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ABSTRACT:

A challenge in data-based 3D building reconstruction is to find the exact edges of roof facet polygons. Although these edges are
visible in orthoimages, convolution-based edge detectors also find many other edges due to shadows and textures. In this feasibility
study, we apply machine learning to solve this problem. Recently, neural networks have been introduced that not only detect edges
in images, but also assemble the edges into a graph. When applied to roof reconstruction, the vertices of the dual graph represent
the roof facets. In this study, we apply the Point-Pair Graph Network (PPGNet) to orthoimages of buildings and evaluate the quality
of the detected edge graphs. The initial results are promising, and adjusting the training parameters further improved the results.
However, in some cases, additional work, such as post-processing, is required to reliably find all vertices.

1. INTRODUCTION

Typically, 3D city models have been reconstructed from air-
borne laser scanning point clouds. Since most points belong to
roof facets, the algorithms generate a roof topology and then
add walls as simple planar surfaces that connect the roof with
the ground. Two different approaches are often combined to
find a graph that represents vertices and edges of roof polygons,
see (Tarsha-Kurdi et al., 2007). In a model-based approach,
standard parameterized roof tops are fitted to often rectangular
segments of the cadastral footprint by optimizing their paramet-
ers. In a data-based approach, geometric primitives are detec-
ted in the point cloud (for example with a RANSAC algorithm
that considers point normals) and are then combined. An at
least partially data-based approach is necessary to model small
structures like dormers and non-standard roofs, for example of
churches. The biggest challenge of a data-based approach is to
find bounding polygons of detected roof facets. Whereas ridge
lines can be computed rather precisely by intersecting planes,
step edges are difficult to model. Step edges are jump dis-
continuities that occur at the sides of dormers and chimneys
but also with building parts of different height. For example,
the footprint of a penthouse consists of step edges. Straight
lines running through step edges can be estimated only with
low precision on sparse point clouds with classical algorithms
like RANSAC or the Hough transform. The edges are also
visible in orthoimages. But convolution-based edge detectors
find many wrong line segments due to shadows and textures.
For this reason, we investigate whether the graph consisting of
corners (denoted as junctions) and roof edges can in principle
be better recognized by machine learning. Since recently, sev-
eral deep neural network architectures have been available for
edge graph detection on images. The given paper is a feasibility
study in which the deep neural network Point-Pair Graph Net-
work (PPGNet) (Zhang et al., 2019) is trained on hand-labeled
orthoimages. The goal is to show that the quality of the re-
cognized graph is sufficient to be used in a roof reconstruction
pipeline. To this end, we focus on rural areas with clearly sep-
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arated building roofs.

Deep learning is a powerful tool in applications in which it is
difficult to find processing rules. Such a task is to distinguish
between edges of roof facets and edges originating from shad-
OWs or textures.

The next section deals with current neural network-based ap-
proaches to 3D city modeling. Then, a brief overview of the
PPGNet architecture is given in Section 3. Section 4 briefly
discusses the training and test data, followed by a description
of our results, which show that the method is feasible in prin-
ciple.

2. RELATED WORK

An alternative network architecture to the PPGNet is the convo-
lutional message passing network (Conv-MPN) (Zhang et al.,
2020), which uses a message passing network for generating
an adjacency matrix for a previously computed set of junctions
(vertices of the graph). Training the Conv-MPN is a two-step
process. The first step is to train a network to detect junctions
and then, in the second step, the results of the first step are used
to generate the adjacency matrix. To the contrary, the PPGNet
is trained end-to-end. This is the reason why we chose the PP-
GNet for this feasibility study.

Classification of roofs is another domain in which neural net-
works are used. For example, in (Castagno and Atkins, 2018)
an approach is proposed that fuses image and LiDAR data
and uses a convolutional neural network (CNN) in combina-
tion with a random forest classifier to label roofs by roof class.
Another example for roof classification in satellite images is
described in (Partovi et al., 2017). Two strategies are presen-
ted here, one is classification using VGGNet and the other is a
combination of CNN features and a support vector classifier.

