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ABSTRACT: 

 

A great number of studies for identification and localization of buildings based on remote sensing data has been conducted over the 

past few decades. The majority of the more recent models make use of neural networks, which show high performance in semantic 

segmentation for the purpose of building detection even in complex regions like the city landscape. However, they could require a 

substantial amount of labelled training data depending on the diversity of objects targeted, which could be expensive and time 

consuming to acquire. Transfer Learning is a technique that could be used to reduce the amount of data and resources needed by 

applying knowledge obtained solving one problem to another one. In addition, if open-source data and models are used, this process 

is much more affordable. In this paper, the Transfer Learning challenges and issues are explored by utilizing an open-sourced pre-

trained deep learning model on satellite data for building detection. 

 

 

1. INTRODUCTION 

Analysis of remote sensing data serves numerous applications 

ranging from environmental monitoring through land use 

assessment to urban planning and design. Within the city domain, 

a great number of studies have focused on the localization and 

segmentation of city objects such as roads and buildings. This 

information is used for different applications such as planning of 

urban development and resource allocation. Due to the great 

amount of data to be analyzed automatic methods have been 

extensively explored and continuously developed. In recent years 

deep learning methods have shown superior performance for this 

task (Zhu, 2017), (Kang Zhao) and (W. Zhao, 2020).  

Deep learning methods could, however, need a vast amount of 

labeled data, the production of which could be time-consuming 

and expensive. The affordability of automatic analysis of remote 

sensing data could be greatly improved, if open-source data and 

models and widely accessible satellite images could be used for 

development of such solutions. The potential of this approach is 

recognized and explored in some works (Maggiori, Tarabalka, 

Charpiat, & Alliez, 2017) and (Li, et al., 2020). 

This paper aims to explore the Transfer Learning challenges and 

issues through transferability assessment of deep learning 

models. The presented study analyses the performance of an 

open-source model, pre-trained on open-source data, applied on 

a type of satellite images which are globally accessible on a 

regular basis. 

The rest of the paper is organized as follows. Section 2 presents 

the approach for transferability assessment. Section 3 discusses 

the obtained results, Finally, Section 4 concludes the paper and 

gives directions for future work. 

 

2. APPROACH FOR TRANSFERABILITY 

ASSESSMENT 

The process of transferability assessment can be divided into 

several steps. First, a tool for achieving the selected task (in this 

case – buildings localization) has to be developed or selected. 

Second, data on which it will be tested need to be specified and 

collected. Third, the acquired data have to be pre-processed to 
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satisfy requirements of the tool. Forth, the tool needs to be 

applied on the test data and the results have to be compared with 

its performance on data for which it was developed. 

 

2.1 Trained Model Selection 

To assess the transferability potential of a modern approach for 

segmentation of urban objects, open-source solutions and 

datasets have been assessed based on 4 main criteria. 

 

1. Availability and readiness for use: the model has to 

be publicly available and relatively easy to use. 

2. Possibility for refinement: the model and the way it 

is provided had to allow for further improvements and 

adjustments such as further training and parameter tuning. 

3. Performance: the model has to provide state-of-the art 

performance in terms of segmentation results. It 

furthermore, has to bear the potential to perform well on 

unseen urban areas. 

4. Data consuming: the model has to perform on 

standard data that is relatively accessible and also suitable 

for the current task – building identification and 

localization. 

 

Based on these criteria an open-source solution provided by 

Solaris (an open-source machine learning pipeline for geospatial 

imagery) has been selected (CosmiQ Works, 2021). The aim of 

the Solaris platform and its Python library is to “accelerate 

research in the geospatial computer vision domain by providing 

efficient implementation of common utility functions” and allow 

for easy use of existing geospatial computer vision models. As 

such the solution was relatively convenient to run only with few 

adjustments needed. For support the platform provides extensive 

documentation and tutorials. Furthermore, the models could be 

further trained with new data, whereby configuration files 

support the adjustments of the models. The model applied in the 

current study is an adjusted version of a winning solution from 

the SpaceNet 2: Building Detection v2 challenge (SpaceNet LLC, 

n.d.). It has a U-Net architecture with a VGG16 encoder part and 

a decoder part consisting of five upsampling blocks with bilinear 
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interpolation, shown in Figure 1, (Ronneberger, Fischer, and 

Brox, 2015).  The loss used is a 4:1 combination of BCE (binary 

cross entropy) and Jaccard Loss with an Adam optimizer. The 

model comes with parameter weights pretrained on a diverse 

dataset consisting of high-resolution satellite imagery from 

WorldView 3 satellite with around 300.000 buildings across four 

cities. These images are suitable for building footprint 

localization and are widely available for different geographical 

locations on a regular basis.  

