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ABSTRACT:

Classifying objects within aerial Light Detection and Ranging (LiDAR) data is an essential task to which machine learning (ML)
is applied increasingly. ML has been shown to be more effective on LiDAR than imagery for classification, but most efforts
have focused on imagery because of the challenges presented by LiDAR data. LiDAR datasets are of higher dimensionality,
discontinuous, heterogenous, spatially incomplete, and often scarce. As such, there has been little examination into the fundamental
properties of the training data required for acceptable performance of classification models tailored for LiDAR data. The quantity
of training data is one such crucial property, because training on different sizes of data provides insight into a model’s performance
with differing data sets. This paper assesses the impact of training data size on the accuracy of PointNet, a widely used ML approach
for point cloud classification. Subsets of ModelNet ranging from 40 to 9,843 objects were validated on a test set of 400 objects.
Accuracy improved logarithmically; decelerating from 45 objects onwards, it slowed significantly at a training size of 2,000 objects,
corresponding to 20,000,000 points. This work contributes to the theoretical foundation for development of LiDAR-focused models
by establishing a learning curve, suggesting the minimum quantity of manually labelled data necessary for satisfactory classification

performance and providing a path for further analysis of the effects of modifying training data characteristics.

1. INTRODUCTION

Aerial light detection and ranging (LiDAR) data are useful for
various mapping, surveying, and planning purposes in urban
and natural areas. The data are most often found as a col-
lection of points known as a point cloud, in which each point
contains X, y, and z coordinates, return intensity, the number
of returns from that particular coordinate, a timestamp, and
source or flight line information. Specifically in urban mod-
elling , the classification of points is essential for object iden-
tification, and LiDAR data has been demonstrated to be more
effective than imagery for urban object classification (Scaioni
et al., 2018). This classification is sometimes done by identify-
ing features of the data and using predictive models or machine
learning (ML) based models on these features, but these tech-
niques involve significant human and computational resources
(Kang and Yang, 2018). With the development of deep learning
models, much work has been done in applying and modifying
these techniques to be used for three-dimensional (3D) data to
increase efficiency in classification. However, certain proper-
ties of 3D data present a challenge to typical machine learning
models that were originally designed for object classification
in two-dimensional (2D) imagery, so these models cannot be
directly applied to LiDAR data sets

1.1 Greater dimensionality, unorderedness, and other
traits

LiDAR data contain more information than images. Converting
LiDAR data into 2D using projections reduces the richness of
the data and introduces false relations by collapsing the space
between points (Qi et al., 2017). For example, two points be-
longing to different objects have no contextual relation in the
original data but could be contiguous in its 2D data projection.

The assumption of continuity is unnecessary and negatively im-
pacts the accuracy of the classification. On the other hand, some
classification approaches turn the point cloud into voxels, which
increases complexity by generating index information that must
also be stored.

A given aerial LiDAR dataset is typically collected over several
flight paths that cover the total area from different angles, po-
tentially recording a location multiple times with separate flight
paths. Thus, the resulting data are unordered. Consequently,
classification algorithms or ML approaches must either forgo
relying upon an inherent ordering or must impose that order as
part of the pre-processing.

Furthermore a given point, together with its neighboring points,
usually forms a meaningful subset. Therefore, points cannot
easily be considered in isolation. In other words, classification
of a point must be consistent with its neighbors. Moreover,
the spatial relation between points must be preserved when the
points undergo transformations or convolutions.

Additionally, the geometric properties of the collected data set
largely depends on the characteristics of the objects and sur-
faces in the scene. For instance, parts of the ground obstructed
by trees, vertical surfaces, and water will have fewer LiDAR re-
turns than solid, horizontal surfaces (Stanley and Laefer, 2021).
Figure 1 shows an example. Additionally, the data sets are
discontinuous, with sections that are completely empty when
visualized in a 3D space. Finally, points are not uniformly dis-
tributed, and point density can vary across the data set. Con-
sequently, models must be insensitive to these traits.

With increased understanding of the benefits of LiDAR-based
urban object classification, significant efforts have been put into
developing neural networks more suited for point clouds by
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Figure 1. Non-uniform density in trees and roofs in Vaihingen
data set (Rottensteiner et al., 2013)

considering their attributes more fully. The focus of that re-
search has been on developing novel techniques that are mostly
performance driven with little investigation into training set op-
timization. Potential optimization factors include the size of
the training set and the balance of objects across class, mo-
tion, position, and orientation of objects, as well as density.
While more training data are often assumed to improve per-
formance, there is no clearly established relationship published
to date between LiDAR training data quantity and performance
of classification models. Thus, the objective of this project is to
assess the impact of training data quantity on performance of a
LiDAR-focused object classification model.

