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ABSTRACT:

While data on human behavior in COVID-19 rich environments have been captured and publicly released, spatial components
of such data are recorded in two-dimensions. Thus, the complete roles of the built and natural environment cannot be readily
ascertained. This paper introduces a mechanism for the three-dimensional (3D) visualization of egress behaviors of individuals
leaving a COVID-19 exposed healthcare facility in Spring 2020 in New York City. Behavioral data were extracted and projected onto
a 3D aerial laser scanning point cloud of the surrounding area rendered with Potree, a readily available open-source Web Graphics
Library (WebGL) point cloud viewer. The outcomes were 3D heatmap visualizations of the built environment that indicated the
event locations of individuals exhibiting specific characteristics (e.g., men vs. women; public transit users vs. private vehicle users).
These visualizations enabled interactive navigation through the space accessible through any modern web browser supporting
WebGL. Visualizing egress behavior in this manner may highlight patterns indicative of correlations between the environment,
human behavior, and transmissible diseases. Findings using such tools have the potential to identify high-exposure areas and
surfaces such as doors, railings, and other physical features. Providing flexible visualization capabilities with 3D spatial context
can enable analysts to quickly advise and communicate vital information across a broad range of use cases. This paper presents
such an application to extract the public health information necessary to form localized responses to reduce COVID-19 infection
and transmission rates in urban areas.

1. INTRODUCTION

The effects of the built environment on human behavior condu-
cive to COVID-19 transmission are not fully understood at the
community level. To contribute to the state of understanding,
this paper introduces a visualization mechanism using a three-
dimensional (3D) point cloud on which to project egress beha-
viors of individuals leaving a COVID-19 exposed healthcare fa-
cility in Spring 2020 in New York City (NYC), during the initial
peak outbreak of COVID-19. The goal was to demonstrate in
an aggregated manner how individuals exhibiting specific char-
acteristics (e.g. whether they touched their body or their cell
phone) physically interacted with the surrounding environment
and community and how these behaviors differed by subgroup
(e.g. men vs. women).

Geographic Information System (GIS) applications have long
been used to model and visualize disaster-related behaviors in
two-dimensions [e.g. egress behaviors of Californians at risk
from wildfires (Cova and Church, 1997)]. Infectious disease
behavior has also been visualized in two-dimensions. However,
the tendency of cases to cluster typically requires data points to
be aggregated into density plots to enable sufficient visual in-
terpretation. Atkinson and Unwin (2002) noted that visualizing
such data as density plots in 3D space could further improve
their interpretability in geographic contexts.

The increasing availability of 3D spatial data in the form of na-
tional aerial laser scans (U.S. Geological Survey, 2013) has cre-
ated the opportunity for a new generation of visualization tools
to aid understanding behavioral response to external agents
(Castrillón et al., 2011). These 3D visualizations can enhance
the understanding of the spatial context of the underlying data
by improving spatial thinking. Spatial thinking is the ability to

visualize and solve problems spatially (Nielsen et al., 2011) and
studies have shown the benefits of 3D visualization in improv-
ing these skills. Rautenbach et al. (2014) conducted a comparat-
ive experiment in South Africa with planners with low/medium
levels of map literacy to evaluate their spatial skills in two-
dimensional (2D) maps and 3D models of their country. Par-
ticipants were asked to solve three tasks: cardinal direction, re-
lative direction, and distance estimation. Most participants felt
the assignments were easier to solve using the 2D maps. How-
ever, the results showed better performance when 3D represent-
ations were used. Three-dimensional models have the potential
of improving users’ geospatial thinking in specific tasks. For
example, Carbonell-Carrera and Hess-Medler (2019) conduc-
ted two workshops with engineering students using visuospatial
displays in 3D software environments to enhance their abilities
in relief interpretation and landform comprehension. The To-
pographic Map Assessment (TMA) test, developed by Jacovina
et al. (2014), was used to assess the effectiveness of these 3D
software technologies on developing geospatial thinking. Evid-
ence from the study showed gains of 10.7%-12.6% of TMA test
scores between pre-workshop and post-workshop assessments.

