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ABSTRACT:

In the past decade, a lot of effort is put into applying digital innovations to building life cycles. 3D Models have been proven to be
efficient for decision making, scenario simulation and 3D data analysis during this life cycle. Creating such digital representation
of a building can be a labour-intensive task, depending on the desired scale and level of detail (LOD). This research aims at creating
a new automatic deep learning based method for building model reconstruction. It combines exterior and interior data sources: 1)
3D BAG, 2) archived floor plan images. To reconstruct 3D building models from the two data sources, an innovative combination
of methods is proposed. In order to obtain the information needed from the floor plan images (walls, openings and labels), deep
learning techniques have been used. In addition, post-processing techniques are introduced to transform the data in the required
format. In order to fuse the extracted 2D data and the 3D exterior, a data fusion process is introduced. From the literature review,
no prior research on automatic integration of CityGML/JSON and floor plan images has been found. Therefore, this method is a
first approach to this data integration.

1. INTRODUCTION

Buildings have a significant role in our daily lives. Therefore, a
lot of effort is put into improving them. One way of doing this
is by applying digital innovations to a building’s whole
lifecycle, which consists of the following stages: planning,
construction, operation, renovation and demolition (Ngwepe
and Aigbavboa, 2015). In the past decade, a lot of effort is put
into applying digital innovations to building life cycles
(planning, construction, operation, renovation and demolition
(Ngwepe and Aigbavboa, 2015)). 3D Models have been
proven to be efficient for decision making, scenario simulation
and 3D data analysis during this life cycle (Rajat Agarwal and
Sridhar, 2016). Creating such digital representation of a
building can be a labour-intensive task, depending on the
desired scale and level of detail (LOD). This research aims at
creating a new automatic deep learning based method for
building model reconstruction. It combines exterior and
interior data sources: 1) 3D BAG, the first fully automatically
generated 3D building data set with level of detail 2.21, 2)
archived floor plan images (e.g. scanned or exported from
CAD software). From the literature review, no prior research
on automatic integration of CityGML/JSON and floor plan
images has been found. Therefore, a new method has been
developed, combining these two internal and external data
sources into full 3D models. Having precise linked 3D data
provides opportunity for detailed analysis such as improved
area calculation, facility management, urban planning, and
energy simulation.

1 3D BAG, 3D BK TU Delft - https://3dbag.nl

2. BACKGROUND

3D representations of buildings are getting more attention, and
are used for a wide range of applications (Biljecki, 2016). 3D
building objects do exist in both the BIM and GIS domain, but
are used from a different perspective (Herle, 2020). BIM
models are by default highly detailed and often represent a
physical building with a small error margin. GIS is often used
on a larger scale, with a lower granularity, and provides
variety of opportunities for geolocation, analysis, simulations
and documentation (Laat, 2010). 3D building objects in
city models can be obtained automatically, in example by
utilizing building footprints and boundary properties from data
sources e.g. cadastre databases or aerial images (Amiranti,
2020, Balázs Dukai1, 2020, Sander Oude Elberink and
Commandeur, 2013). These automatically generated objects
do not contain building internal structure. Research by Boeters
(Boeters, 2015) introduced LOD2+, which is an extension to
City GML 2, to support floor levels. In this paper, a method is
introduced to estimate heights and include floor surfaces to the
existing CityGML LOD 2 objects. Current ongoing research
by iNOUS2 aims at reconstructing IndoorGML based on
building blueprints and LIDAR data. After that, this data will
be combined with existing IFC (BIM) files. This research is
not published yet.

CityJSON - CityJSON (Ledoux et al., 2019) is a JSON
encoding for 3D city models. The introductory paper claims
that, in comparison with CityGML (the current Open
Geospatial Consortium standard) it is easier to use, and it is
more compact with a compression factor of around six with
real-world data (Ledoux et al., 2019).

Floor plan parsing - Previous work from Or et. al. (hang Or,
2 iNous, Pusan National University - http://www.inous.ne

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVI-4/W4-2021 
16th 3D GeoInfo Conference 2021, 11–14 October 2021, New York City, USA

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVI-4-W4-2021-49-2021 | © Author(s) 2021. CC BY 4.0 License.