2. RELATED WORK

Object identification is a long standing and widely undertaken
activity in LiDAR processing (e.g. Aljumaily et al. 2017,
Nurunnabi et al. 2018, Soilan et al. 2018, Zolanvari et al.,
2018). In the ML sphere, there has been a gradual trajectory of
moving away from feature-based learning to that which is more
contextualized.

2.1 Feature-based learning

A prominent example of feature-based object classification is
that by Song et al. (2018). They derived these features by cal-
culating the volume, density, and eigenvalues in three directions
of each object. These statistical features were then used to di-
vide the objects into categories. Then, a back-propagated neural
network was trained on these features and used to classify ob-
jects in a given scene. However, this methodology requires
the laborious task of crafting features by hand. Furthermore,
the authors noted that the model’s accuracy could only be im-
proved through additional manual labeling, which complicates
this type of approach being applied to very large, heterogeneous
data sets (Song et al., 2018). In addition, hand-crafted features
consider points in isolation by giving each point a label based
on the features calculated on that point alone, without ensuring
consistency with neighboring points (Wen et al., 2020). This
can result in noisy and inconsistent labelling.

2.2 PointNet

To overcome some of the problems with feature-based classi-
fication, Qi et. al. (2017) developed PointNet, a neural network
that directly acts on point clouds rather than converting data into

3D vozxels or relying on hand-crafted, statistical features. The
result is the ability to process points in O(N) time and space. In
contrast, other methods have required O(N?) or O(N?) time and
space.

The development of PointNet used ModelNet, a data set con-
sisting of 12,311 LiDAR scans. These are split into 9,843
samples for training and 2,468 samples for testing (Wu et al.,
2015). Importantly, PointNet was designed for identifying
small, mostly indoor objects such as chairs or tables, rather than
for outdoor objects. Qi et. al. (2017) described an application
for semantic segmentation from a scene containing several ob-
jects. In this case, the input data were divided into blocks of
equal size. However, these were also near-range objects. Thus,
the problem of identifying objects with fewer features, occlu-
sions, and significant noise was not addressed (Yousefhussien
et al., 2018).

2.3 PointNet-inspired convolutional neural networks

While some studies have concluded that training separate neural
networks for short-range versus long-range objects results in
better performance (Engels et al., 2020), others (Yousethussien
et al., 2018) found that using an overlapping technique in the
input blocks trained the model to recognize objects of different
scales, thereby preempting the need for separate networks for
different scales. This suggests that a performance analysis of
PointNet can be beneficial and applicable to establishing the re-
lationship between performance, data size, and scene size with
regards to aerial data.

Other models inspired by PointNet modify the approach in a
way that is agnostic to the artefacts of aerial data. For ex-
ample, Wen et al. (2020) produced a "directionally constrained”
fully convolutional neural network that performed convolutions
considering the orientation of objects. As a directionally con-
strained network, information in the z-direction was not con-
sidered (Wen et al., 2020). This was based on the idea that not
every point requires information from its neighbors in the z dir-
ection, because many surfaces, such as rooftops have no points
above them, and surfaces such as roads have no points below
them. These types of approaches do not rely on hand-crafted
features, which are laborious to derive.

To date, many of the studies in this area have used the same data
sets with nearly the same split between the training and valid-
ation. For instance, (Yousefhussien et al., 2018) used 753,859
training points and 411,721 testing points while (Wen et al.,
2020) used 753,876 training points and 411,722 testing points,
both from the ISPRS Vaihingen data set (ISPRS, 2013).

2.4 Learning curves

The performance of any machine learning algorithm can be
quantified by a learning curve, which benchmarks a general-
ization performance metric, such as accuracy or error, against
the quantity of training data (Cohen et al., 2021). By illustrating
the effect of training different amounts of data, one can determ-
ine the amount of training data needed. For instance, Figure 2
shows diminishing returns in performance with more training
samples, and Figure 3 shows the generalization error increasing
after a certain point, indicating overfitting. This paper and most
others in this field have not investigated the impact of the size
of the training data set on the final performance.