With the increasing popularity of 3D models, understanding
how certain design decisions of 3D visualizations affect the
user experience and their map cognition abilities is essential.
Elements such as the extent of the model (scale), scene com-
plexity (number, structure, and density of objects), the field of
view (perspective), familiarity, as well as training and instruc-
tion clarity, can affect the user experience and the achieved out-
comes (Rautenbach et al., 2015). Research by Cubukcu (2011)
suggests that improper configuration of a 3D model can cause
anxiety, disorientation, frustration, and stress that would affect
performance when using or interpreting the model. Introdu-
cing interactivity that enables users to control the configura-
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Figure 1. Process of data preparation and visualization.

tion of these 3D models could improve users’ spatial cogni-
tion. Herman et al. (2018) noted that there are significant dif-
ferences between interactive and static 3D models in effective-
ness, efficiency, and subjective preferences. Additionally, the
flexibility that interactivity creates contributes to improved spa-
tial and contextual understanding for complex and combined
tasks (Herman et al., 2018). Introducing such interactivity into a
GIS-based, 3D geovisualization of human behavior in particular
could enable researchers and policymakers to explore the rela-
tion of the built environment to complex spatial patterns among
population subgroups in a medium that is flexible (Kwan, 2000)
and beneficial towards understanding inherently 3D structures
(St. John et al., 2001).

Recent advances in processing and rendering large quantities
of 3D spatial data in web browsers have made the visualiz-
ation of these data in web applications more feasible to pro-
duce. For example, Potree (Schütz, 2015) is an open-source
Web Graphics Library (WebGL) point cloud renderer capable
of rendering billions of points by storing and rendering data
subsamples at varying resolutions based on the view frustum.
For the visualization and analysis of epidemiological data, such
web-based systems have the advantage of lower implementa-
tion costs and easier distribution compared to systems without
web-based components (Carroll et al., 2014). In fact, numerous
web-based tools for the spatio-temporal analysis of COVID-
19 case data have been developed and are distributed publicly
(Franch-Pardo et al., 2020). Because of Potree’s ability to host
point clouds from laser scanning, it was selected to demonstrate
the applicability of GIS-based, 3D visualization towards under-
standing community-level COVID-19 transmission in urban en-
vironments. To date, such an approach has yet to be applied to
point cloud data.

2. METHODOLOGY

2.1 Scope

This paper introduces an initial demonstration of a method for
the web-based visualization of 2D spatio-temporal human be-
havior data within a 3D representation of the built environment,
in the context of the COVID-19 pandemic. The data subset
used in this paper consisted of records collected from a single
healthcare facility in NYC from March 30-May 7, 2020.

2.2 Data Preparation

The web application developed herein renders 2D behavioral
data and 3D point cloud data together in a single, interactive
WebGL visualization with Potree. These data were filtered
and formatted for combination and rendering. The processes
for data preparation and visualization applied in this paper are
presented in Figure 1.

2.2.1 Two-dimensional Data Preparation: Behavioral
data came from the National Science Foundation funded project
Developing Epidemiology Mechanisms in Three-Dimensions
to Enhance Response (DETER), which produced a publicly-
released dataset available as individual KML/KMZ files, an
aggregated shape file, and an aggregated CSV file (Laefer et al.,
2021). The entire dataset contained more than 5,100 records
from more than 6,100 subjects observed at 19 NYC hospitals
and urgent care centers from March 23-May 18, 2020. The
behavioral KML/KMZ data included text annotations from
data collectors, trajectory points of observed individuals, and
event locations where observed subjects performed notable
actions such as entering a store, meeting with other individuals,
or exiting the observation area via public transport.

The CityMD Parkchester Urgent Care in Bronx, NY was selec-
ted to demonstrate the visualization capabilities in this paper,
due to the quantity of available behavioral data collected in a
format which lent itself to automatic classification and beha-
vioral event location extraction. For each observation in this
subdataset, a single polygon represented a trajectory line of
the observed individual, while a separate polygon represented
an approximate circle encompassing the location of a behavi-
oral event. While an observation could contain multiple tra-
jectory lines and multiple event locations, each was represented
by an individual polygon. As such, the behavioral event poly-
gons could be automatically distinguished from trajectory poly-
gons by filtering out polygons whose bounding boxes exceeded
a maximum width or height. A Python script was written to
partially automate this classification process (1.a) through the
open-source, GIS software QGIS (QGIS Development Team,
2021). This automated process was followed with manual, hu-
man verification to correct misclassifications (2.a). The bound-
ing box centers of the verified event polygons and associated
observation IDs were then exported to the GeoJSON format
(3.a).
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2.2.2 Three-dimensional Data Preparation: Point cloud
data downloaded from NYC Open Data (NYC DoITT GIS Unit,
2017) were used for the 3D representation of the area surround-
ing Parkchester Urgent Care. The tile encompassing the site
location was selected using the provided web interface (1.b) and
downloaded in an LAS format (2.b). The displayed bounding
latitude and longitude values were collected for later conversion
into the coordinate space within the Potree visualization (3.b).
Lastly, the LAS file was converted to the Potree format using
the accompanying Potree-Converter tool (Potree Development
Team, 2021) (4.b).

