expressed in Equ (9): Where 

Tsis given as;

𝑇𝐵10 + 𝑐1(𝑇𝐵10 − 𝑇𝐵11) + 𝑐2(𝑇𝐵10 − 𝑇11)2 + ⋯

+𝑐0 + (𝑐3 + 𝑐4𝑤)(1 − 𝜀) + (𝑐5 + 𝑐6𝑤)∆𝜀   (9)

𝑇𝑠 is given as Land surface Temperature; 𝑇𝐵10, 𝑇𝐵11 are the

Brightness temperature of band 10 and 11 of Landsat -8; TIRS W 

is the atmospheric water vapour contents (g/𝑐𝑚2). 𝜀 mean

emissivity; ∆𝜀 emissivity differences; 𝑐0 to 𝑐6- is the SW

coefficient values. The coefficient values for SW were shown in 

Table 2 [32, 33].  

Table 2: SW coefficients values for TIRS bands of Landsat-8 imagery. 

Constants 𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6

Value -0.268 1.378 0.183 54.300 -2.238 -129.200 16.400 

3.5 Spatial downscaling and upscaling Techniques 

The majority of geostationary satellite products for global and 

regional monitoring have a high temporal resolution but a low 

spatial resolution (Zawadzka, Corstanje, Harris and Truckell, 

2019)(Zhao et al., 2019). Satellite-derived products have an 

insufficient spatial resolution for comprehensive local analysis. 

High spatial resolution products, on the other hand, are rarely 

accessible the disparity in information content supplied by satellite 

data with varying spatial resolutions. The quantity of thermal 

information reduces as spatial resolution lowers. As a result, an 

increase in spatial resolution is frequently necessary to effectively 

exploit thermal data with a high temporal resolution for 

environmental monitoring (Wang et al., 2004). 
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Figure 2. Methodological flowchart. 

This technique, though, invariably results in the loss of fine-scale 

information. As a result, fine-resolution spatial data must also be 

produced for integrated analysis of multi-sensor/source spatial data 

sets. Spatial downscaling, also known as disaggregation, is a scale 

conversion technique that improves spatial resolution (Zawadzka, 

et al., 2019). whereas a reduction in spatial resolution is referred to 

as spatial upscaling or aggregation Equ.10. As a result, thermal 

sharpening techniques are developed to sharpen TIR images to 

pixel resolutions in the shortwave band, which are frequently fine 

enough according to field-scale applications. TsHARP, a well-

known thermal sharpening approach, employs a connection 

between LST and the NDVI, which was empirically derived at the 

TIR pixel resolution and utilized at the NDVI pixel resolution. 

The algorithm for both high and low-resolution satellite data is 

based on the negative relationship between temperature and NDVI. 

Over second-order polynomial regression, the downscaling model 

operated as: 

The disTradRM model is based on both linear and quadratic terms 

of the NDVI (Kustas et al., 2003) 

𝐼𝐻�̂� = 𝑎 + 𝑏 × 𝑁𝐷𝑉𝐼 + 𝑐 × 𝑁𝐷𝑉𝐼2   (10)           

This model is an alteration of the DisTrad algorithm. This model 

operates a simple least-square (LS) regression function in 

preference to 𝑆𝐿𝑠𝑟. The fractional vegetation cover (FC) has been

used in place of the conventional NDVI approach. The polynomial 

function has been found more responsive to outliers compared to 

the simple LS. The present study uses both NDVI and FC as a 

covariate function with the LST. The TsHARP model Equation (a-

b) given. 

Polynomial fit 

𝐼𝐻𝐸 = 𝑎 + 𝑏 × 𝑁𝐷𝑉𝐼 + 𝑐 × 𝑁𝐷𝑉𝐼2   (11)

Fc transformation 

𝐼𝐻𝐸 = 𝑎 + 𝑏 [1 − (
𝑁𝐷𝑉𝐼𝑚𝑎𝑥 − 𝑁𝐷𝑉𝐼

𝑁𝐷𝑉𝐼𝑚𝑎𝑥 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛
)0.625]  (12)

Simplified fc transformation  

𝐼𝐻𝐸 = 𝑎 − 𝑏(1 − 𝑁𝐷𝑉𝐼)0.625   (13) 

In the case of fine spectral resolution, the medium-resolution 

regression coefficient was applied, to improve the accuracy, adding 

the residual error of the corresponding medium-resolution images.  