Perlich (2010) reaffirms that in comparing machine learning
models, results that are reported on a fixed-size training data set
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Figure 2. Learning curve showing accuracy versus number of
training samples (Perlich, 2010)
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Figure 3. Learning curve showing generalization and training
error versus training iterations (Perlich, 2010)

do not provide any information on how the model would fare
with differing training data sizes. Most papers report results
in this way, as seen in the PointNet-derived neural networks,
which discussed training on the same data set. The insight on
varying training data size is important to ascertain the reliabil-
ity of the model in new applications, where the same amount of
training data is not always available as that which was used to
originally train the model. Evaluating performance using dif-
ferent sizes of data can increase the robustness of the model
and provide more holistic insights, rather than only testing and
reporting results achieved on fixed-size data sets.

Additionally, there has been some investigation into theoretical
foundation regarding learning curves in general. Cohen et al.
(2021) noted that neural networks are often built for a specific
application, focusing solely on achieving greater accuracy by
modifying the parameters based on trial and error rather than on
theory or conducting some form meta analysis of the learning
curves. Those authors attempted to model learning curves with
Gaussian Processes using techniques from physics.

While there is a general preference for more training data,
this is a laborious task especially for LiDAR, and although
the time and space complexity of the classification task itself
has improved, existing methods involve high complexity pre-
processing. There is, thus, an incentive to examine the precise
change in performance with increasing input data.

3. METHODOLOGY

3.1 Scope

This research employed an implementation of PointNet with
state-of-the-art performance to test the impact of the number
of objects in the training data and the number of epochs as met-
rics to consider accuracy performance (percentage of true posit-
ives). While the final performance analysis used the ModelNet
data set consisting of scans of 40 categories of objects (Table
1), the study was informed with visualization investigations by
two publicly available datasets Vaihingen (Rottensteiner et al.,
2013) and Sunset Park (Laefer and Vo, 2020).

Airplane 727 | Dresser 287 | Range hood | 216
Bathtub 157 | Flower pot | 170 | Sink 149
Bed 616 | Glass box 272 | Sofa 781
Bench 194 | Guitar 256 | Stairs 145
Bookshelf | 673 | Keyboard 166 | Stool 111
Bottle 436 | Lamp 145 | Table 493
Bowl 85 Laptop 170 | Tent 184
Car 298 | Mantel 385 | Toilet 445
Chair 990 | Monitor 566 | TV stand 368
Cone 188 | Nightstand | 287 | Vase 576
Cup 100 | Person 109 | Wardrobe 108
Curtain 159 | Piano 332 | XBox 124
Desk 287 | Plant 341

Door 130 | Radio 125

Table 1. ModelNet object distribution
3.2 Model architecture and implementation

PointNet’s classification architecture, displayed in Figure 4, re-
ceives a number of points as input. It applies transformations
between two multi-layer perceptrons (mlp) and then aggregates
point features by max pooling. Finally, to leverage both global
knowledge of points in the whole cloud and local knowledge
of neighboring points in the classification, a global feature vec-
tor is calculated and applied to local feature vectors. The fea-
tures on each point, thus, contain both local and global inform-
ation, thereby allowing for an informed classification (Qi et al.,
2017). The model outputs a score for each of the 40 categor-
ies for every test object and chooses the label with the highest
score.

This project builds off a Pytorch implementation of PointNet
(Yan, 2019). The program takes an input of a list of text files,
where each file represents an object and contains the points that
comprise the object. In every run of the classification training, a
pth file is output containing: (1) the configuration of the model,;
(2) a log file consisting the model’s performance on training
data; (3) overall and class performance on test data; and (4)
time stamps.

3.3 Pre-processing

3.3.1 Preliminary analysis Manual analysis was per-
formed on the Sunset Park data (Laefer and Vo, 2020) in Cloud-
Compare to develop an understanding of visual features in the
data and determine what relevant variables were worth examin-
ing. Four size-related variables in the training data were ori-
ginally identified: number of points, number of overlapping
points across objects, variation of number of points in each ob-
ject, and number of objects. Ultimately, the number of objects
was chosen as the focus because of its semantic value and that
it matched the format of data necessary for the PointNet imple-
mentation (i.e. training on individual files containing a collec-
tion of points that each represent an object).
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Figure 4. PointNet classification architecture (Qi et al., 2017)

3.3.2 Segmentation The model was trained on the follow- ; | Training Size: Final Accuracy

ing progression of training sizes: 40, 80, 120, 240, 320, 400, :1385 gg-;g _3(2)85 gigi :?gggsg’gs _ggggf gg-gg

600, 800, 1,000, 2,000, 4,000, and 9,843 (full). As accuracy 0.9/ 240: 61.52 600: 69.73 —— 2000: 82.48 o

results were plotted for each size to investigate the rate of im-
provement, having training sizes with increasing levels of sep-
aration allowed for more insights into the shape of the learn-
ing curve without having to train on equi-spaced, intermediate
sizes. For each size n between 40 to 4,000 in the training size
list, n/40 objects from each category were taken for testing. For
the size 9,843, all the objects were used. The last 100 objects
from each category were taken for validating all the input sizes.
The PointNet implementation code was modified to create the
ability to use data of different sizes for training, instead of only
a single default size.