2.3 Data Visualization

To render the visualization, the web application first loaded the
necessary datasets into memory and initialized Potree with the
point cloud data (1.c). The behavioral event latitude and longit-
ude values were then mapped to their corresponding coordin-
ates in the Potree coordinate space using a linear transforma-
tion between the point cloud tile’s bounding latitude and lon-
gitude values and the resulting minimum and maximum x- and
y-values of the point cloud tile in the Potree coordinate space
(2.c). Each 2D behavioral event location also needed a z-value
to be rendered in 3D space. Every behavioral location was as-
signed a constant z-value which approximately matched ground
level for all point cloud points in the observation space. Each
z-value could be set according to the localized ground elevation
determined by a digital elevation model to improve precision
in areas of varying elevation. Behavioral event locations were
then conditionally grouped according to their class within a par-
ticular attribute (e.g. day of week), as selected by the user (3.c).
This was performed by using behavioral event IDs to combine
the GeoJSON and CSV behavior data and group them accord-
ing to their recorded attribute value within the CSV table.

The last step was to visualize the behavioral locations as dens-
ity plots projected onto the 3D point cloud rendered using Po-
tree. Behavioral locations were passed into the Potree vertex
shader grouped by their corresponding attribute class (4.c). The
primary vertex shader was modified to estimate each attribute
class’ behavioral event location density at each point cloud ver-
tex (5.c). The number of behavioral event locations within a
fixed search area surrounding each point cloud vertex was coun-
ted for each attribute class and weighted using a linear kernel
function to reduce the influence of behavioral locations closer
to the edge of the search area (Atkinson and Unwin, 2002). The
resulting density values were then converted to vertex colors
with intensities representing their corresponding event densit-
ies (6.c).

2.3.1 Vertex Shader Algorithm: The vertex shader assigns
the color of every point cloud vertex. The application was con-
figured by default to color each vertex in grayscale with a linear
relationship between the vertex brightness and elevation. In or-
der to change the color of point cloud vertices to correspond
to the density of nearby behavioral events, the operation de-
scribed in Algorithm 1 was appended to the primary Potree ver-
tex shader.

The Potree vertex shader ran this operation for every point cloud
vertex. This resulted in anO(V ×S) time operation where V is
the number of vertices and S is the number of event locations.
Therefore, computationally intensive calculations were limited.
As such, in Algorithm 1, to determine if an event location was
within the kernel search radius of a vertex, the dot product of a,
the vector between them, was compared to the squared search

radius. The exact magnitude of a was only calculated if this
condition was met, as square root operations were more com-
putationally expensive to perform than dot product operations.

The color for maximum density was set as cmax =
rgb(1.0, 0.5, 0.0). This resulted in a bright orange color when
ρ = ρmax which distinguished areas of high density apart from
monochromatic vertices representing areas with zero density.

Algorithm 1 Univariate Vertex Color
Input:

B (behavioral event positions)
c0 (initial vertex color)
cmax (max density color)
r (kernel search radius)
v (vertex position)
ρmax (max density value)

Output:
c (new vertex color)

1: function GETDENSITY(B)
2: ρ← 0
3: for each b ∈ B do
4: a← b− v
5: if ‖a‖2 < r2 then
6: ρ← ρ+ (r − ‖a‖)
7: end if
8: end for
9: return ρ

10: end function
11: ρ← GETDENSITY(B)
12: c← c0 +

ρ
ρmax

(cmax − c0)
13: return c

2.3.2 Bivariate Color Shading: To estimate densities of
behaviors of more than one attribute class (e.g. male and fe-
male), two separate density estimations were maintained – one
for each attribute class: ρ1 and ρ2. This required a separ-
ate maximum density color for each attribute class: c1max and
c2max. As each point cloud vertex could only represent a single
color, these colors were combined in a manner representative of
the proportionality of their corresponding densities. As such, a
third color was used to represent the maximum total density
consisting of equal densities of both classes: cmidMax. A piece-
wise linear transformation was performed such that:

cmax =


c1max, if ρ1 ≥ ρmax and ρ2 = 0

c2max, if ρ2 ≥ ρmax and ρ1 = 0

cmidMax, if ρ1 = ρ2 ≥ 1
2
ρmax

(1)

The colors representing their corresponding maximum density
values were selected to maximize visual differentiation between
attribute classes, such that the majority class of areas of high
density could be easily identified (Figure 2). Algorithm 2 de-
scribes the vertex shader color assignment process when dens-
ities of two attribute classes were visualized.

