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ABSTRACT:

Fully automated reconstruction of high-detail building models on a national scale is challenging. It raises a set of problems that
are seldom found when processing smaller areas, single cities. Often there is no reference, ground truth available to evaluate the
quality of the reconstructed models. Therefore, only relative quality metrics are computed, comparing the models to the source
data sets. In the paper we present a set of relative quality metrics that we use for assessing the quality of 3D building models, that
were reconstructed in a fully automated process, in Levels of Detail 1.2, 1.3, 2.2 for the whole of the Netherlands. The source
data sets for the reconstruction are the Dutch Building and Address Register (BAG) and the National Height Model (AHN). The
quality assessment is done by comparing the building models to these two data sources. The work presented in this paper lays the
foundation  for  future  research  on the  quality  control  and management  of  automated  building  reconstruction.  Additionally,  it
serves as an important step in our ongoing effort for a fully automated building reconstruction method of high-detail, high-quality
models.

1. INTRODUCTION

3D  models  of  buildings  are  increasingly  used  in  urban
applications and these models  are mostly reconstructed fully
automatically, specifically when it comes to reconstruction of
building models for large areas. The number of reconstructed
models easily adds up to a total that can no longer be visually
assessed  (i.e.  >  1  million  buildings).  In  addition,  3D
reconstruction  of  large  areas  might  contain  situations  that
have  not  been  accounted  for  when  the  reconstruction
algorithm was developed (because similar situations were not
in the test area).
At  the  same  time,  understanding  the  quality  of  the
reconstructed  models  is  important  to  improve  the
reconstruction  process  (i.e.  to adjust  it  to specific  cases  that
were  not  handled  before),  to  provide  the  user  with  fit-for-
purpose  information  for  her/his  application  as  well  as  to
highlight unacceptable models (i.e. too low quality) that need
manual improvement.
The  factors  impacting  the  quality  of  automatically  3D
reconstructed  models  can be various,  e.g.  the quality  of  the
input  data,  geometrical  and  temporal  consistency  between
different  input  data  (e.g.  point  clouds  and  footprints),  the
reconstruction algorithm itself etc. 
To  gain  insight  into  the  quality  aspects  of  automatically
reconstructed  3D  building  models,  we  have  performed  a
quality  assessment  on  a  dataset  containing  automatically
reconstructed  building  models  at  different  Levels  of  Detail
(LoD) of  all  10 million  buildings  in  the Netherlands,  called
3D BAG.
The work presented in this paper lays the foundation for future
research on the quality control and management of automated
building reconstruction. Additionally, it serves as an important
step  in  our  ongoing  effort  for  a  fully  automated  building
reconstruction method of high-detail, high-quality models.

1.1 Overview of this paper

We start with previous work on the quality of 3D city models
in  Section  2.  After  we  have  summarised  the  reconstruction
process  of  the data  of  study  in Section  3,  we highlight  two
specific  cases  for  which  we  have  developed  specific
reconstruction  solutions  in  Section  4.  These  cases  were
identified  during  a  quality  analysis  that  we  performed  on
earlier versions of the data. 
Section  5  presents  the  quality  indicators  of  our  assessment
method.  The  results  of  the  quality  assessment  using  these
indicators  are  presented  in  Section  6.  Section  7  closes  this
paper with conclusions.