 
 

Figure 1. Model Architecture (SpaceNetChallenge, 2017). 

 

2.2 Data Collection and Exploration 

Once a pre-trained deep learning approach is selected, the next 

step is to analyze the data on which it was trained on. The model 

consumes 16-bit images with RGB + NIR channel. They have 

been pan-sharpened to a ground sampling distance of 0.3m. For 

each city, the images are single-strapped with a slight of-nadir 

angle apparent with zero cloud coverage, however, with different 

sun elevation across the four cities. Suitable test data for 

transferability assessment are ones showing as similar 

characteristics as the training data. Figure 2 sumarizes the 

requirements to the test data.  

 

Area of Interest: Sofia – District “Lozenets” of Sofia, 

Bulgaria 

Type of Imagery: WorldView3 satellite imagery:  

8-Bands multispectral imagery, georeferenced, 

orthorectified and pan-sharpened 

- Off Nadir: < 12 degrees 

- Max GSD: < 0.33m 

- Sun Elevation: > 50.0 degrees 

- Image Clouds: 0.00% 

- Timeliness: within the last 12 months  

- No snow or other whether phenomena 

- Single stripped 

- 16bit 

Figure 2. Requirements on the test imagery. 

 

A suitable image of a district of Sofia has been selected from the 

DigitalGlobe repository (Maxar, n.d.) and provided by 

DigitalGlobe distributer European Space Imaging (European 

Space Imaging, 2020) and their representer in Bulgaria – Vekom 

(Vekom Geo, 2019). It consisted of 8 bands with a spatial 

resolution of 1.2m and an additional panchromatic image with 

0.3m spatial resolution. Importantly, the imagery was delivered 

georeferenced and ortho-rectified in order to represent more 

accurately the true location on the Earth’s surface and match with 

official cadaster data. 

 

In order to assess the segmentation performance of the models, 

the resulted inferences have to be evaluated against ground truth 

labels. Ideally, the ground truth annotation has to follow the same 

labelling convention as in the training dataset, whereby in a 

perfect scenario they are conducted by the same team. A manual 

annotation, however, is a time consuming and costly task. 

Therefore, official cadastral information on buildings footprints 

has been used instead. This approach is sufficient to assess the 

general transferability of the model.  

 

The cadastral footprints were provided georeferenced in the same 

projection as the satellite image and time mismatch between both 

was reasonably close. The received cadastral footprints showed 

systematic, however, locally different misalignment to the 

satellite image as it is shown in Figure 3. Furthermore, footprints’ 

shapes and sizes have not always matched too and occasionally 

there were missing footprints or such without correspondence in 

the satellite imagery.  

 

 

Figure 3. Shift misalignment of cadastral footprint and image. 

 

2.3 Data Pre-processing 

The first step in the pre-processing was to pan-sharpen all bands 

to the same 0.3m resolution as per training data. To do this a free 

open-source tool PanFusion has been used (Vaiopoulos, 2021). 

The software provides easy to use implementation of a number 

of pan-sharpening algorithms. In this study several algorithms 

such as BDSD (band-dependent spatial detail), GSA (adaptive 

Gram-Schmidt) and HCS (hyperspherical color sharpening) have 

been applied and compared. The BDSD has proofed to be 

suitable for very high-resolution multispectral images in other 

studies (Garzelli, Nencini and Capobianco, 2007), and showed 

the best visual results. Next, the single stripe imagery has been 

tiled into images with pixel dimensions of 512 by 512 as expected 

by the model. Importantly, the geo-spatial information for each 

tile had to be retained, since it was used to tile the label data to 

the same spatial bounding boxes. Finally, the channels of the pan-

sharpened tiles were separated, reordered, and selected to match 

the training input. The whole process is depicted in Figure 4. 
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Figure 4. Image pre-processing. 

 

Manual alignment of the cadastral footprints to better match with 

the buildings on the imagery was performed using QGIS (QGIS, 

2021). Further label inaccuracies such as incorrect footprint size 

or shape have not been corrected since these mismatches with the 

actual image were not significant for an initial transferability 

assessment. Next, the cadastral information has to be tiled into 

parts corresponding to the satellite image tiles, whereby 

footprints spread across several tiles have been split. Finally, the 

polygons have been converted into binary masks as expected by 

the model. The whole process is depicted in Figure 5. 

 

 

Figure 5. Ground Truth pre-processing. 

 

2.4 Inference and Evaluation Methodology 

The application of the model itself – running inferences – is done 

with few commands through the Solaris API once the input data 

is formatted in the right way. Notably, the last layer in the 

architecture of the provided model does not have an activation 

layer and returns raw values. Therefore, an additional sigmoid or 

softmax function should be applied in order to receive results for 

each pixel that could be interpreted as probabilities.  