3.4 Training

Every size was trained with 200 epochs. At each epoch, if the
accuracy exceeded the highest saved accuracy so far, the res-
ults for that epoch were saved as the best instance of achieved
accuracy. PointNet was used with the parameter configurations
shown in Table 2 for all runs.

Parameter name Value
Batch size 24
Learning rate 0.001
Optimizing algorithm | Adam
Decay rate 0.0001

Table 2. PointNet parameter configurations

4. EVALUATION
4.1 Accuracy versus training iterations

Table 3 displays the raw accuracy obtained on each training data
set size at every 20 epochs. Figure 5 illustrates the results for
each run plotted against epoch. The line for training data size
40 visually differs from the others because of its flat start — in-
dicating a slow start in the model’s learning. In this case, the
model consistently classified with an accuracy of 0.024510 on
unseen data for the first 12 epochs. Only after that did it start
increasing and did not reach 0.1 until around the 45th epoch.

The general shape of the curves illustrated that as training size
increased, the improvement rate declined. This began around
45 epochs for all sizes, except for size 40, whose performance
started improving only after epoch 45. With that case, slowing
began near 90 (corresponding to only 45 epochs of fast growth).

The plots of raw accuracies contained many areas of overlap,
especially in the earlier stages of training. To improve the inter-
pretability of the individual lines and allow for clearer compar-
ison between them, the moving mean of the accuracy was taken
with a moving mean window of 10 (Figure 6).

Accuracy
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Figure 5. PointNet accuracy versus epoch
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Figure 6. PointNet moving mean accuracy versus epoch

With the smoothing of the curves, they more resembled those
in Figure 2. The gaps between the curves also revealed that
for the most part, the model’s performance was more acutely
impacted by increases in the training data size at the smaller
sizes. For example, the data size of 4,000 was double the value
of the preceding size, yet the gap between that pair of curves
was not significantly bigger than others. Furthermore, the full

This contribution has been peer-reviewed.

https://doi.org/10.5194/isprs-archives-XLVI-4-W4-2021-101-2021 | © Author(s) 2021. CC BY 4.0 License.

104



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVI-4/\W4-2021
16th 3D Geolnfo Conference 2021, 11-14 October 2021, New York City, USA

Training set size
40 [ 120 [ 240 [ 320 T 400 600 T 800 T TOOO T 2000 | 4000 [ 9843

Epoch Accuracy

20 0.0392 ] 0.2659 [ 0.2549 | 0.3468 | 0.2426 [ 0.4926 [ 0.4767 | 0.5049 | 0.6679 | 0.7218 | 0.7292
40 0.0956 | 0.3260 | 0.4179 | 0.4743 | 0.4228 | 0.5699 | 0.5870 | 0.6642 | 0.7549 | 0.7966 | 0.8039
60 0.1691 | 0.3370 | 0.5257 | 0.5662 | 0.5846 | 0.6912 | 0.6238 | 0.7218 | 0.7978 | 0.8088 | 0.8199
80 0.2059 | 0.4265 | 0.5233 | 0.5625 | 0.5870 | 0.6998 | 0.6544 | 0.7230 | 0.7794 | 0.8235 | 0.8015
100 0.2610 | 0.4424 | 0.5404 | 0.6189 | 0.6225 | 0.6728 | 0.6912 | 0.7463 | 0.8113 | 0.8297 | 0.8272
120 0.2696 | 0.4583 | 0.5686 | 0.6017 | 0.6103 | 0.6850 | 0.7010 | 0.7488 | 0.8199 | 0.8456 | 0.8297
140 0.2708 | 0.4779 | 0.6091 | 0.6164 | 0.6385 | 0.6936 | 0.7145 | 0.7475 | 0.8125 | 0.8529 | 0.8248
160 0.2868 | 0.5037 | 0.5919 | 0.6176 | 0.6556 | 0.6985 | 0.7194 | 0.7561 | 0.8137 | 0.8529 | 0.8211
180 0.2880 | 0.5037 | 0.6054 | 0.6275 | 0.6471 | 0.7071 | 0.7132 | 0.7488 | 0.8248 | 0.8505 | 0.8211
200 0.2978 | 0.5037 | 0.6152 | 0.6299 | 0.6434 | 0.6973 | 0.7230 | 0.7623 | 0.8248 | 0.8346 | 0.8309

Table 3. Raw accuracy values every 10 epochs on training set size

data set with 9,843 objects under-performed compared to size
4,000, thereby showing that the model was overfitting at this
point.