2. PREVIOUS WORK

Quality of 3D city models has been studied by other scholars. 
Krämer  et  al.  (2007)  presents  a  quality  model  that  defines
spatial  quality  measures  for  3D  city  models.  This  model
includes the reality, the user’s perception and the digital data
set. They present a formal definition for the different quality
parameters.  These  definitions  can  be  used  to  develop
algorithms  for  the measurement  and improvement  of  spatial
data  quality  of 3D city  models.  The quality  parameters  they
define  are  positional  accuracy,  completeness  of  both objects
and  attributes,  semantic  accuracy,  correctness  of  attributes,
temporal  conformance,  and logical  consistency  (geometrical,
topological,  semantics,  format).  They developed  a prototype
for two of these parameters, i.e. the
completeness of objects, for which they use the ground plans
from the land registry  office  as  ground truth,  and positional
accuracy.
Akca et al. (2010) developed a method for the quality analysis
of  3D city  models.  The  method  compares  the  reconstructed
building models  with the original  input  data  using the Least
Squares 3D surface matching method. The matching evaluates
the  Euclidean  distances  from  the  LiDAR  points  to  the
corresponding  3D building  mesh.  They  also  perform  a  full
LS3D  surface  matching.  This  shows  the  reference  system
accuracy of the building models with respect to the coordinate
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system of  the LiDAR data.  A third  LS3D run is  applied,  to
show the positional  accuracy of individual  buildings and the
completeness.
Oude  Elberink  and  Vosselman  (2011)  presents  a  method  to
evaluate the quality of the reconstructed building models from
ALS  data.  Although  their  method  is  specific  to  the
reconstruction  method  presented  by  Oude  Elberink  and
Vosselman (2009), it is straightforward to generalize to other
reconstruction methods. Oude Elberink and Vosselman (2011)
does  not  use  a  reference  data  set,  but  instead  computes
internal quality measures using the same aerial laser scanning
point  cloud  (ALS)  as  for  the  reconstruction.  Apart  of  the
Euclidean distances between roof surfaces and laser points, as
also  described  by  Akca  et  al.  (2010),  Oude  Elberink  and
Vosselman (2011) computes the shortest distances from model
vertices to ALS points, and the number of segments from the
segmented point cloud that were not used for the final model.
Ostrowski et al. (2018) expands on the work of Krämer et al.
(2007),  Akca  et  al.  (2010),  Oude  Elberink  and  Vosselman
(2011)  and  presents  a  method  for  using  the  reconstruction
ALS  data  as  a  reference  in  the  reconstruction  quality
evaluation. Their goal is to develop a method that is feasible
for the countrywide assessment of 3D building model quality.
Common to the previously mentioned studies, Ostrowski et al.
(2018)  computes  the  orthogonal  distance  between  the  ALS
points and the model, and uses the derived statistics to classify
the models into three quality categories. The three categories
are based on the predefined national quality requirements.
The  aim  of  the  OGC  CityGML  Quality  Interoperability
Experiment  (QIE)  was  to  define  a  unified  method  for  the
validation  of  3D City  Models  (Wagner  and  Ledoux,  2016).
The  result  of  this  project  was  the  specification  of  a  set  of
validation rules that can be used to validate CityGML models
as  well  as  conformance  requirements  as  defined  in  the
CityGML standard.
Coors  et  al.  (2020)  proposed  an  approach  to  specify
application-specific requirements for 3D city models encoded
in CityGML files.  They used the set  as defined  in the OGC
CityGML  Quality  Interoperability  Experiment  to  specify
application-specific  sets  of  requirements  in  the  form  of  a
formal definition of a validation plan. 
Apart from schema validation, their work focuses on validity
rules of geometries with respect to applications as well as on
application  specific  attributes  such  as  function  and  year  of
construction.  These last  attributes  are user-specific  attributes
added  to  the CityGML data  model.  The application-specific
sets can be used to develop algorithms to perform the checks
of the validation plan.
Our  quality  indicators  are  similar  to  the  ones  proposed  in
these previous studies. The novelty in our approach is that we
evaluate these indicators as part of the reconstruction process
and assign this  information  as metadata  to the reconstructed
models.  In  addition,  we use these  indicators  to  evaluate  the
quality of a nationwide 3D dataset at multiple LoD to obtain
insights  into quality  issues of an automatically  reconstructed
dataset, including all exceptional cases that can occur.

3. RECONSTRUCTION PROCESS

The  dataset  in  our  study  was  generated  from  building
polygons  maintained  in  the  Building  and  Address  Register
(BAG, 2021) and an ALS point  cloud of the National  Heigh
Model  (AHN,  2021),  both  with  complete  coverage  of  the
Netherlands.