3.5 Verification of the results 

As a result of the inaccessibility of different IHE, the downscaled 

map was validated using the retrieved Landsat-8 TIR bands. 

Consequently, the developed models were proved by adjusted R2 at 

the same calculate the RMSE between the derived TIRS data and 

downscaled IHE map, RMSE was calculated in two approaches. 

Firstly, RMSE2/4m was calculated from two differences between the 

observed IHE30(100)m, resampled to 30m spatial resolution with the 

nearest neighbour method to enable the calculation presented in 

equation 7 and download map LSTMARS2/4m (Zawadzka, et al., 

2019). 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝐼𝐻𝐸𝑠ℎ𝑎𝑟𝑝 − 𝐼𝐻𝐸𝑟𝑒𝑓)2   (14)

𝑁

𝑖−1

 

Therefore, 𝑅𝑀𝑆𝐸2/4𝑚 was calculated an evaluation between

Landsat8 derived map and downscaled map adjusted for 

residual(∆𝐼𝐻𝐸𝑠ℎ𝑎𝑝𝑒) map  𝐼𝐻𝐸′𝑟𝑒𝑓 . Equa. (14)

𝑅𝑀𝑆𝐸′ = √
1

𝑁
∑(𝐼𝐻𝐸𝑠ℎ𝑎𝑝𝑒 − 𝐼𝐻𝐸′𝑟𝑒𝑓)2      (15)

𝑁

𝑖−1

 

𝑅2 =
∑(𝐼𝐻𝐸𝑠ℎ𝑎𝑟𝑝 − 𝐼𝐻𝐸𝑟𝑒𝑓)2

∑(𝐼𝐻𝐸𝑠ℎ𝑎𝑟𝑝 − 𝐼𝐻𝐸𝑟𝑒𝑓−𝑚𝑒𝑎𝑛)2 (16)
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4. RESULT AND DISCUSSION

4.1 Analysis of the IHE, HSE, HBE, and NDVI, NDSI and 

NDBI relationship 

Table 2 shows the descriptive statistics of IHE for both cities based 

on NDVI, NDSI, and NDBI values. The IHE distribution was 

categorized into acceptable ranges and a colour scheme to generate 

a heating trend distribution map of heat emission over the studied 

area (Figure 3). The mean IHE values for Pulau Indah industrial are 

50.97 °C, 51.78 °C, and 52.565°C, respectively. The temperature 

increase threshold values for Pulau Indah industrial are 58.38°C, 

59.43 °C, and 60.02 °C, respectively. Because of the land use/cover 

changes, there was some variability in the surrounding area. The 

high rate of activity in the industrial sector, as well as energy 

generation, has increased the mean IHE. The mean NDVI, NDSI 

and NDBI values for Pulau Indah are 0.32, 0.044, and -0.0259, 

respectively. The study area has the nearly same range of statistical 

data for IHE, NDVI, and NDBI. 

Figure 3. (a - f) Spatio-temporal disparities in NDVI, NDBI, NDSI and IHE (°C) 

Table 3. Spatial Descriptive statistics of heat emission and corresponding factors (normalized) 

NDBI and IHE relationships were generated and proven to have a clear correlation during the study. The highest surface temperature from 

industrial areas was shown by NDBI results. As a result, it has been anticipated that the industrial area will cause significant changes in 

heat emission. As presented in Figure 5, the NDBI and IHE correlations had a significant positive relationship, with R2 values of 0.98, 

0.97, and 0.95. (a-c). The strong relation established between NDBI and IHE indicates that the built-up area produces a lot of surface heat 

variability and is a significant contribution to the industrial environment. Healthy vegetative cover, on the other hand, plays a major role in 

lowering the surface temperature. Table 4 provides summary statistics on NDBI. NDVI is extremely sensitive to changes, and changes in 

NDVI may induce changes in land surface temperature. Correlation analysis was performed to identify the correlation between IHE and 

NDVI, which revealed a significant negative correlation (R2 = 0.87), and IHE with NDSI and NDBI, which revealed a strong negative 
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correlation (R2 = 0.87). Figure 5 (c-d). According to our results, high surface temperatures were observed in industrial areas, surrounding 

constructions, and bare surfaces, but low surface temperatures were observed in green areas. Table 4 provides statistics. During the study, 

a relationship between NDVI and NBDI was also established. 

