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ABSTRACT: 

 
In the practical and professional work of classifying airborne laser scanning (ALS) point clouds, there are nowadays numerous methods 

and software applications available that are able to separate the points into a few basic categories and do so with a known and consistent 
quality. Further refinement of the classes then requires either manual or semi-automatic work, or the use of supervised machine learning 
algorithms. In using supervised machine learning, e.g. Deep Learning neural networks, however, there is a significant chance that they 
will not maintain the approved quality of an existing classification. In this study, we therefore evaluate the application of two neural 
networks, PointNet++ and KPConv, and propose to integrate prior knowledge from a pre-existing classification in the form of height 
above ground and an encoding of the already available labels as additional per-point input features. Our experiments show that such 
an approach can improve the quality of the 3D classification results by 6% to 10% in mean intersection over union (mIoU) depending 
on the respective network, but it also cannot completely avoid the aforementioned problems. 

 
 

1. INTRODUCTION 

Semantically interpreted and structured 3D geodata, e.g. in the 

form of 3D city models, but also the respective raw source data, 
such as aerial 3D point clouds that are enriched with additional 
information, are increasingly finding applications, and are as a 
consequence more and more collected and commissioned by 
geoinformation authorities and users. A comprehensive overview 
of applications for 3D city models is given, e.g., in (Biljecki et 
al., 2015). Whereas only a decade ago, the focus was primarily 
on distinguishing between buildings, terrain, and tall vegetation 

(trees), further object types such as facades, low vegetation, 
vehicles, overhead power lines, and poles are nowadays also of 
particular interest. For their automatic extraction and geometric 
reconstruction and modelling, airborne laser scanning (ALS) 
point cloud data are still the main data sources, and the 
classification of the collected points the first step in any 
processing pipeline. Besides deterministic algorithms and 
classical machine learning methods, neural networks have been 

increasingly developed and proposed for this purpose with the 
advent of Deep Learning in recent years. 
 
Quite a number of neural networks have already been presented 
that perform point-wise classification (also known as semantic 
segmentation) directly on the 3D point cloud without changing 
the representation of the data. For these networks, it has been 
shown that they can lead to impressive results also for large scale 
ALS data with overall high accuracies of 95% to 98% (Varney et 

al., 2020). However, the quantitative results hide the fact that 
these methods also show systematic weaknesses in some areas 
that can be reliably classified using deterministic methods. Large 
objects in general, and objects that are not frequently encountered 
in the training data, as well as an accurate separation between 
ground and non-ground points, are just a few examples that often 
lead to problems. Figure 1, e.g., shows a Deep Learning based 
classification result, where the misclassification of roof points as 

ground points becomes visible for the large building at the top. 
 
In the presented study, we investigate how prior knowledge from 
a rough semantic classification of an ALS 3D point cloud can be 
integrated into 3D point cloud based neural networks to produce 
a finer grained classification. This prior knowledge could be a 

classification that is the result of a deterministic algorithm with 
empirically set thresholds, consisting of fewer than the targeted 
classes, and having a lower degree of accuracy. The goal is to 
replace a manual post-processing step that comes after an already 
established automatic classification, which gives reliable results 
in form of a few classes with well-known and guaranteed quality 

properties, with a Deep Learning approach that is trained to keep 
the labels of already correctly classified points, if possible, and 
focuses on those classes that need further refinement. 
 
 

 
Figure 1. Classification results of an ALS 3D point cloud using 

KPConv showing misclassifications on large building roofs. 