In  one  reconstruction  process  several  models  at  different
levels  of  detail  are  generated  for  each  building  to  serve
different  applications  and  user  needs,  see  Figure  1.  We
adopted the refined LoD framework of Biljecki et al. (2016) to
specify the models.

The LoDs that are generated in our process for all 10 million
buildings of The Netherlands are:

1. LoD1.2 building models, extruded from the original
building  polygon  to  a  single  height.  LoD1.1  (and
LoD2.1)  models  are  based  on  generalised  and
aggregated buildings and therefore outside the scope
of our research.

2. LoD2.2  building  models  with  detailed  roof  shapes
based on building polygons,  again containing small
building  parts  and  extensions  as  available  in  the
original polygons (as for LoD1.2),

3. LoD1.3 models, models where a building with clear
height  jumps  (i.e.  a  church  with  a  tower;  a  house
with a shed attached)  is extruded to those different
heights.

Figure 1. Excerpts of the reconstructed dataset at three LoDs.
From left to right: LoD1.2, LoD1.3, LoD2.2

The  LoD2.2  buildings  are  reconstructed  via  a  two  step
approach.  In  the  first  step  the  original  building  footprint  is
fragmented based on the identified roof planes above it;  in a
second  step  the  footprint  is  extruded  to  the  detected  roof
planes  into  a  3D  model.  The  LoD1.3  buildings  are
reconstructed  as  a  generalisation  of  the  LoD2.2  buildings,
where  each  footprint  fragment  is  assigned  a  fixed  reference
height and neighbouring fragments  with similar  heights (less
than 3 m difference) are merged. Finally, the LoD1.2 models
are  simply  created  as  an extrusion  of  the complete  building
footprint to a reference height. 
The  LoD1.2  and  LoD1.3  models  are  also  available  as  2D
footprints  with  the  height  information  assigned  to  it  as
attributes. These 2D outputs contain several reference heights
(minimum,  50th  and  70th  percentile  and  maximum).  This
provides the user the possibility to use the reference height for
extrusion that fits best to the needs of her/his application. For
the ground height of each representation, the 5th percentile is
used for all ground points within a 4 m buffer of the building
footprint.  More  details  can  be found in  Dukai  et  al.  (2019;
2020), Stoter et al. (2020) and Peters at al (2021).
We  have  reconstructed  these  models  for  all  10  million
buildings  in  the  Netherlands.  The  building  models  can  be
viewed and downloaded as open data via an open source 3D
viewer (3D BAG, 2021). The data set is the object of study for
our quality assessment as presented in this paper.
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4. IMPROVING QUALITY BY ADDRESSING
SPECIFIC CASES

In a quality analysis of an earlier version of the reconstructed
data,  we  have  identified  cases  which  the  reconstruction
process did not yet account for. As an example of such cases,
this section describes two of such cases, and how we handled
them  in  the  improved  reconstruction  process.  These  are
underground  parts  (Section  4.1)  and  greenhouses  (Section
4.2).

4.1 Underground parts

A specific problem in the reconstruction of buildings from the
BAG data, is that the BAG geometry represents the outline of
a building as seen from above. This BAG representation does
not  distinguish  between parts  that  are  above the ground and
parts that are below the ground. Therefore, for buildings that
have cellars extending the footprint or (part of) buildings that
represent  underground  parking  garages,  the  reconstructed
models  do  not  correctly  represent  the  real  building,  i.e.,
underground  parts  are  incorrectly  extruded.  To  improve  the
reconstruction  method  for  such  cases  (Figure  2),  we  have
developed a method to identify different types of multi-level
buildings. 

BAG-building completely 
underground (metro station)

Part of BAG-building is 
underground (underground 
parking garage) 

BAG-building above a road BAG-building above another 
BAG-building

Figure 2. Examples of overlapping and underground BAG-
polygons (red). Aerial images 2020 25cm RGB open data ©

Het Waterschapshuis.

