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ABSTRACT 

Nowadays, cities and buildings are increasingly interconnected with new modern data models like the 3D city model and Building 

Information Modelling (BIM) for urban management. In the past decades, BIM appears to have been primarily used for visualization. 

However, BIM has been recently used for a wide range of applications, especially in Building Energy Consumption Estimation 

(BECE). Despite extensive research, BIM is less used in BECE data-driven approaches due to its complexity in the data model and 

incompatibility with machine learning algorithms. Therefore, this paper highlights the potential opportunity to apply graph-based 

learning algorithms (e.g., GraphSAGE) using the enriched semantic, geometry, and room topology information extracted from BIM 

data. The preliminary results are demonstrated a promising avenue for  BECE analysis in both pre-construction step (design) and post-

construction step like retrofitting processes. 

1. INTRODUCTION

The Building Information modeling (BIM) describes the physical 

characteristics of building elements utilizing their three-

dimensional (3D) geometry, semantic, and topology data. 

Geometric and sematic data represent the individual properties 

(e.g., location, dimension, and material) of building elements. 

However, topological data denotes spatial relationships among 

the building elements, including connection, adjacency, 

containment, separation, and intersection (Ohori et al., 2017). 

The well-known BIM open standard model is Industry 

Foundation Classes (IFC). IFC provides the interoperability of 

BIM data across construction, engineering, and architecture 

domains that share the building information to serve at different 

applications, e.g., building security management, facility 

management, emergency pathfinding, and energy efficiency 

(Chong, Lee and Wang, 2017). Recently, the use of  IFC as a 3D 

data source for Building Energy Consumption Estimation 

(BECE) has gained momentum (Andriamamonjy, Saelens and 

Klein, 2018; Pezeshki and Ivari, 2018). Current states of the arts 

demonstrate the role of detailed geometrical and semantical 

information in predicting building energy consumption in both 

The literature review also illustrates the value of 3D information 

in providing detailed indoor building information useful for data-

driven approaches (Fumo, 2014; Bourdeau et al., 2019).  In this 

application, the indoor space concept (known as the IfcSpace 

class) can be used as a sub-unit of buildings. The spatial links 

between IfcSpace objects are considered topology information, 

leading to the development of a knowledge graph for analyzing 

the energy transfer from one room to another. In the knowledge 

graph, the node can represent spaces in which the semantic 

information of each space (node) is defined as vector information 

assigned to the node. The edges in the knowledge graph connect 

a pair of spaces and capture the spatial relationship if there is any 

energy transfer. Also, knowledge graphs have started to play a 

central role in machine learning to incorporate real-world objects 

with a relationship for knowledge extraction and phenomena 

prediction. There are many physical and data-driven modeling 

techniques available that can be used to model the energy 

consumption of buildings (Bourdeau et al., 2019). 

Data-driven models emerge as the most suitable option for the 

BECE analysis rather than classical physics-based modeling(Li 

et al., 2010). Moreover, the recent researchers employed detailed 

information from the IFC model for BECE analysis. However, 

most of them use traditional machine learning models for BECE 

analysis and ignore the topological information (e.g., adjacent 

room/Ifcspace information) in their learning process, which 

causes inaccurate results in BECE data-driven models. Because 

the energy is transferred between the adjacent rooms if two rooms 

have an adjacency relationship using a shared wall, window, roof, 

or floor. For example, if a room has a shared wall with a cold 

room (with low energy efficiency), the heating loss rate increases 

significantly from the warm area to the cold area (Fan, Xiao and 

Zhao, 2017). Therefore, the spatial relationship between the 

spaces is vital in BECE-based analysis, which recent studies 

ignore. Because of the complexity of topological information in 

the IFC model and unmatured graph-based data-driven methods 

in BECE-based analysis. This paper adopted the GraphSAGE 

algorithm as a Graph Neural Network (GNN) machine learning 

model for room-based BECE analysis to apply space properties 

and topological information in the learning process. Finally, the 

algorithm classifies the rooms in a multi-level building into two 

energy-efficient and inefficient classes with determining the 

probability of each class. The proposed algorithm improves the 

accuracy of the BECE analysis because of utilizing the room's 

properties and their relationship in the learning process, which 

are extracted from the IFC model. 

The rest of the paper is organized as follows: The proposed 

methodology is presented in Section 2. Section 3 describes the 

experimental results, and Section 4 concludes the paper and 

future study. 

2. METHODOLOGY

This section discusses the proposed methodology to tackle the 

challenge of learning algorithms in data-driven models. There are 
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two main steps in the below sections. First, a framework is 

proposed to generate a space-based knowledge graph from the 

IFC model. Then, in the second step, a graph-based classification 

algorithm is implemented to show how we can apply the 

proposed graph's learning method by involving the room's 

geometrical, semantical, and neighborhood information. 