 

The integration of prior knowledge has already been shown to 
significantly improve ALS point cloud classification, e.g., using 
normalized heights as input features as in (Lei et al., 2020), which 

are calculated from a digital elevation model that is built from 
interpolated ground points identified by the cloth simulation field 
algorithm (Zhao et al., 2016). We used two neural networks for 
our practical research: PointNet++ (Qi et al., 2017b), which is the 
archetype of 3D point cloud based neural networks, and KPConv 
(Thomas et al., 2019), which has shown current state of the art 
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performance. Although PointNet++ is now often outperformed in 

experiments by more recent networks like KPConv, ConvPoint 
(Boulch, 2020), or PointCNN (Li et al., 2018), it remains highly 
relevant, since its feature extraction mechanism and architecture 
is often a building block for other 3D point cloud based networks, 
e.g. to solve the task of object detection as described in (Qi et al., 
2019). For both above mentioned networks, we study in this 
paper how the additional input of height above ground as well as 
the coded pre-classification impact the classification results into 

further classes. 
 
 

2. RELATED WORK 

Although Deep Learning convolutional neural networks (CNN) 

have been highly successful for all types of classification and 
segmentation tasks on images, the transfer of the developed 
methods and architectures to data without any intrinsic regular 
structure has proven challenging. Since 3D point clouds are 
sparse, unordered sets of points with highly variable density, 
convolutional filters cannot be directly applied on them. Point 
cloud data have therefore often been brought into other, regular 
representations, like multi-view images (Boulch et al., 2018), 2D 

grids (Zhao et al., 2018), 3D voxel grids (Zhou and Tuzel, 2018), 
octrees (Riegler et al., 2017), 2D/3D lattices (Su et al., 2018), kd-
trees (Klokov and Lempitsky, 2017), etc., to which the mentioned 
convolutional filters can be directly applied or for which they can 
be defined in a similar way, and with which it is then possible to 
build Deep Learning architectures that are similar to the well-
known frameworks for 2D image data. Many of these have also 
been successfully applied to the classification of ALS 3D point 

clouds as in (Yang et al., 2017; Schmohl and Sörgel, 2019). 
 
In recent years, a number of neural network architectures have 
been proposed that operate directly on the unordered 3D point 
clouds. PointNet successively transforms the 3D coordinates of 
each input point into a higher dimensional spatial encoding from 
which local per-point features, and by their aggregation, global 
per-object features are determined that are invariant to input 

permutations (Qi et al., 2017a). These global per-object features 
that are computed from the point coordinates of small point 
neighbourhoods perform very similarly to hand-crafted features 
commonly used in the classification of 3D point clouds, and can 
also be used for this purpose with a fully connected neural 
network. In order to capture features at different scales, 
PointNet++ introduces hierarchical set abstraction layers based 
on sampling, grouping, and feature extraction, as well as feature 
propagation layers to upsample these features back to the original 

points, so that a U-Net like architecture for semantic 
segmentation is realized (Qi et al., 2017b). Winiwarter et al. 
(2019), e.g., demonstrate the applicability of PointNet++ for ALS 
data. Quite a few networks for 3D point cloud data have followed 
and extended the PointNet++ approach to implement something 
comparable to image based convolutional filters. PointConv, e.g., 
computes weights from the aforementioned point-wise spatial 
encoding that are then multiplied to the combined point densities 

and the input features of the point cloud (Wu et al., 2019). To 
overcome the lack of point order that is required for the use of 

convolutions, PointCNN learns a transformation 𝜒 from the 
spatial encoding – a similar concept as a spatial transformer 
network – and weights and permutes the point coordinates with 
this transformation into a canonical order (Li et al., 2018).  
 
Another category of point cloud based Deep Learning networks 
define kernels that consists of a number of 3D points within a 

spherical space. These kernels are then overlaid on (a sampled 
subset of) the input points, and a weighted linear combination of 

input and kernel point weights are calculated (similar to image 

convolutions) taking into consideration the distances of input to 
kernel points. In KPConv, e.g., the weights and the positions of 
the kernel points are learned (Thomas et al., 2019), and the 
resulting (deformable) kernel point convolutions can be used for 
building architectures like the above-mentioned U-Net. Boulch 
(2020) uses a multi-layer perceptron to learn a continuous 
weighting function for the convolutional filter operations. For a 
performance comparison of some of the mentioned networks, see 

(Varney et al., 2020). 
 