We distinguish three possible situations:
1. Building or building part is on the ground
2. Building or building part is underground, e.g. metro

station

3. Floating building, e.g. standing on pillars on top of a
road,  water  or  another  building  or  overhanging  a
road.

In a pre-process we identify the first two types of buildings by
comparing the BAG-polygon with the alpha-shape of building
points  in  the  LiDAR point  cloud  data  set.  Buildings  in  the
third  category  are  identified  by  detecting  overlaps  between
buildings,  and  road  or  water  (both  obtained  from  the
countrywide  large-scale  topography  dataset)  or  other  BAG-
buildings.
 
Buildings that are completely underground (second category)
are excluded  from the reconstruction process.  Buildings  that
are partially underground (e.g. a parking garage extending the
footprint  of  the building  it  belongs  to)  are  handled  together
with the  ‘normal’  buildings  and their  underground  parts  are
detected  and  cut  off  in  the  LoD1.3/2.2  reconstruction  (by
checking  if  a  part  only  contains  ground points  and  no  roof
points).  These  cut  off  parts  are  still  outputted  and  labelled
accordingly.

4.2 Greenhouses

In  initial  experiments,  we  noticed  that  the  quality  of  point
clouds on greenhouses are rather poor (see Figure 3), because
the  LiDAR  beams  penetrate  the  glass  roofs  and  therefore
contain a mix of ground and building points,  while  some of
the laser beams are not reflected due to the mirroring effect of
the glass. Consequently, large parts of the roof are missing in
the point clouds,  while points on the ground are included.  In
addition, the greenhouses (as warehouses) are very large. This
makes the plane fitting process extremely complex and prone
to  errors  as  well  as  time  consuming.  Therefore,  we  have
removed greenhouses and warehouses from the reconstruction
process and limit their 3D reconstruction to simple extrusions
from the input polygons.  The type of building is available in
the  1:10k  topographical  dataset  of  Kadaster  that  we  use  to
identify and filter such buildings. 

Figure 3. LoD2.2 reconstruction of a greenhouse is difficult a)
AHN3 point cloud (green: surface points; brown: building

points). b) 2.5D height surface with maximum height for each
pixel c,e) LoD2.2 reconstruction result. d) aerial image and

BAG-polygon.

5. QUALITY INDICATORS OF OUR ASSESSMENT

To assess the quality of the resulting models in relation to the
input  data  and  the  reconstruction  process,  we  calculate
different quality measures during the process and assign these
to individual models. These quality measures are described in
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this section. How we use these measures to perform a quality
assessment of the reconstructed dataset is also described. 

The building models are reconstructed by combining two data
sources, i.e. building polygons and aerial laser scanning data.
Therefore,  any  positional  error  in  them  propagates  into  the
building  models,  and  the  positional  accuracy  of  the
reconstructed models  is limited  by the accuracy of the input
data.  We do not  assess  the  positional  accuracy  of  the  input
data as it is well documented for both input data sets.

5.1 Quality of the input point cloud

For the reconstruction,  we use airborne LiDAR data.  Due to
the  sensing  technique  and  the  observation  from  the  air,  the
point  cloud  may have  low quality  at  some  locations  due to
different factors, for example the scan angles, water on roofs,
glass  roofs  (See  4.2),  incorrect  classification  of  the  LiDAR
points, a laser beam that cannot reach the building because of
occlusion etc.  The impact  of areas without laser data is also
described  by Oude Elberink  (2010).  These no-data  areas  are
calculated  as  the  difference  between the  footprints  area  and
the area covered by laser points (based on alpha shape of the
points).  The  no-data  areas  are  normalised  by  the  footprint
area.

Figure 4. Missing points (no-data) in the point cloud. The
church tower occluded part of the roof from the laser beams.
The impact on the reconstruction can be seen in the yellow

model.