Figure 4. (a) Scattered plots of IHE vs NDVI (b) IHE vs NDBI (b) IHE vs NDSI (d) IHE vs NDVI (e) IHE vs NDSI (f) IHE vs NDBI 

4.2 Validation of IHE generated from MODIS data 

Validation of derived IHE using in situ measurement or another 

sort of satellite sensor is essential before executing any kind of 

application process. MODIS data were applied as a reference image 

in this study to validate the IHE results. MODIS and Landsat-8 do 

not exhibit enhanced images of the research region promptly. Thus, 

MOD11B2 data (1000 m resolution) from 10 February 2020 were 

used instead of 20 January 2020 for Pulau Industrial acquired using 

UAV TIR and RGB, and MOD11B2 data (1000 m resolution) from 

10 February 2020 were used instead of 20 January 2020  

and Landsat-8 date for Passover (21st February 2020). There was 

precipitation or atmospheric disturbances between the acquisition 

dates of the UAV base, while there were low acquisition dates of 

the Landsat-8 and MOD11B2 imageries. The spatial resolution of 

the thermal infrared band for MOD11B2 data is 1000 m and 100 m 

for Landsat-8 TIR data. Without any upscaling or downscaling of 

Landsat-8 data or MOD11B2 data, a high positive correlation of R2 

= 0.84 was obtained between the IHE values estimated from 

Landsat-8 TIR data and MOD11B2 data, and R2 = 0.92 was 

established between the IHE values estimated from Landsat-8 data 

and UAV TIR data. 

Figure 5. (a) Linear plots of retrieved IHE (a) MODIS LST (100 m) and Landsat-8 TIR (30 m) (b) Landsat-8 TIR (30 m) and 

UAV TIR (5 m) (c) MODIS LST (100 m) and Landsat-8 TIR (100 m (b) Landsat-8 TIR (30 m) and NDVI. 
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4.3 Spatial distribution of IHE and Surrounding areas 

The intensity of industrial area (IA) may be defined as the 

difference between the average temperature of IHE and non IHE 

(Table 4). In Pulau Indah, the threshold value of IHE is estimated 

at > 150 °C for the UAV and > 65 °C for Landsat-8 TIR. For IHE 

in the study area, the standard deviation values of IHE show more 

variability than non-IHE. On average, the estimated mean IHE 

values of IA is 25.56°C more than the estimated mean IHE values 

of the surrounding area, respectively. However, the statistical 

model display shows the temperature variability within thin the 

industrial area. The map also provides the industrial heat base 

target along with some related energy use, and potential energy 

saving scale (Figure 5a.). In this context, we demonstrated the 

priority on thermal waste heat changes in Pulau Indah industrial 

area based on heat information. The highest significance is 

indicating red colour which is a high significance covered 2 % has 

a great IHE value range (IHE > 75 °C). The second significance 

with yellow included 39% has an IHE value (IHE < 40 °C). While 

the third priority, indicating with the green colour consists of 

32.88% has a heat value (IHE < 30 °C). In Figure 6 the highest IHE 

was traced in the industrial area, which barren land was mostly 

found, and the lowest temperature is marked in the highly elevated 

areas with dense vegetation cover. Similarly, moderate 

temperatures are apprehending social collective from the 

environment and public amenities 

Table 4. Summary of Industrial Waste Heat Statistics. 

Table.5 Statistical features of IHE values in the Pulau Indah industrial area. 

Figure 6. The histogram distribution of features classes in the Pulau Indah industrial area. 

The three hottest target locations (Hot Spots) are clearly defined 

and characterized as three coloured targets (roof, asphalt) (Figure 

5), with their accompanying colour-coded temperature values 

shown in Table 4. However, the Hot Spots are calculated for each 

source’s emission, but only a few hot sources are shown in the 

above figures. This permits the industrial developers to evaluate 

whether a Hot target represents the chimney, outlet, or some other 

object of interest. Base on the result has shown that emission target 

(hot Spots) typically correspond to heat escaping from the chimney 

and boilers. Therefore, the emission sources zoomed area from the 

image, which provides visual evidence of the Hot Spot area. On the 

other hand, the industrial heat map (Figure 10), reveals that waste 
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heat is released between the emission sources and the surrounding 

features. 