 

3. METHODOLOGY 

In this practical study, we used both PointNet++ and KPConv as 

the most prominent representatives of the above-mentioned 
categories of Deep Learning networks for 3D point clouds. The 
ALS data we performed our experiments with has a rather high 
point density of about 110 points per m², and this obviously has 
implications regarding network hyperparameters, such as the 
number of layers or the specifics of local point neighborhood 
queries. These details, as well as the method by which prior 
knowledge, given in the form of a rough pre-classification, is fed 

into the networks, is described in this section. 
 
3.1 Prior Knowledge as Input Features 

In the proposed approach, a pre-existing rough classification of 

the ALS 3D point cloud data is fed as prior knowledge into the 
neural networks in the form of two additional point properties: 
height above ground, and an encoding of the classes. Assuming 
that the identification of ground points from deterministic 
algorithms is already pretty accurate, a digital terrain model is 
constructed from those by triangulation, and a height above 
ground computed for each point. To provide the prior classes, a 
vector is produced in a one-hot-encoding, where one value is 

stored for each class, all of which have a value of zero except for 
the value representing the actual class, which is given a value of 
one. For our pre-classified ALS 3D point cloud featuring five 
classes, e.g., we end up with six additional scalar input values per 
point, which are then fed into the neural networks along with 
intensity, number of returns, and return number; besides the 3D 
coordinates. 
 

Using PointNet++, we also experimented with injecting the one-
hot-encoded class priors further towards the end of the network 
right before the segmentation head. However, despite using an 
increased number of network layers and units there, this was still 
a too strong of a prior that the network seemed unable to ignore, 
and the output classes hardly differed from the input classes. 
 
3.2 PointNet++ 

The PointNet++ architecture we used follows to a large extent the 
one described in (Qi et al., 2017b). For feature learning, four 
point set abstraction layers with multi-resolution grouping are 
employed, subsampling from their input 8192, 4096, 2048, and 
1024 points. For these points, a number of 16, 64, 64 and 32 

neighboring points are found in the respective layer using ball 
queries with radius 0.5m, 1m, 5m, and 15m, from which features 
are calculated using a multilayer perceptron with an identical 
setup of 128, 128, and 256 units in all set abstraction layers. Only 
if 2D features are not used, see sub-section 3.3 for more details, 
then the number of units in the first layer are halved to 64, 64, 
and 128 units. In contrast to Winiwarter et al. (2019), we 
observed a significant improvement when using four set 

abstraction layers instead of three, which is most likely attributed 
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to the high point density of the input 3D point cloud and the 

consequential use of the small ball radius (0.5m) in the first set 
abstraction layer. The learned point features are gradually 
interpolated back to the original number of input points by four 
feature propagation layers, with the first three layers using a 
multi-layer perceptron with 256 and 256 units, and the last one 
with 128 and 64 units. The head of the network consists of a 
dense layer with 128 units, a dropout layer with keep probability 
of 0.5, and another dense layer with 9 units (equal to the number 

of output classes). ReLU activations and max-pooling are used 
wherever appropriate (but not average pooling). For more details 
on PointNet++ and its application for ALS 3D point cloud 
classification, please refer to (Qi et al., 2017b) and (Winiwarter 
et al., 2019). 
 
3.3 PointNet++ with 2D Point Neighborhoods 

While working with PointNet++ on ALS data, we noticed that 
the network has problems when there are a lot of points on top of 
each other, especially in the areas of facades or high vegetation 
that reaches over roofs. Our explanation is that it cannot capture 
the needed vertical spatial context in order to predict the correct 
classes. PointNet++ is one of the architectures that computes for 

each input point a number of features from the 3D coordinates of 
the points that are located in a query neighborhood, which can be 
seen somewhat similar to the hand-crafted features as described 
in (Weinmann et al., 2015). In its original implementation, 
PointNet++ computes its features in a hierarchical way from 
spherical point neighborhoods, which might not be sufficient for 
ALS point clouds that have a mainly horizontal extent. Based on 
these considerations, we added another branch in the first (of the 