As a consequence of the no-data areas,  the number of points
available  for  the  reconstruction  as  well  as  the  statistical
calculation  per  building  polygon or  roof-part  can vary  from
one  to  hundreds  or  thousands  of  points.  This  number  can
highly  influence  the  quality  of  the  reconstructed  model  and
the amount of detail that can be modeled (Oude Elberink and
Vosselman (2011)). Therefore, we also calculate the net point
density, which excludes the no-data areas.

To evaluate the quality of the input point cloud, we calculate
the  number  of  points  that  were  available  for  each  point
segment. This is an absolute measure, which helps to identify
cases  where  there  were less  than  six points  available  in  the
segment.
Oude Elberink  and Vosselman  (2011)  counts  the number  of
point segments that were not used for creating the roof model,
where a high number of unused segments can indicate a faulty
reconstruction.  Similarly,  we calculate  the  number  of  points
that were not assigned to any segment  at all,  and report  this
number relative to the total number of points for the model.

5.2 Temporal mismatch between point cloud and building
footprint

The  temporal  conformance  (Krämer  et  al.  (2007))  of  the
models is measured by comparing the acquisition date of the

input  point  cloud  and  the  recorded  construction  date  of  the
building  polygon.  If  the  building  polygon is  newer than  the
point cloud, no 3D model can be reconstructed.
The  currently  available  national  point  cloud  (AHN3)  only
records the acquisition  year  for a given region and does not
contain the GPS timestamp in the point data. Additionally, the
construction  time  of  the  buildings  is  registered  with  a
temporal  resolution  of  one  year.  We  therefore  obtain  three
values for the timeliness and assign these to the models:

 yes – the point cloud was collected in the years after
the construction date of the building and the building
model can be reconstructed from the point cloud.

 no –  the  point  cloud  was  collected  in  the  years
before  the  construction  date  of  the  building;
therefore  no  points  are  available  for  the  specific
building

 uncertain –  the  point  cloud  was  collected  in  the
same  year  as  the  year  of  the  construction  of  the
building.

The  buildings  that  are  newer  are  excluded  from  the
reconstruction process, although the polygons are provided in
the reconstructed data and labelled accordingly.

5.3 The model fit

Contrary to the methods proposed by Krämer et al. (2007) and
Akca et  al.  (2010) we have no means to assess  the absolute
positional accuracy of the models, as there is no ground truth
available.  On the other hand, we establish a relative measure
of correctness, using the point cloud as reference, from which
the models  were reconstructed.  Such a method evaluates  the
fit  of  the  model  to  the  input  data,  by  calculating  the
orthogonal distance from each point to the roof planes, and is
also applied by Dorninger and Pfeifer (2008), Oude Elberink
and Vosselman (2011), Ostrowski et al. (2018).
Additionally, we calculate the distance from each vertex of the
model  to  the  nearest  point  in  the  point  cloud.  Similarly,  to
Oude Elberink and Vosselman (2011), we use this measure to
check whether the model vertices are within a certain distance
of the point cloud.

5.4 Geometric validity

The logical consistency (Krämer et al.  (2007)) of the models
is measured by performing a series of 3D validity checks. The
3D  model  geometry  must  conform  to  the  requirements
described  by  Ledoux  (2013;  2018),  which  follows  the
international  standard  ISO19107.  Geometry  validation  is
integrated  into  the  reconstruction  process,  where  each
reconstructed  model  is  tested,  and  the  invalids  are  assigned
the error code indicating the type of error. The 32 error codes
are  specific  to  the  validation  tool,  val3dity,  developed  by
Ledoux  (2018)  and  described  in  detail  in  the  tool’s
documentation (val3dity, 2021). 