There are many approaches to vectorizing building outlines in
aerial imagery, including the application of deep neural net-
works to footprint segmentation. However, segmented foot-
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prints often need to be vectorized using classical contour de-
tection and simplification algorithms. An example is given in
(Cheng et al., 2019), where a Deep Active Ray Network (DAR-
Net) is proposed for the segmentation of building footprints.
DARNet is an evolution of the active contour approach. In this
algorithm, an initial polygon-based contour is placed in the cen-
ter of the building in the image. Then, in an iterative process,
an energy function is maximized using a CNN-generated fea-
ture map. Recently, PolygonCNN, an end-to-end trained neural
network for shape modeling, was presented, see (Chen et al.,
2020). It uses a modified PointNet to optimize the shapes of the
detected footprint contours and outputs a ready-to-use vectoriz-
ation. However, unlike the PPGNet, it cannot handle individual
roof facets.

Based on a digital surface model (DSM) and a panchromatic
satellite image, the algorithm in (Wang et al., 2021) reconstructs
LoD 2 building models. To do this, an improved conditional
Generative Adversarial Network (cGAN) is used to refine the
DSM in order to filter out non-building objects and sharpen
building shapes. Then, a semantic segmentation network sim-
ilar to the generator part of the cGAN detects building corners
and edges. It labels pixels. These data are used in a subsequent,
separate pipeline to reconstruct a roof graph and generate a 3D
model. However, the pipeline is not built on machine learning.

Deep neural networks have been also applied in model based
roof reconstruction, see (Partovi et al., 2019). The described
workflow applies a fine-tuned pre-trained ResNet-152 to gain
roof-type classifications, which are later used as parameters for
a model-based reconstruction.

Within the algorithm in (Alidoost et al., 2020), a Y-shaped CNN
is applied to detect eave, ridge, and hip lines in a single aerial
image. In a post-processing step outside the neural network,
eave lines are used to subdivide building footprints into indi-
vidual roof areas. Then ridge lines yield parametric models of
these areas for which height information are estimated.

Neural networks can be applied even to point clouds, which
are difficult to handle due to their unstructured nature. Studies
such as (Zhang and Zhang, 2018) used a combination of mul-
tiple networks in a larger framework that includes a 3D CNN
and a recurrent neural network (RNN). Another example can be
found in (Pohle-Frohlich. et al., 2019), where the PointNet++
(Qi et al., 2017) was used to segment point clouds of roofs and
to determine gradient directions.

Other applications of neural networks with regard to city mod-
els are more domain specific, such as detecting suitable roof
surfaces for solar panel installations (House et al., 2018), de-
termining roof damage (Hezaveh et al., 2017), or disaster mit-
igation for earthquakes (Li et al., 2015).

3. PPGNET

In this chapter, we give a brief description of the PPGNet. For
details of the PPGNet see (Zhang et al., 2019). The PPGNet is
a CNN that takes an image as input and outputs detected line
segments (edges) on that image as a graph. The neural network
can be divided into three main parts,

1. Junction Detection Module (JDM):
The module generates a list of detected junctions using
a feature map generated by a neural network backbone.

ResNet or UNet are supported by default, but can be re-
placed by other network architectures. The final output of
the JDM is a heat map. Local maxima of this map define
the junctions.

2. Line Segment Alignment Module (LSAM):
The module returns line segment candidates, i.e., edge
candidates, given by the two endpoints and a feature vec-
tor. The feature vector results from the feature map values
between the two endpoints.

3. Adjacency Matrix Inference Module (AMIM):

The module takes line segment candidates with their fea-
ture vectors and transforms them into an adjacency matrix.
To this end, a binary classification problem is solved with
additional network layers. The derived adjacency matrix
contains the scores of the given pairs of junctions, which
indicate the determined probability that a pair of junctions
is an edge.

All three parts are trained simultaneously.

4. TRAINING AND TEST DATA

Training and test data were created from orthoimages of the city
of Detmold. These images are freely available from Geobasis
NRW'. Each image covers an area of one km? with a resolu-
tion of 10000 x 10000 pixels. This results in an accuracy of 10
cm? per pixel, which is well suited for recognition tasks on roof
images. To create a ground truth, these images had to be annot-
ated with a graph whose edges are line segments of roof struc-
tures. For this purpose, the software QGIS (QGIS Development
Team, 2009) was used, which supports the format multiline-
string. The annotations cover only boundary edges of roof fa-
cets at and inside the building footprint. The orthoimages were
too large to become PPGNet input. Therefore, we cut out smal-
ler images of individual buildings so that there was a distance of
at least five pixels between the building footprints and the bor-
ders of the images. Thus, for each building, both an image file
and an edge graph file (ground truth) were created. This build-
ing data was split into a training and a test data set. The size of
the training data was artificially increased by color changes and
image mirroring so that 7501 training samples were generated,
139 samples were put aside and left unmodified for testing?.