four) set abstraction layers that calculates further features from 
cylindrical (2D) neighborhoods, so that all points from the lowest 
(ground) point to the highest (roof, vegetation) point are always 
taken into consideration. And at the end of the first set abstraction 
layer, all features from both neighborhoods are concatenated. 
Because we are now extracting twice as many features, from both 
2D and 3D neighborhoods, we doubled the number of multi-layer 
perceptron units that follow in the first layer. In general, we did 

not see any considerable improvement when we increased the 
number of units in a different layer, so that the capacity of the 
network appears sufficient enough to learn from the given data. 
 
3.4 KPConv 

Our experiments with KPConv were performed without any 
changes to the network architecture, only the hyperparameter 
were adjusted and the described point properties were used as 
additional input. The hyperparameters were found using a grid 
search from a set of values based on previous experiments also 
conducted on other ALS datasets. The reason is to have a more 
general set of hyperparameter values that work well on a range 
of ALS datasets. Therefore, they might not be ideal for datasets 

with such high point density as described here; especially the cell 
size for the first subsampling seems too high in retrospect. For 
our experiments, we used the following hyperparameter values: 
0.5m for the cell size of the first subsampling, 15m for the radius 
of batching spheres, 1m for the convolution radius, 0.6m for the 
(repulse and kernel point) extent, and 15 for the number of kernel 
points. The regularization loss for deformable kernels is added to 
the overall output loss with a multiplicative factor of 0.5. 

 
Since KPConv does not extract features from the 3D point 
coordinates, but uses the 3D coordinates to relate the input points 
to the filter points in order to weight the input features, an 
extension to 2D neighborhoods as described for PointNet++ did 
not seem meaningful.  

4. EXPERIMENTS AND RESULTS 

We conducted our experiments on an ALS 3D point cloud dataset 
with 42.5 million points and a point density of about 110 points 
per m², collected from an inner-city area of Leipzig, Germany, 
which includes dense scenes with many large building blocks and 

close-by objects. Figure 2 shows the dataset. The point cloud was 
split in 34.8 million points for training and 7.7 million points for 
testing. Since bridge objects and overhead lines are spatially 
separated in the dataset, and we wanted to keep training and test 
areas as compact as possible, with a rectangular extent, and have 
similar built-up, the test data does unfortunately not include any 
bridge objects. We made this decision, because bridges did not 
have such a high practical relevance for the study. However, we 
still trained with the bridge class. 

 
Besides the described prior knowledge, we included intensity, the 
number of returns, and the return number as input features to both 
networks in addition to point coordinates. The prior classification 
includes the five classes of ground, roof, facade, error and outlier, 
and vegetation (or other), with the latter including many other 
objects such as cars, trams, road construction sites, fences, etc. 
(besides vegetation). The networks are trained to output the 

classes of vehicles (cars, buses, trucks, trains), overhead lines, 
(lamp or other) poles, and bridges, in addition to the five input 
categories. In the process, classes that belong to both input and 
output are to be improved, and the vegetation class is to be further 
refined, so that other object types no longer appear within it.  
 
4.1 PointNet++ 

For all experiments with PointNet++, we generated 651 circular 
patches with 200,000 points each from the training point cloud as 
input for the network, so that each point is included in three to 
four patches on average. We conducted experiments with more 
points per patch, larger search radii for the neighborhood ball 

query, and a fifth set abstraction layer, but noticed no significant 
improvement. For network training, we use the Adam optimizer, 
a learning rate of 0.001, and reserved 15% of the training patches 
for validation. Training was performed for 50 epochs using the 
remaining patches in random order. For testing, we generated 169 
patches from the test data, predicted the class probabilities for 
every patch individually, and merged the predictions as described 
in (Winiwarter et al., 2019). Although we had good experience in 

previous experiments with rotating the 3D point cloud patches 
around the upward (z) axis for data augmentation, we chose not 
to do so due to already long training times of over 1h per epoch.  
 