 
49



2005) in 2005 introduced deterministic image processing and
symbol recognition techniques to interpret floor plan scans.
However, as with many computer vision problems, the focus
has shifted from feature engineering and deterministic tasks to
methods learning from training data (Ahti Kalervo et al.,
2019). In order to obtain the multiple segmentation maps and
labels, e.g. room types and point of interest (walls, icons,
openings etc.), multi-task methods or networks should be used.
The performance of multi-task networks do highly depend on
the relative weighting between each task’s loss (Kendall et al.,
2018). The deep learning breakthrough for floor plan parsing
was presented in resarch by Chen Liu (Liu, 2017), that used
deep learning to vectorize rasterized images. It does so by
using a discriminative network to obtain junctions, integer
programming to obtain primitives and finally post-processing
to obtain a vector format. In Table 1, other relevant work is
shown.

Polygon overlap - To find the appropriate scale, rotation and
orientation to project the exterior and floor plan outline, the
maximum overlap of the two outlines needs to be found. De
Berg (Berg, 2005) defined a method on finding optimal
polygon overlap under translations. However, this method
only works for convex polygons. Building blueprints do
not have to be convex, so this function is not applicable.
Milenkovic (Milenkovic, 1998) introduces a method for
optimal overlap using rotations and movements, that also
works for non-convex polygons. This method does not support
other methods such as scaling. Har-Peled (Har-Peled, 2016)
introduces a method that approximates the maximum overlap
of a polygon under translations. For polygons close to convex,
this problem can be solved in nearly linear time. Research by
Ahn et. al. (Ahn et al., 2007) calculates the maximum overlap
for two polygons using rigid motions (translation, rotation,
scale, reflection and glide reflection). This method gives a
rigid motion φapp that is at least 1 - α times the maximum over
all rigid motions. Berg et. al. (De Berg et al., 1998) introduces
a method for maximum overlap of two convex polygons under
translations in O(n + m)log(n + m) time, where n and m are
the number of vertices in the respective polygons. The method
is an algorithm of steps with binary searches for new locations
for the points based on the average centroid (geometric centre)
of both polygons.

3. METHOD

To reconstruct 3D building models from the two data sources
mentioned above, an innovative combination of methods is
proposed (Figure 1). The exterior 3D data is in CityJSON
format and the interior 2D data is provided by the municipality
of Rijssen-Holten, who are interested in the current research.
In addition, road data is downloaded from the national road
database3. The next subsections elaborate on component I
(interior) and II (data fusion).

3.1 Floor Plan Parsing

In order to obtain the information needed from the floor plan
images, they are parsed into vectors with attached semantic
attributes (Figure 1). The walls, openings and room labels are
extracted separately, adopting the deep learning methods
proposed Liu (Liu, 2017). In order to train above mentioned
deep learning models, the CubiCasa (Ahti Kalervo et al., 2019)

3 NWB - https://nationaalwegenbestand.nl/

dataset is used. This dataset consists of 5000 floor plan images
(input) and annotated vector files (ground truth).
Walls: The first step is to obtain individual walls, using
semantic segmentation, which is the process of labeling each
pixel of an image with a corresponding object class (wall or
other). For this, the U-Net network and Fast-SCNN are
tested. After segmentation, individual walls are obtained by
morphological transformations (closing, dilation and erosion)
and post-processing. A single polygon is created by combining
all contours (Figure 2). From this polygon, wall pieces are
obtained by an algorithm that removes wall elements from the
all-walls polygon, starting from the left-top. This algorithm
also allows for diagonal walls, and is provided in Algorithm 1.
Openings: Openings (doors and windows) are identified using
object detection. Four deep learning architectures are tested: 1)
Faster-RCNN, 2) CenterNet, 3) SSD with MobileNet, and 4)
SSD RetinaNet encoder. The object detection algorithms
detect bounding boxes around the objects of interests. An
example output can be seen in Figure 3.

Room labels: In order to obtain the room types, the labels in
the floor plans are interpreted. For this, optical character
recognition (OCR) is applied. There are a variety of
off-the-shelve OCR techniques, of which a few are compared
in the research done by Tomaschek (Tomaschek, 2018). It was
concluded that Tesseract version 4 has the best performance.
This consists of a new neural net (LSTM) based OCR engine,
which focuses on line recognition. A computer vision
algorithm that recognizes objects surrounded by white space is
used as input for the Tesseract neural net.