Figure 6. Complete View of the mosaic images Pulau Industrial area (A-C) is the RGB at 0.5 m resolution and (a-c) is the heat 

emission images at < 1 m resolution. The red is the Hotspot area (industrial boilers), The blues are the asphalt and concrete road 

within the industrial area. 

To further assess the map, the industrial polygons overlaid on the 

corresponding UAV RGB as shown in Figure 6a, rather than in 

their current map shown in Figure 6b. As earlier been stated, all 

industrial temperature measurements above the ambient air 

temperature are measured as thermal waste heat. The sources target 

waste heat temperatures are not built on the attainment of the 

ambient temperature, which would only be the circumstance if the 

industries had a perfectly insulated living envelope and well-

performing attic ventilation. 

4.4   IHE identification 

Some major heat source emissions can be easily distinguished as 

shown in Figure 5. The strong hotness of these classes was caused 

by an industrial emission and other artificial surfaces (asphalt, roof 

sheeting, etc.). Furthermore, surrounding features (empty land, 

sandstones) other features of IHE emissions from the industrial 

area and the bare land nearby has IHE >35°C, due to specific 

thermal properties and thermal inertia (Weng et al., 2004). IHE 

were more prevalent in hot source targets from industrial factories. 

The IHE was identified as an emission source with a threshold 

value > 100 °C. As a result, parking lots, highways, power plants, 

and metal roofs are the best sites for IHE generation. Most of these 

hotspots have very little or no vegetation or water bodies. 

Figure 7. The retrieved Thermal imagery using (a) UAV TIR FLIR with (b) Landsat-8 TIR using the split-window algorithm of 

Pulau Industrial area. 

Besides, when the bare land surface is exposed to solar 

radiation warms up very rapidly between 08:00 and 12:00, 

which contrasts with the urban and these areas significantly 

visible (Bendib et al., 2017). As well, the effect of 
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Temperature on trees was attributed to two factors such as 

direct shading and evapotranspiration cooling (Oke, 1989)

4.5 IHE downscaling using DisTrad model with 

different indices 

Thermal infrared (TIR) imagery is typically acquired at a 

coarser pixel resolution than shortwave sensors on the same 

satellite platform, and the TIR resolution is frequently 

insufficient for monitoring industrial heat emission (IHE) or 

the impacts of industrial estate development at finer spatial 

scales. As a result, thermal sharpening techniques are 

developed to sharpen TIR images to pixel resolutions in the 

shortwave band, which are frequently fine enough according 

to field-scale applications. TsHARP, a well-known thermal 

sharpening approach, employs a connection between LST 

and the NDVI, which was empirically derived at the TIR 

pixel resolution and utilized at the NDVI pixel resolution. 
Recent research shows that distinct connections between 

temperature and NDVI may exist only for a small subset of 

landscapes, such as those with predominantly green 

vegetation and uniform air and soil conditions. A unique data 

analysis sharpener (Normalized Difference Building Index 

(NDBI)) was evaluated to expand the applicability of 

thermal sharpening to a more complex area. Based on 

essential model characteristics, the NDBI approach provides 

a regression build-up area between TIR band brightness 

temperatures and shortwave spectral reflectance. A 

comparison of sharpening techniques used on an industrial 

area in Pulau Indah, an industrial park in Peninsular 

Malaysia, and a diverse natural landscape on Pulau Indah 

shows that the NDBI outperforms TsHARP in all conditions. 
While the NDBI technique can give high-resolution TIR 

images, the sharpening ratios that can be effectively applied 

are limited. Sharpening procedures, as a result, cannot 

substitute genuine thermal band imaging at precise 

resolutions.