5.5 Roof complexity

We  obtain  this  indicator,  because  we  assume  that  the
complexity  of  the  roofs  has  a  significant  influence  on  the
quality  of  the  reconstructed  model.  The  complexity  is
identified via the number of each type of roof planes detected
for  each  building.  We  identify  these  roof  types  (slanted  or
horizontal) via the angle of the roof planes and the number of
levels in the roof structure.  
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6. ASSESSING THE BUILDING MODELS

For practical reasons the assessment below was conducted on
a 1% sample of the complete set of nearly 10 million models.
This  sample  contains  about  100000  models  in  each  LoD,
sampled randomly from across the Netherlands. The complete
set  was  generated  in  March  2021,  and  carries  the  version
number  v21031_7425c21b. Therefore,  it  is  important  to note
that  the  assessment  results  are  indicative  to  the  mentioned
data  version,  and the status  of  the reconstruction  method in
pre-March  2021.  As  the  method  is  under  continuous
development, it is expected that future data versions will have
an improved quality.
For  the  point  cloud  assessment,  we  analyse  the  spatial
variation  of  quality  in  the  point  cloud  by  analysing  these
indicators  over  specific  regions  (Figure  5),  since  the  height
data  was  collected  and  processed  in  different  measurement
campaigns by different companies.
The quality  metrics  calculated  for  the whole  sample  are  the
following: 

 Median no-data area: 13% of the polygon area
 Median  point  density:  15.3  pts/m2  (within  a

polygon)
 Median unsegmented points:  3% of the total  points

(within a polygon)
Figure  6 compares  the  three  point  cloud  metrics  relative  to
each other and relative between regions.  However,  as can be
observed from these numbers, we could not identify a pattern
when comparing the point cloud quality  measures  across the
acquisition regions.

Figure 5. The acquisition years and regions of the input point
cloud.

Figure 6. Median point cloud statistics per acquisition region
(Figure 5). The values are relative and transformed so that a

higher value means better properties.

The  temporal  mismatch  is  assessed  by  analysing  the
occurrences  of  the  buildings  that  are  newer  than  the  input
point cloud, the buildings that are up to date and the buildings
for  which  the  timeliness  is  uncertain.  In  the  3D  data  set
reconstructed in March 2021, these values are respectively 4%
(newer), 95% (up to date), and 1% (uncertain).

Figure  7  shows  the  buildings  that  were  built  after  the
acquisition of the point  cloud for an area around Rotterdam.
There are both individual  constructions and developments  of
complete  neighbourhoods,  as  it  is  indicated  by  the  tight
clusters of building polygons. This pattern is more pronounced
around the coast  of  the  Netherlands  compared  to  the inland
territories, where the urbanisation is sparser.

Figure 7. Buildings built after the acquisition date of the point
cloud, nearby Rotterdam.

The orthogonal  distances  from the point  cloud to the model
(point-to-model)  is  aggregated  as  the  root  mean  squared
distance  (RMS)  for  each model  for  the buildings  in  the test
area. The RMS values are analysed per LoD. Figure 8 shows
the distribution  of  the RMS for  each LoD,  where additional
statistics are listed in Table 1. In LoD 2.2, the median RMS is
as low as 0.04 m (mean 0.1 m),  which indicates a relatively
close fit between the models and the point cloud.
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Figure 8. Root Mean Squared distances from points to model,
per Level of Detail. Values in meters.

LoD Mean Std. Median
1.2 1.07 1.06 0.91
1.3 0.85 0.79 0.78
2.2 0.10 0.25 0.04

Table 1. The median, mean and standard deviation of the
RMS per LoD. Values in meters.

For  the  model  to  point  cloud  distances  we  measure  their
maximum  values,  because  they can highlight  a certain  error
that  we  observed  in  our  current  reconstruction  method.  We
call this type of error “screens”, as it is commonly represented
by  a  wall-like,  thin,  protruding  surface  from  the  expected
geometry  of  the  model.  This  type  of  reconstruction  error  is
likely to be caused by long, narrow no-data areas in the point
cloud (section 5.1), where the resulting roof plane is matched
to  an  incorrect  elevation.  Figure  9  illustrates  such  a  case,
where the model has a low RMS of point-to-model distance,
0.04 m, while the maximum model-to-point distance is 6.1 m.

Figure 9. An example of a model with a “screen”. This model
has an RMS of 0.04 m, and a maximum model-to-point

distance of 6.1 m.