Algorithm 1 Create individual walls
while all-walls.area > 0.01 do

top-left← top-left point from all-walls polygon
highest-angle ← point with connecting edge to top-left
with highest θ
highest-dx ← point with connecting edge from top-left
with highest ∆x
wall← Polygon from top-left to highest-angle
direction ← -1 if highest angle point x ¡ top-left point x
else 1
while intersection(all-walls,wall).area == wall.area do

Extend wall in direction on x-axis
end while
if wall.area == 0 then

Make bounding box around top-left, highest-angle and
highest-delta points,
find the intersection with all-walls and select the largest
element as wall

end if
all-walls ← Symmetric difference between all-walls and
wall

end while

3.2 Merging the 3D BAG and floor plan data

The parsed floor plan is merged with the 3D BAG data. Since
the floor plans do not indicate an orientation (e.g. to the North),
the roads are used to rotate the 3D BAG building with respect
to the floor plan. For each facade with an adjacent road, the
maximum polygon overlap (Jaccard index, IoU), is optimized
using trust region methods (Conn et al., 2000) (Figure 4). Real-
life object sizes are estimated based on the values in Table 2.
Inconsistent areas are added to the final CityJSON object if the
inconsistency area 5m2. The final building, consisting of floor
planes, interior and exterior walls, doors, windows, and roof is
stored as CityJSON type Building object.
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Paper Targets Method Architecture Loss
(Surikov, 2020) Walls Semantic segmentation U-Net IoU

Window/Door/Icons Object detection Faster-RCNN Mean average precision (MaP)
(Liu, 2017) Wall or room type Semantic segmentation Modified ResNet-152 Pixelwise soft-max cross entropy loss

Icons Semantic segmentation Modified ResNet-152 Pixelwise soft-max cross entropy loss
(Yang, 2018) Doors Semantic segmentation U-Net+DCL mIoU, mean accuracy

Walls Semantic segmentation U-Net+DCL mIoU, mean accuracy
(Ahti Kalervo et al., 2019) Wall or room type Semantic segmentation Modified ResNet-152 Cross-entropy loss

Icons Semantic segmentation Modified ResNet-152 Cross-entropy loss

(Zeng, 2019) Room boundary
(wall, door, window)

Classification and
detection VGG16 Cross-and-within-task weighted loss

Room type Classification and
detection VGG16 Cross-and-within-task weighted loss

(H, 2020) Wall or room type Object detection Multiple Dice loss, WCE loss
Doors Object detection Multiple Dice loss, WCE loss

(Wu, 2020) Walls, doors, icons Instance segmentation Mask R-CNN Multi-task loss function of Mask-RCNN

Table 1. Deep learning methods comparison

Figure 1. Global design, including component I and II (section 3.1 and 3.2)

Year y
Interior wall
width

Exterior wall
width

Level
height

Floorplane
height

Door ground
offset

Door
height

Window ground
offset

Window
height

Roof
height

y <1950 10 25 220 20 2 210 60 150 20
1950 ≤ y ≤ 1992 10 30 240 26 2 220 60 150 30
y >1992 10 35 260 28 2 232 60 150 40

Table 2. Reference sizes in cm

Figure 2. Floor plan outline

4. EVALUATION

4.1 Floor Plan Parsing

For the final method, the deep learning architectures U-Net
(Ronneberger et al., 2015) (IoU of 0.8859) SSD with
Mobilenet v1 FPN, RetinaNet50 (Liu et al., 2016) (average
precision 0.744 and average recall 0.595) are selected.

To evaluate the described methods output, 10 random samples

Figure 3. Object Detection Output

from the CubiCasa5K dataset and 6 Dutch samples are
inspected. Since the study area of this method is the
Netherlands and CubiCasa5K does not contain Dutch floor
plan samples, 6 Dutch samples are chosen. For each sample,
the true positives (TP, correct items), false positives (FP, output
that should not be in the result), and false negatives (FN,
missing items) are given. The precision and and recall are
added to each table, and the harmonic mean of the precision
and recall (F1-score) are calculated. To find the accuracy of the
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Figure 4. Maximum Jaccard / IoU

door direction, the ratio between correct directions and true
positive doors is given. An object is considered true positive if
more than 75% of the ground truth wall area is covered. In
Table 3, the F1 scores for the CubiCasa5K and Dutch samples
are presented.