5. EXPERIMENTS AND DISCUSSION

As recommended by the original developers, we used a pre-
trained backbone for transfer learning. Following the default
setup, 30 epochs of training were divided into three phases.
While the weight decay parameter was set uniformly to 0.0005
for all phases, the learning rate and the composition of the loss
function were defined differently in each phase. The learning
rates of the three phases were 0.2, 0.02 and 0.002, respectively.

The total loss function is a linear combination of the loss func-
tion for JDM weighted by the factor Aju,c, and the loss func-
tion for LSAM and AMIM weighted by the factor A,qj. These
factors were found to have a large impact on the detection res-
ults. Therefore, we varied these factors while keeping the other
parameters constant, see Table 1.

1 GEOportal NRW www.tim-online.nrw.de/tim-online2, ac-
cessed: 29th August 2021

2 The data set is openly available at www.github.com/SimonHensel/
Vectorization-Roof-Data-Set.
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Figure 1. Results of case E6, see Table 1. The lines are colored according to the confidence value determined.
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Experi- Phase T Phase 2 Phase 3

ment )\junc [ )\adj [ )\junc [ )\adj [ )\junc [ )\adj
original 1.0 1.0 1.0 1.0 1.0 1.0
El 5.0 1.0 10.0 1.0 10.0 1.0
E2 5.0 1.0 10.0 1.0 1.0 10.0
E3 5.0 1.0 | 20.0 1.0 | 20.0 1.0
E4 5.0 1.0 15.0 1.0 15.0 1.0
E5 6.0 1.0 12.0 1.0 12.0 1.0
E6 8.0 1.0 17.0 1.0 170 | 1.0

Table 1. Original (Zhang et al., 2019) and tested loss-function
factors used in numbered experiments. Cases Ajunc < Aadj
resulted in zero precision and recall and thus are not listed.

The examples in (Zhang et al., 2019) consist of graphs with up
to 75 times more junctions and edges than are present in our
data. Moreover, the goal of this study was to detect every edge
present in the image. For the reconstruction of roofs, however,
the few edges of significant roof facet polygons must be distin-
guished from other edges belonging to shadows, for example.
This greatly reduces the number of relevant junctions and edges
to be detected. Therefore, the correct detection of each of these
junctions is important to achieve sufficient detection quality.
For example, if the center junction of a pyramid-shaped roof
is not detected, only one roof facet can be found instead of four.

Experi- | 5yp AJR AEP AER
ment
ET [ 093596 0838832 088056 0.79090
E2 [ 090513 0.72202 082674 055194
E3 [ 093550 0.92589 0.88480 0.85916
E4 [ 094793 087773 0.90820 0.78559
F5 [ 092592 087680 0.87421 0.78049
F6 [ 0.95408 089186 0.91670 0.81011

Table 2. Precision and recall of experiments with different loss
factor setups, see Table 1. Cases E3 and E6 performed best,
where we used a higher factor A\junc in the training phases.

Experiment | Junction F1  Edge F1
El 0.91151 0.83332
E2 0.80327 0.66195
E3 0.93067 0.87183
E4 0.91148 0.84245
E5 0.90073 0.82469
E6 0.92192 0.86011

Table 3. F1 score of experiments with different loss factor
setups, see Table 1. Case E3 performed best, where we used a
higher factor Ajunc in the training phases.