Our experience with training PointNet++ with ALS point cloud 
data is that the network makes quite some jumps in the quality 
metrics (1% to 3% in overall accuracy) that are used to observe 
the training process, which is also noticeable in the classification 
results. We therefore used for predictions the weights resulting 

from one of the last five training epochs that showed the highest 
overall accuracy on the validation patches. It is interesting to note 
that these performance jumps are generally less severe when 
using input classes as prior knowledge. The performance metrics 
for the PointNet++ without any prior knowledge (or architectural 
modifications) and with the described prior knowledge (height 
above ground and the five input classes) are given in the first part 
of Table 1. While the overall accuracy only increases by 3%, the 

mean intersection over union (mIoU) goes up by almost 9%. 
(Note that we did not include the bridge class in the calculation 
of mIoU, nor report the IoU for this class, since there are no 
points in the test data that belong to it.) See also Figure 3 for a 
visual presentation of the classification results using PointNet++. 
  

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVI-4/W4-2021 
16th 3D GeoInfo Conference 2021, 11–14 October 2021, New York City, USA

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVI-4-W4-2021-91-2021 | © Author(s) 2021. CC BY 4.0 License.

 
93



 

 
Figure 2. Training and test data of Leipzig, Germany, with the semantic classes: ground (gray), vegetation(green), building roof 

(brown), building facade (orange), vehicle (light blue), overhead line (yellow), pole (purple), bridge (dark gray), error and outlier 

(red). The test tile seamlessly adjoins the training data, but is presented with a horizontal offset for better visualization. 

 

 

 

Table 1. Overall accuracy (OA), mean and class-specific intersection over union (IoU) for the two reported Deep Learning networks 

of this study without and with height above ground (HaG) and input classes (Cls) as priors. Best scores are highlighted per network. 

 
 

 

Figure 3. Classification results from PointNet++ using prior 

knowledge (height above ground and input classes). 

 

4.2 PointNet++ with 2D Point Neighborhoods 

To study and demonstrate the effectiveness of extracting point 
features using their cylindrical (2D) neighborhoods in the first set 

abstraction layer of PointNet++, we trained the neural network 
without any priors on the dataset of five classes. The differences 
can be seen in Figure 4. In general, the edges between building 
roofs and facades are better defined, vegetation points are more 
homogeneously assigned to the same class, and vehicles seem 
more complete (although they are in the same class as vegetation 
in that dataset). But on the downside, there are misclassification 
problems where points of larger ground areas are being classified 

as roof points, which could be the result of outliers located below 
the ground that are now taken into consideration in the cylindrical 
neighborhood. Using height above ground as a prior knowledge 
tends to reduce this problem.  
 
In the quantitative evaluation with the dataset of nine classes 
given in the second part of Table 1, one also sees an improvement 
of about 3% in mIoU when going from the original version of 

PointNet++ to adding 2D features in combination with height 
above ground. Such a setup could be interesting when ground 

Method HaG Cls OA mean ground vegetation roof facade vehicle line pole error

PointNet++ 0.931 0.605 0.919 0.836 0.903 0.703 0.291 0.707 0.170 0.310
× × 0.964 0.691 0.981 0.919 0.932 0.721 0.432 0.852 0.184 0.506

PointNet++ (+2D) × 0.935 0.615 0.925 0.837 0.918 0.716 0.135 0.877 0.189 0.322
× × 0.968 0.702 0.980 0.921 0.946 0.782 0.434 0.814 0.224 0.516

KPConv 0.955 0.624 0.942 0.893 0.945 0.793 0.502 0.577 0.069 0.268
× 0.949 0.684 0.932 0.891 0.921 0.792 0.498 0.898 0.223 0.319