Wall Door Window
CubiCasa5k 0.9 0.93 0.85
Dutch floor plan samples 0.83 0.66 0.69

Table 3. F1 scores per type

4.2 Merging the 3D BAG and floor plan data

In order to evaluate the proposed method, the method output is
compared with a ground-truth BIM-model. The BIM model and
its corresponding CityJSON output is shown for each side and
storey. The quantitative accuracy is shown using Intersection
over Union (IoU, Equation 1). In order to calculate the IoU,
polygons are drawn on all objects (such as walls, openings and
roofs) on the facade from 4 sides (front, back, left, and right)
for both the ground truth and the proposed model output. For
each polygon, the IoU is calculated. In this paper, results for
two buildings (identified by BAG ID 0163100000538672 and
0164100000294714) are shown in Figure 5, Table 4 and Figure
6, Table 5. The average IoU is 0.7673 and 0.6399

IoU(A,B) =
|A ∩B|
|A ∪B| , 0 ≤ IoU(A,B) ≤ 1 (1)

5. DISCUSSION

The overall performance for floor plan parsing seems better
when floor plans are less complicated and less detailed. This is
probably due to homogeneous training data and can be
improved by including more complicated floor plan images
(e.g. office spaces and larger buildings) to the training data set.
During training, a Nvidia GeForce GTX 1080 GPU was used.
This GPU was launched in 2016 and currently there are more
powerful alternatives available that allow for more complex
deep learning networks, which could improve performance.

For data integration, the average Intersection over Union is
0.7673. No similar benchmark is available in other scientific
literature, but for such challenging task this result is sufficient.

6. CONCLUSION

The aim of this research was to create a methodology for the
reconstruction of 3D building models using the 3D BAG
CityJSON and floor plan images. In this paper, a method is
proposed to reconstruct 3D building models using deep
learning methods based on CityJSON and 2D floor plans. The
method can be seen in Figure 1. The performance of this
method is measured in Intersection over Union (IoU) and
seems sufficient for such challenging task. A way of improving
the method is by using more representative training data.

An interesting future direction to obtain walls and openings
is to use generative design or parametric design to estimate
a buildings internal structure. In example, (Abrishami et al.,
2014) proposed a system for generative design for BIM models.
By observing floor plans, building 3D exterior, and meta data
such as building year, type (terraced, apartment, semi-detached,
detached), the most likely internal structure may be estimated
by a machine learning model.

Figure 5. Visual results (in Blender) for BAG ID
0164100000294714

Figure 6. Visual results (in Blender) for BAG ID
0163100000538672
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Object IoU
Front view – Roof 0.7585
Front view – Facade 0.9402
Front view – Ground floor window 0.8311
Front view – Ground floor door 0.6379
Front view – First floor window 1 0.85
Front view – First floor window 2 0.4668
Back view – Facade 0.9056
Back view – Roof 0.76
Back view – Ground floor window 0.5046
Back view – First floor window 1 0.6033
Back view – First floor window 2 0.8173
Left view – Facade ground floor 0.9347
Left view – Facade first floor 0.7819
Right view – Facade ground floor 0.9347
Right view – Facade first floor 0.7819
Average 0.7673

Table 4. IoU results for BAG ID 0164100000294714

Object IoU
Front view – Roof 0.7424
Front view – Facade 0.8898
Front view – Ground floor window 1 0.7198
Front view – Ground floor door 1 0.7703
Front view – Ground floor window 2 0.8472
Front view – First floor window 1 0
Back view – Roof 0.7005
Back view – Facade 0.8423
Back view – First floor window 0.6763
Back view – First floor door 0.6751
Back view – First floor window 0
Left view – Wall first floor 0.7274
Right view – Wall first floor 0.7274
Average 0.6399

Table 5. IoU results for BAG ID 0163100000538672
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