Figure 8. Applications of TsHARP to simulated (a) 1000 m data from MODIS LST data to 100, 30, 20 and 10 m (b) Landsat-8 TIR from 

100, 30, 20 10, and 5 m; (c) UAV TIR base from 0.03, 1, 5 10, 20 and 30 both acquired on 10 February 2020, 21th February 2020 and 20th 

January 2020 in a subset area as shown in Table 1. The reference temperatures (a-b) are displayed at a resolution of 30 m pixels. From 100, 

30, 20, 10, and 5 m pixel resolution, images from the original TsHARP were sharpened. The first column displays MODIS LST data, the 

second column Landsat-8 data, and the third column UAV TIR data. 

4.6 Assessment of Downscaling Results 

In context, the method being used was highlighted for retrieving 

heat emission from UAV TIR was compared with Landsat-8 and 

MODIS derived-LST, which covers entire Peninsular Malaysia 

daily in three MODIS thermal infrared bands (29, 31, and 32) at a 

spectral resolution of 1000 m at nadir, and Landsat-8 at a spectral 

resolution of 100 m at nadir resample to 30 m which spans from 

3.66 to 14.28 microns. The images used in the study have different 

standards, with a spatial resolution of 1000 m for MODIS and 

100m for Landsat-8 TIR. Therefore, MODIS data product with 

1000 m resembled 100, 30, 20, 10, and 5 m respectively likewise 
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Landsat-8 with 100 m was resembled 30 m, 20 m, 10 m, 5 m, and 

1 m respectively and UAV TIR image was resembled 0.03, 1, 5, 

10, 20, and 30 m respectively before the integration using ArcGIS 

10.5 software. Thus, the three heat emission distributions are 

reliable, the retrieved IHE range from UAV is 24.47 °C to 150.08 

°C with a mean of 25.7 °C, and Landsat-8 is 37.95 to 65.51 °C with 

53.82 °C. Though, the retrieved MODIS LST values are far less 

than that of Landsat-8 and UAV with the variation of 84.57 °C, 

Landsat -8 and MODIS with a variation of 36.74 °C (Landsat-8 

_IHE 37.95 to 65.51 °C and MOD_IHE 30.67 °C to 31.11 °C). This 

is attributed as a result of; (i) Existed time variation of 30 min. 

between the sensors as well as a rapid flux in IHE of impervious 

surfaces caused by the high reflectivity from thermal objects,(ii) 

the contents of water vapour parameter in producing MODIS LST 

product IHE from 1000 m to 100 m results in the extend of a scaled 

effect (Yang et al., 2014).  

Table. 6 The retrieve downscale values for the study location. 

Figures 6 show IHE sharpening (b) from 100 m full resolution to 

30, 20, 10, and 5 m resolution. This is related to TIR sharpening for 

MODIS resolution photography at 1000, 100, 30, 20, 10, and 5 m, 

which is a more challenging task. A significant aspect in using such 

a large sharpening ratio is generating representative homogenous 

samples because typical heat emission targets from industrial areas 

are often a sub-pixel at the MODIS LST resolution (1000 m). The 

homogenous pixel requirement (Equation 13) for generating 

TsHARP relationships is significantly simpler to achieve when 

sharpening Landsat-8 TIR data. This implies that there are enough 

representative samples to provide sufficient training sets. The 

sharpening tests were conducted solely for visual assessment. For 

comparison, the standard Landsat-8 TIR thermal bands product 

was used in this study, which was resampled to a 30 m grid by the 

USGS data centre. Similarly, the UAV TIR imagery was 

aggregated to 0.03 m and then re-sampled to 1, 5, 10, 20, and 30 m 

using nearest neighbour techniques, matching data fields provided 

by Landsat-8 TIR (100 m). In comparison to the original USGS 

LST data, the simulated TIR band sharpening tests for Landsat-8 

TIR sharpening (Figure 6b) result in well-defined field limits and 

consistent within-field variability in heat generation.  However, 

there is a baseline temperature for validating the sharpening results, 

both techniques outperformed standard resampling methods 

visually, and the sharpening test ranged from 100 to 30 m. (Figure 

6). 