To evaluate our experiments, we calculated the average preci-
sion AJP and average recall AJR for junction detection, and the
average precision AEP and average recall AER for the detec-
tion of edges represented by the adjacency matrix, see Table 2.
As usual, precision and recall are defined by

.. tp
precision = ———
tp+1fp

t
recall = 7p’
tp+fn

where tp, fp and fn are the true positives, false positives and
false negatives, respectively. Detected junctions were classified
as true positives if they were within 80 cm of a ground truth

junction. Detected edges were compared with ground truth
edges by matching their junctions with ground truth junctions.
We computed the values for precision and recall for each in-
dividual building and then used the arithmetic mean over all
buildings to obtain the values for AJP, AJR, AEP, and AER. As
expected, precision and recall increased for both junctions and
edges when missing junctions were avoided by choosing Ajunc
greater than )\,q;. Experiments E3 with the highest recall and
E6 with the highest precision were the most successful. This
is also reflected in the F1 score, which combines precision and
recall, see Table 3 :

2
1 1 .
precision recall

Fl=

In contrast, when we chose Ajune < Aqgj, the network did not
learn to detect junctions, so all average precision and recall val-
ues for junctions and edges became zero.

Mean Junction Score Mean Junction Score.

o o
0 2000 4000 6000 8000 10000 12000 14000 0 2000 4000 6000 8000 10000 12000 14000
Step step

(a) Mean junction score for
experiment E6.

(b) Mean junction score for setup
stated in (Zhang et al., 2019).

Mean Line Score Mean Line Score

Value
Val

o o
0 2000 4000 6000 8000 10000 12000 14000 0 2000 4000 6000 8000 10000 12000 14000
step step

(¢) Mean line score for experiment (d) Mean line score for setup stated
E6. in (Zhang et al., 2019).

Figure 2. Graphs showing the mean line and junction score for
case E6 (see Table 1) and the original setup during the training
process. An exponential moving average with a smoothing
factor of 0.9 was chosen to smooth the graph.

The importance of choosing Ajunc larger than A,g; can also be
seen in Figure 2. Here, experiment E6 is compared with the de-
fault setting Ajunc = Aagj = 1 of (Zhang et al., 2019). The plots
show mean junction and mean line scores for training iterations
as implemented in the PPGNet code. The mean junction score
is the arithmetic mean of the values of the JDM output junc-
tion heat map, restricted to elements belonging to ground truth
junctions. The entries of the AMIM output adjacency matrix
are confidence values for the existence of edges. An undirected
edge is counted as one detected edge, if both directed oppos-
ite edges have a confidence value above 0.3. Of the confidence
values of detected edges the arithmetic mean is calculated to
obtain the mean line score. Note that the mean junction score
is far below the mean line score. To some extent, this can be
explained by the different definitions of the scores. However,
we also suspect that the network does not obtain higher confid-
ence scores for junctions because it must distinguish between
the relevant roof junctions and other junction candidates.

In comparison, the mean junction score of E6 is up to three
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times higher than with Ajue = Aaqj = 1. It reaches values
above the threshold 7 = 0.3. Thus in experiment E6, confid-
ence values for junctions exceeded 7. This threshold value had
to be reached in order to classify a junction candidate as a de-
tected junction. With the original setup in (Zhang et al., 2019),
all confidence values were significantly below 7 on the test data
such that precision and recall became zero.

6. CONCLUSION

Compared to other related approaches, the PPGNet creates a
vectorization that is not limited to the footprint of the building.
Advantages of the PPGNet are that it can be trained end-to-end
and that it can, in principle, compute vectorizations without the
need for additional post-processing algorithms.

First results are promising. The examples in Figure 1 show that
the detected edges have sufficient accuracy if appropriate loss
factors are chosen. We were able to achieve an average F1 score
of 0.93 for junction detection and 0.87 for edge detection.

However, even when Ajy, is chosen significantly larger than
Aadj> there were still examples where an important junction
could not be found. As a consequence, all adjacent edges were
also missing. This is currently the main problem that could pre-
vent a complete reconstruction of roofs based on the detected
roof graphs.

The vectorization of a roof is a hit-or-miss situation. Either the
vectorization is completely perfect or it is incomplete and thus
not directly usable. But even at this stage, the network output
helps to support the roof reconstruction process. For example,
the framework in (Goebbels and Pohle-Frohlich, 2016) snaps
estimated roof edges to support lines, which can now be taken
from the network output.

Future work should investigate how to make junction detec-
tion more reliable so that the average junction score increases.
Improvements could also be made through post-processing. It
would be interesting to integrate the PPGNet into a roof recon-
struction workflow.
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