× 0.954 0.669 0.948 0.882 0.948 0.773 0.377 0.878 0.238 0.309
× × 0.953 0.686 0.938 0.898 0.930 0.779 0.506 0.878 0.238 0.321

Prior IoU
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points are known, but no further classification is available. The 

difference going from a setup with both types of prior knowledge 
(height above ground and input classes) to adding 2D features is 
not as pronounced and is merely a 1% increase in mIoU. The 
increase seems to be primarily in the better separation between 
buildings roofs and facades. This is, however, also accompanied 
with some IoU changes in the classes of overhead lines and poles. 
 
 

 

Figure 4. Comparison of classification results between original 

PointNet++ (top) and PointNet++ using additional cylindrical 

(2D) point neighborhoods for feature extraction (bottom). 

 

Another important aspect in the study was the separability of 
points that belong to vehicles and ground points, which improved 
from the original PointNet++ with the use of prior knowledge and 
further more by using 2D features (see Figure 5). 
 

 

Figure 5. Separability of vehicle and ground points given by 

PointNet++ without any changes (top), with prior knowledge 

(middle) and with additional 2D features (bottom). 

 

4.3 KPConv 

Since the implementation of KPConv (from the authors) already 
contains various functionalities, such as subsampling, patching, 
selection of patches per epoch, merging of prediction results, etc., 
hardly any preprocessing, data preparation, or modifications had 

to be performed. We trained the network as described in (Thomas 

et al., 2019) for 30 epochs using 300 steps per epoch. 
KPConv already shows great performance out of the box (cp. 
Table 1). However, even though the overall accuracy does not 
change much between experiments, there is again a notable 
increase in mIoU of around 6% between omitting and using the 
described priors. Table 1 gives further details how the individual 
classes improve. When inspecting the point cloud colorized by 
class labels, however, it becomes obvious that although some 

classes like vehicles, overhead lines, and poles visually improve, 
that also points of some larger ground areas are now misclassified 
as roof, which we cannot explain. However, the systematically 
occurring gaps on roofs almost no longer appear (see Figure 1 
and Figure 6). 
 

 
Figure 6. Classification results of an ALS 3D point cloud using 

KPConv with height above ground and input classes as priors. 

 

A close-up view of the classification results of KPConv is given 
in Figure 7. Although improvements in KPConv are visible 
through the use of prior knowledge, we want to be cautious about 

making a final assessment, as we do not want to rule out the 
possibility that the more generally determined hyperparameters 
are not best suited when using KPConv with this dataset. 
 
 

 

Figure 7. Close-up view of classification results generated with 

KPConv using prior knowledge. 

 

5. CONCLUSIONS 

In this study, we demonstrate that integrating prior knowledge in 
the form of height above ground and pre-existing class labels can 
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improve the classification results of ALS 3D point clouds in point 

cloud based Deep Learning networks, when it comes to refining 
already available class labels, but also to overcome often seen 
misclassifications. Our results indicate that for both networks, 
PointNet++ and KPConv, only the combination of the described 
two input priors (height above ground and class labels with fewer 
categories) leads to the best results. Both networks showed fewer 
issues with misclassifications of roof points for larger buildings, 
eliminating it almost completely for PointNet++. Although the 

input of prior knowledge improves the results of KPConv, there 
still remain areas where the original problems continue to occur, 
especially noticeable in misclassifications in the middle of roofs 
on larger buildings, which could be due to the choice of 
hyperparameters.  
 
In general, PointNet++ benefited much more from the prior 
knowledge and was able to eliminate its original problems quite 
reliably. By integrating height above ground, PointNet++ does 

not confuse ground with building roof or vehicle points as often 
even when class labels are not given as input, providing a more 
pronounced separation between classes. To result in sharper 
edges between facades and roof points, PointNet++ could be 
improved by adding feature extraction with cylindrical point 
neighborhoods in the first set abstraction layer. 
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