The highest IHE values were mostly set up in the industrial hotspot 

sources. The greenest area covers the dominant part with < 30 ºC, 

the industrial surrounding with ˃ 30 ºC, the factory sections with ˃ 

50 ºC, and the heat sources above 100 ºC as shown in table 5. In 

disparity, the non-industrial area was set up with the minimum IHE 

of about 30.85 °C. The correlation of industrial area and IHE 

distribution is expressed by the linear correlation Figure 4. The 

result indicates the relationship between NDVI and retrieved TIR 

IHE has a negative correlation, well corresponds with another 

report [32, 33] which indicate that the vegetation area was useful 

for decreasing IHE, there will be comfortability in an area with law 

IHE when compare with higher IHE.

4.7 Discussion 

An effective image sharpening scheme must bridge the gap 

between the industrial surrounding scale (|100 m) and the target 

sources scale of interest (kilometers for the region PM). Here we 

examine an economical approach to downscale/upscaling, using a 

targeted emission sources disaggregation strategy. Variations are 

mapped across the industrial base on the area scales at 1 m to 1000 

m resolution during industrial activities using high, medium, and 

coarse-scale remote sensing imagery from a platform like UAV, 

Landsat, and MODIS data product. These medium and coarse-scale 

change estimates can then be spatially disaggregated to finer scales 

at sites of particular interest (e.g., industrial emission sources) 

using higher resolution imagery from the Land Remote Sensing 

Satellite (Landsat), the Moderate Resolution Imaging 

Spectroradiometer (MODIS), and high resolution like UAV data to 

interpret the large area, whenever such imagery is available (as 

determined by the satellite overpass schedule and cloud 

conditions). In this way, the temporal sampling power of the 

MODIS images for every 30 min can be combined with the spatial 
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resolution of Landsat for every 16 days (100 m resamples to 30 and 

1000 m for MODIS product). The disaggregation process serves 

both as a means for quantitatively validating the regional variation 

predictions and for examining complex emission sources of interest 

in greater detail, while the higher resolution imagery such as UAV 

can be applied to upscaling processes which can serve as both as a 

means for quantitatively validating the regional variation 

predictions and for examining environmental warming. 

5. CONCLUSION

The thermal heat mapping for estimating IHE from Landsat-8 TIR 

data in the Pulau Indah industrial area has been successfully 

implemented.  The thermal heat energy sources and other artificial 

surfaces (asphalt, roof sheeting) from the industrial plant from 

satellite sensors experienced high surface temperatures (> 65 °C), 

with accuracy (RMSE= + 1.97 °C). Vegetated covered surfaces 

including neighboring greenness and coastal areas marked the 

lowest temperatures (14~30 °C). The IHE of selected targets have 

been validated using in-situ observation apart from comparison 

with corresponding downscaled MODIS LST product 

(MOD11B2), For all of the downscaling algorithms, the NDVI has 

acted as the main supporting data for regression analysis. MODIS 

LST visual quality has enhanced, and earth surface object 

identification has improved as a result of the downscaling. MODIS 

LST data has been downscaled from 1000 m to 100 m using 

Landsat-8 TIR (30 m) resolution with R2 = 0.84 and RMSE of 2.38 

°C, MODIS LST 100 m data using aggregated Landsat-8 TIR at 

100 m resolution with R2 = 0.89 and RMSE of 2.06 °C, and 

Landsat-8 TIR imagery (30 m) using aggregated UAV TIR at 5 m 

resolution with R2 

Hence, the approach adopted manifests as a relatively simple yet 

robust method in mapping industrial area thermal heat energy 

sources. Hence, mapping, and monitoring of industrial heat 

emission to support understanding toward improving disparities on 

existing industrial substances for policymakers and industrial 

developers to draft policies and regulations for relevant industries, 

most significantly it will help in fast-tracking Target 9.4. and 11.6. 

to retrofit industries to make them sustainable, with increased 

resource-use efficiency and reduce the environmental impact of 

cities, by paying special attention to air quality and waste 

management in municipal by 2030. Our findings indicate that in 

industrial areas characterized by a mixture of vegetated, paved, and 

unpaved surfaces, in contrast to NDVI, NDBI and NDSI can be 

effective as LST predictors in downscaling studies, particularly in 

industrial parks. This outcome is consistent with the previous 

research that utilized NDBI in addition to NDVI and other spectral 

indices as a downscaling factor and obtained lower RMSE than 

techniques that only used NDVI (Sharma et al., no date). 
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