4.2 Learning curve

To account for the varying interval sizes in training data, the
best instance accuracy for each run was then extracted and
graphed. Figure 7 illustrates the relationship between training
size and the best instance accuracy. This graph resembles a log-
arithmic growth curve. The accuracy appears to start plateauing
with a training set size of 2,000, as highlighted in Figures 5 and
6, with only a small increase in accuracy from 2,000 to 4,000.
Finally, training on the full set of 9,843 objects appeared harm-
ful to the model’s performance.
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Figure 7. PointNet learning curve: maximum accuracy per
training dataset size

5. DISCUSSION

Critically, the results produced herein were based on a near per-
fect training data set in which all objects were small scale and
scanned from close range. The final output was a collection
of point clouds each containing 10,000 points and each com-
plete, dense, clean, and without abnormalities. These produced
clearly defined shapes that differ from readily-achievable, real-
world aerial LiDAR data, which contain flaws like density dif-
ferences, noise, and incompleteness due to self-shadowing and
street shadowing, as defined by Hinks et al. (2009). The reasons
are multi-fold. For example, aerial LiDAR scans include both
stationary and moving cars (Figure 8), and the latter introduces
latency into the object representation.

Figure 8. Moving cars (left) and parked cars (right) in Vaihingen
data set (Rottensteiner et al., 2013)

In commercial aerial scans, surface composition, obstructions,
object motion and orientation, and incident angle all affect the
consistency of the returned LiDAR points (Figure 1). The prop-
erties of the flight mission including elevation, LiDAR sensor
orientation, sensor field of view, flight speed, and pulse rate
also influence the final point cloud quality (Stanley and Laefer,
2021). Wen et al. (2020) and Yousethusssien et al. (2018) also
noted that aerial data has lower and more inconsistent dens-
ity per volume of an object. Examining the effects of uneven
distributions in both the number of points per object and num-
ber of objects per category will be important to establishing a
more fundamental understanding of ML optimization for use
with LiDAR point cloud data. Since indoor, close-range objects
have more defined shapes and higher point densities compared
to aerial data, the model would be expected to be less accurate
on sparse data sets. The relationship between the relative per-
fection of the training set versus the quality of the actual data
and its impact on performance is an area ripe for investigation.
Furthermore, training data can be manipulated to resemble aer-
ial data by adding noise artificially and removing vertical sur-
faces. While the reported results showed a relationship of logar-
ithmic growth in accuracy that largely mirrored those reported
by Perlich (2011) and Cohen et al. (2021), this pattern needs to
be further tested on larger and less perfect datasets to determine
the generalizability of the observations herein.

6. CONCLUSIONS

To date, the focus of neural networks dedicated to LiDAR has
predominantly concentrated on developing new networks rather
than evaluating the characteristics of their training protocols.
As such, many fundamental questions on how performance
changes with modifications in the input data remain unexplored.
One major component is establishing the ideal quantity of train-
ing data as a balance of resources versus performance. This
research begins to address this gap by assessing the impact of
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training data quantity on the classification accuracy of Point-
Net, and, thus, lays the ground work for further evaluation of
input data changes with respect to their impact on model per-
formance. This paper demonstrated that the model’s learning
rate was unaffected by the training data set size with respect to
the number of epochs. Specifically, all sizes exhibited a slow-
ing in accuracy improvement following epoch 45. The learning
curve started plateauing with a training set size of 2,000 ob-
jects, with a very small increase observed from 2,000 to 4,000
and a slight decrease from 4,000 to 9,843. The objects in the
training data each contained 10,000 points. Therefore, the cor-
responding number of points after which improvement was only
incremental was 20 million. Furthermore, the slight decrease in
the model’s accuracy between 4,000 to 9,843 showed overfit-
ting. Consequently, more investigation is needed as to whether
a training set size of approximately 20,000,000 points can be
generalized for the use of the "ModelNet” data set.
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