c1max cmidMax c2max

Figure 2. Bivariate color scale for cmax based on ρ1 and ρ2.
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Algorithm 2 Bivariate Vertex Color
Input:

B1, B2 (behavioral event positions by class)
c0 (initial vertex color)
c1max, c2max (max density color by class)
cmidMax (max density color when ρ1 = ρ2)
r (kernel search radius)
v (vertex position)
ρmax (max density value)

Output:
c (new vertex color)

1: ρ1 ← GETDENSITY(B1)
2: ρ2 ← GETDENSITY(B2)
3: k ← min(ρ1+ρ2,ρmax)

ρmax

4: cmid ← c0 + k(cmidMax − c0)
5: if ρ1 ≥ ρ2 then
6: c1 ← c0 + k(c1max − c0)
7: c← c1 +

ρ2
ρ1
(cmid − c1)

8: else
9: c2 ← c0 + k(c2max − c0)

10: c← c2 +
ρ1
ρ2
(cmid − c2)

11: end if
12: return c

3. RESULTS

3.1 Visualization and User Interface

The resulting heatmap visualization enabled users to identify
the most frequently exposed locations and surfaces based on
color intensity. This method is comparable to traditional
2D heatmap visualizations, but with the advantage of encom-
passing structures in 3D (Figure 3). While it was possible to set
the upper bound of ρ to ρmax for univariate color shading, al-
lowing ρ to exceed ρmax produced the added benefit of a max-
imum density color of yellow [i.e. rgb(1.0, 1.0, 0.0)], when
ρ = 2ρmax. This particular choice created a wider color range
from gray to orange to yellow, thereby improving visual inter-
pretability (Figure 4). User interface (UI) slider controls al-
lowed the user to set the kernel density search radius r and the
maximum density value ρmax which corresponded to the max-
imum color cmax, due to the dependency of the observed max-
imum density value on the kernel density search radius and data
quantity visualized.

Column name Description
1st Touch Obj
Coded

First object or body part touched
coded into preset option

Day Type Day of the week (Mon-Sun)
Final Destination
Coded

Final destination coded into one of
several preset options

Gender Majority of the gender in the recorded
group

Re Medical Whether the subject used a mechan-
ized means to exit area

Time Type Whether record occurred during com-
mon work hours

Touch Binary Whether the subject touched objects
or parts of their body

Table 1. Attributes available for data segmentation.

Field of view could be freely translated and rotated using mouse
controls directly on the visualization. Behavioral locations

Figure 3. Cumulative egress behavioral data visualized as
heatmaps in ArcGIS (top) and in Potree (bottom).

ρ = 0 ρ = ρmax ρ = 2ρmax

Figure 4. (Top) Egress behavioral data heatmap, with points
shaded by behavioral event location density. (Bottom) Resulting

color scale for vertex color c based on ρ when
cmax = rgb(1.0, 0.5, 0.0) and ρ was unbounded.

could be grouped by certain attributes (Table 1) through UI con-
trols, thereby allowing users to compare data segments (Figure
5). While only two attribute classes could be compared at a
time, these attribute classes were user-selectable, enabling dif-
ferent comparisons of data segmented by multi-class classifica-
tion attributes (Figure 6). Note that this only visualized the data
subset containing records belonging to the two selected classes.

3.2 Performance

The visualization was then accessible through any modern
web browser supporting WebGL. The application load times
were observed for two machines to evaluate general perform-
ance. Each machine hosted and rendered the application in
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Figure 5. Distribution of female (orange) and male (blue)
subject event locations with color scale.

Figure 6. Event location distribution by a multi-class attribute:
transportation choice destinations of subjects by private vehicle

(orange) or bus stop (blue), with user control panel in detail.

Microsoft Edge 93.0.961.44 at a 1440x720 window size dur-
ing testing. Performance metrics were captured using the avail-
able in-browser performance profiling tool. Given the full data
subset of 223 behavioral event locations and 9,634,714 point
cloud tuples, the Microsoft Surface Pro 6 with an Intel i7-
8650U 1.90GHz Central Processing Unit (CPU) and Intel UHD
Graphics 620 Graphical Processing Unit (GPU) took 4752 ms
for scripting and 7752 ms in total. In comparison, the custom
PC with an Intel i7-7700K 4.2 GHz CPU and Nvidia GeForce
GTX 1080 Ti GPU took 3329 ms for scripting and 6126 ms
in total. While performing interactive navigation actions with
rendered behavioral data, noticeable input lag was encountered
on the Surface Pro 6. This was not observed on the custom PC,
thus, indicating the need to improve algorithm performance for
less performant machines.