 

There are different metrics that could be considered for assessing 

the segmentation performance of a model. Simple Mean 

Accuracy gives a proportion of right versus false guesses for all 

pixels. This metric, however, is not suitable in cases where there 

is high class imbalance. In the current case there is strong 

predominance of the non-building class and so another metric has 

to be considered.  

 

The SpaceNet 2 Challenge rates its competitors base on a F1 

score inspired by ImageNet Large Scale Visual Recognition 

Challenge (Russakovsky, et al., 2015).  

 

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Where: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑐𝑣𝑒
 

(1) 

 

 

 

(2) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

 

 

 

(3) 

The score is a harmonic mean of Precision and Recall. A footprint 

prediction is considered a True Positive when there is an 

Intersection over Union (IoU) between a proposed polygon and 

the ground truth polygon larger than a threshold of 0.5, otherwise 

it is a False Positive. If there is no proposal for a certain ground 

truth, the footprint with IoU exceeding the threshold a False 

Negative is counted.  

 

The SpaceNet 2 evaluation metric considers each building in a 

scene separately. However, this requires to have also a separate 

inference for each separate footprint. The model provided by 

Solaris fails at this separation and predicts one “bubble” for close 

buildings without further improvement. Furthermore, attached 

buildings very often cannot be recognized as different buildings. 

Therefore, their footprints polygons have to be merged into one 

if the SpaceNet 2 metric had to be applied. 

 

Due to the above issues, this study evaluates the results slightly 

different. Here, pixel-level Precision, Recall, F1 and IoU for the 

building class have been compared. Consequently, each building 

is not assessed separately, but a result for a tile based on all 

buildings is calculated. Therefore, the results are not directly 

comparable with the ones reported on the SpaceNet challenges 

but are sufficient for a transferability assessment.  

 

3. RESULTS 

The model’s transferability is assessed by analyzing its 

performance on a data from Paris and Sofia. It is important to 

note that the model has been trained on data from the former and 

has seen the test images in an initial training stage and therefore 

a higher performance in this case is expected. Table 1 shows the 

results averaged over the tiles (tiles with no buildings were 

filtered out).  

 

Metric Paris Sofia 
IOU 

Precision 
Recall 

F1 

0.55 

0.76 
0.69 

0.69 

0.48 

0.71 
0.60 

0.63 

Table 1. Comparison on performance on test data. 

 

The average results are slightly higher on the training set. The 

analysis of error shows that this difference can be attributed to 

incorrect labels and rare object appearance to a large extend, as it 

is shown in Figure 6. Furthermore, rooftops with very bright near 

whit colors were not correctly detected. 

 

RGB Image Ground Truth Prediction 

   

   

Figure 6. Examples of tiles with low performance. 
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Single test images with no or small cadastral mismatch show 

comparable results with the training images as it is shown in 

Figure 7.  

Paris results 
Precision: 0.635, Recall: 0.931, F1: 0.755, IOU: 0.607 

 
a) Image tile of Paris 

 
b) Mask and prediction of Paris 

Sofia results 
Precision: 0.709, Recall: 0.93, F1: 0.805, IOU: 0.673 

 
c) Image tile of Sofia 

 
d) Mask and prediction of Sofia 

Legend: ■ False Negative ■ False Positive ■ True Positive ■ True Negative 

Figure 7. Comparison of performance on a single image. 

 

The results show that the model’s knowledge for certain 

geographical locations can be transferred to another one. They 

prove that additional training with data from the new location 

e.g., containing building shapes or colors more distinctive for the 

new location, would serve the model’s performance. 

 

4. CONCLUSION 

This paper presents results from a study on transferability 

assessment of an open-source deep learning model for 

localization of buildings on satellite imagery. The model was pre-

trained on open-source data from WorldView3 satellite and 

applied to images of another location made by the same device. 

The outcome of this study indicates that deep learning knowledge 

obtained from satellite images could be transferred to other cities 

and countries. Importantly, this suggests that accessible satellite 

images and open-sourced data in combination with deep learning 

methods can reduce the costs and effort for development and 

application of automatic analysis of large areas as long as the 

image quality and information is sufficient. 

The model’s performance could be improved, if more labelled 

data from the new location are included in the training stage 

along with the open-source data. Different strategies such as 

Deep Active Learning methods (Pengzhen Ren, 2020) and 

specific data augmentations or use other techniques or models 

could be applied to make the process more affordable. The 

application of such strategies is a subject of further work.  
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