Among the LoD1.2 models less than 1% has invalid geometry,
in the LoD1.3 models around 2% has invalid geometry, in the
LoD2.2 models around 10% has invalid geometry. By far the
most  common geometric  error among all  three reconstructed
LoD-s is the unclosed shell  (code 302).  This error  makes up
around  91% of  the  invalid  cases.  Following  is  the  error  of
self-intersection  in  one of  the rings  in  2D,  which makes  up
around 3-6% of the invalid cases. The rest of the errors are not
listed here, because they represent an insignificant fraction of
the total cases.

Based  on  this  quality  assessment  of  the  automatically
reconstructed  models  for  all  buildings  in  The  Netherland,
improvements  for  increasing  the  geometric  validity  of  the
models  are  currently  in  progress.  Therefore,  future  data
version will have lower number of invalid cases, especially in
LoD2.2.  In  the  upcoming  release  the  geometric  validity  of
LoD2.2 models has increased up to 98%.

The roof types per building that we identify are listed below,
together  with  their  frequency  among  the  models.  Figure  10
shows the three reconstructed roof types that we identify.

 Roof with at least  one  slanted surface (64,8%),  i.e.
complex building.

 Roof  with  multiple  horizontal surfaces  (7,9%),  i.e.
simple building.

 Roof with a single horizontal surface (25,5%), most
simple building.

 No points was found for the building (1,5%),  most
likely an underground building.

 Could not detect a roof surface, even though points
were found (0,3%).

Figure 10. Examples for the three roof types in the data set.
From left to right: slanted, multiple horizontal, single

horizontal.

7. CONCLUSION

In  this  paper  we  presented  our  quality  assessment
methodology that we have set  up and followed to perform a
quality assessment of an automatically  reconstructed data set
containing building models for all 10 million buildings in the
Netherlands, called 3D BAG. The assessment  results provide
insight in the quality of the reconstructed models.

The  assessed  data  set  was  generated  in  March  2021,  and
carries the version number  v21031_7425c21b. Therefore,  the
assessment  results  are  indicative  to  the  mentioned  data
version,  and the status  of  the  reconstruction  method  in pre-
March 2021. 
This is the first time that our automated reconstruction method
has  been  applied  to  all  buildings  in  The  Netherlands,  to
generate a multi-LoD data set, including LoD2.2. The quality
assessment  is  vital  in  the  continuous  improvement  of  the
reconstruction  method.  Therefore,  future  data  versions  will
have  an  improved  quality.  In  the  upcoming  release  the
geometric validity of LoD2.2 models has increased up to 98%.

Besides  improving  the  reconstruction  process  in  further
development,  the quality  assessment  can be used to provide
the  user  with  fit-for-purpose  information  for  her/his
application  as  well  as  to  highlight  low  quality  models  that
need manual  improvement.  In  addition,  it  gives  insight  into
how the quality  of the used input data (i.e.  point clouds and
building  polygons)  has  an  impact  on  the  quality  of  the
reconstructed  models.  These  insights  can  be used  when our
reconstruction  method  is  applied  to  other  data  sources  (i.e.
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point  clouds  obtained  from  images)  or  to  other  countries
(where other source data is available).
In  general  we  measured  a  relatively  good  fit  between  the
models and the point cloud in LoD2.2, as exemplified by the
0.04m  RMS.  However,  we  observed  that  measuring  the
orthogonal distances between the point cloud and the model is
in  itself  is  insufficient  to  identify  models  with  an  incorrect
reconstruction  (see  Figure  9).  In  this  regard  we  came  to  a
similar  conclusion  as  Oude Elberink  and Vosselman (2011).
Reliable  and  automated  identification  of  incorrect  models
remains a future challenge.
Our  initial  assumption  was  that  the  quality  measures  point
coverage,  point  density,  unsegmented  point  coverage  have a
significant  impact  on the reconstruction quality,  as it  can be
measured  by  the  RMS  of  the  point-to-model  distances.
However,  in our research we did not recognize a correlation
and the relation between these parameters is a topic of future
work.
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