4. DISCUSSION

The web application presented in this paper provided 3D spatial
context to data typically visualized and analyzed in traditional
2D GIS applications. By utilizing 3D perspective to visualize
the built environment, color hue was freed as a channel to en-
code behavioral data without occluding physical features. The
interactivity of the application and the ability to visualize and
filter data based on specific characteristics augmented the con-
text provided by this third dimension, thereby enabling quicker
and more localized analyses of observed patterns. This ability

to quickly understand the spatial contexts of specific locations
without being there in person is important in forming public
health policies remotely when physical presence is limited.

While the 3D spatial context provided through the visualiza-
tion method presented in this paper can enhance the understand-
ing of 2D behavioral data, analysis is limited by the granularity
level of point cloud data used. Smaller objects of interest that
don’t appear identifiable in the point cloud data, such as door
handles, railings, and crosswalk signal buttons, would not ap-
pear in this visualization and would require additional data to
identify. Given visual geotagged imagery data of the surround-
ing environment, this application could link vertex locations to
corresponding imagery, though such analysis would be limited
to 2D.

Point cloud data collected through higher-resolution terrestrial
laser scanning methods could also enable these object identific-
ation tasks. While this would require storing, transferring, and
rendering a greater quantity of data, object identification tasks
within the built environment are important in many other con-
texts, such as investigating connections between the built envir-
onment and criminal behavior or monitoring changes between
the natural environment and animal behavior. As currently
built, these tasks would be human-driven. However, advances
have been made in applying deep convolutional neural net-
works to urban environment classification of point clouds pro-
duced by both aerial (Zhao et al., 2018) and terrestrial (Guo and
Feng, 2020) laser scanning. These deep learning methods could
provide automated assistance in establishing such correlations
between human behavior and identified objects, structures, and
other environmental characteristics.

Visualizing 2D behavior data in higher resolution 3D point
cloud data will require further techniques to improve efficiency
beyond those demonstrated in this paper, such as spatial in-
dexing of the behavioral data. These techniques, in addition
to user control of performance-based tuning parameters, such
as maximum points rendered, would also improve performance
on less powerful machines. While point cloud rendering and
interactive navigation were not substantially hindered on such
machines during testing, interactivity was drastically improved
when tested on a machine with a performant GPU. Further test-
ing should measure and monitor input lag directly in these situ-
ations.

Despite expected differences in performance across machine
types, visualization and analysis capabilities were still enabled
in an open-source, easy-to-use manner that united publicly ac-
cessible 2D, GIS-based behavioral data with publicly available
3D point cloud data to identify locations of interest. While this
paper presented a visualization of historical behavioral data, the
construction of the application through web-based components
provides the potential to ingest and visualize real-time stream-
ing data, similar to the prevalent online COVID-19 metric dash-
boards released publicly by various governments and organiz-
ations during the COVID-19 pandemic. Such 3D visualization
could accelerate the response by healthcare facilities and sur-
rounding environs to communicate risk areas in the built envir-
onment during epidemiological events. Timely risk area iden-
tification can advise public health as to the need for targeted
policies to reduce infections in urban areas. Understanding data
from the COVID-19 pandemic through such visualization meth-
ods can also better inform researchers and policymakers as to
the value of specific types of data collection for future natural
disasters.
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5. CONCLUSIONS & FUTURE WORK

This paper demonstrates a method for visualizing 2D behavioral
data in point cloud data by modifying Potree vertex shaders to
render 3D density plots in an interactive web application. Ap-
plying this visualization method to urban point cloud data and
egress behaviors of COVID-19 rich healthcare facilities in NYC
provides the additional spatial context that may highlight pat-
terns potentially indicative of correlations between the environ-
ment, human behavior, and COVID-19 transmission. This can
further inform localized public health responses and commu-
nicate important health and safety information based on spatio-
temporal analyses conducted on COVID-19 transmission risk.

Further application development could expand these analysis
capabilities. Annotating the visualization with additional geo-
graphic context through text labels, feature coloring, and fea-
ture overlays could enhance analysis efficiency for researchers.
Date range selection and comparison capabilities would enable
quicker spatio-temporal comparisons. Indeed, a great opportun-
ity lies in comparing multiple observation sites and time periods
to identify differences and changes in behavioral patterns as a
result of localized or policy-driven conditions. The capability
of Potree to render point cloud datasets of hundreds of billions
of points could enable city-scale visualization. As such, work
will continue to expand the spatio-temporal coverage of visual-
ized human behavioral data from the COVID-19 pandemic and
potentially other transmissible diseases to demonstrate further
applications of public interest within urban environments.
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