 

2.1 A Framework to Generate Space-based Knowledge 

Graph 

The knowledge graph (KG) represents a collection of interlinked 

real-world entities and their properties (Wu et al., 2020). 

Knowledge graph includes nodes as entities and the links which 

represent the relationship of entities. Indeed, from year to year, 

Machine Learning and Knowledge Learning on Graphs are 

advancing expeditiously, both in scale and depth, but in different 

directions. On the one hand, Machine Learning techniques are 

getting better at performing various tasks (e.g., Classification and 

Prediction.) on different datasets with great precision. Moreover, 

the Knowledge Graph provides an infrastructure for data to be 

organized into connected graph structures, and thus multi-source 

and heterogeneous data can be interlinked and integrated (Abbad 

and Bouchaib, 2017). This study adopts this concept to convert 

3D data models (IFC) to a Knowledge Graph to provide an 

intermediate interconnected data structure linked to different 

datasets and compatible with machine learning algorithms. The 

proposed graph contains room (space) object information as a 

node, their properties as an assigned vector, and their 

relationships with neighbor rooms as an edge. 

This paper's primary intent is to classify the indoor rooms of 

building into two efficient and non-efficient classes from energy 

consumption. Then, the classification method will be applied to 

the proposed knowledge graph, including each room's 

geometrical, semantical, and relational information. Therefore, 

the proposed framework generates the knowledge graph using the 

IFC file for the final classification task. The framework 

encompasses two main modules: Feature Extraction and 

Knowledge Graph Construction, as presented in Figure 1, 

implemented by Python using the IfcOpenShell and NetworkX 

libraries (Newman, 2003).  

Feature Extraction is the first module to extract all geometrical 

and semantical information from the IFC file of building rooms 

(space). This module includes four main functions. The first 

function (FG) extracts each room's accurate geometrical 

(Volume, Area, and Perimeter) information from the IFC file. The 

second function (FS) extracts and calculates each room's 

semantical information (Thermal Resistance Index – R-Value). 

The third function (FNB) finds adjacent rooms for the target room 

by considering the shared wall, roof, and floor. Moreover, the 

fourth function (Feature Generator (FFG)) creates a vector list of 

feature values for each room, along with a GUID as a unique Id. 

KnowledgeGraph_Construction is the second module of the 

framework. This module constructs the adjacency matrix 

(Bapat, 2010) and the knowledge graph based on the first 

module's output. It includes three main functions. The process 

starts with the Normalization function (FN) to normalize the 

feature values. Since each parameter has a different scale, the 

normalization must create common scale feature values for 

machine learning algorithms (Becerik-Gerber et al., 2014). 

Therefore, we applied the min-max normalization method using 

FN (Patro and sahu, 2015). The second function (FA) generates 

the adjacency matrix using the given neighbour list from 

module one. Indeed, the adjacency matrix represents the 

knowledge graph as a square matrix with the size of n * n (n: 

number of nodes). Finally, the FKG function is designed to loop 

through the adjacency matrix to find the neighbour nodes. In 

this step, we have used the Networkx library in Python to 

construct the knowledge graph using the adjacency matrix and 

embed six feature values as each node's attributes. The 

generated graph is heterogeneous graph because nodes have 

diferent edges as the room's neighborhood. This knowledge 

graph will be used for the next step for graph based classifiction. 

 

               Figure 1. Knowledge Graph Framework 

 

2.2  Room Classification based on GraphSAGE Learning 

Algorithm using BECE features 

This section introduces a solution to adopt the GraphSAGE 

learning algorithm (Xu et al., 2018) based on the generated 

knowledge graph from the IFC model. The primary intent is to 

show how a learning algorithm can be employed on an IFC-based 

knowledge graph include building room's properties such as 

Total-Wall-Area, External-Wall-Area, Window-Area, External-

Wall-R-Value, Internal-Wall-R-Value, Window-R-Value, and 

topology information between rooms. Instead of using traditional 

machine learning classification tasks, we consider using a graph 

neural network (GNN) to perform node classification problems 

to classify the rooms (nodes) of the knowledge graph into two 

classes of efficient and inefficient by calculating the probability 

values for the classes for each room. By providing an explicit link 

between the rooms, the classification method is no longer 

classified the rooms independently, such as traditional BECE-

based learning algorithms but leveraging graph structures such as 

the degree of rooms and neighborhood information. The 

usefulness of graph properties assumes that individual rooms are 

correlated with other rooms.  The GraphSAGE method as a 

supervised classification method is trained based on training 

nodes (80% of nodes in the graph), then the trained model predicts 

the efficiency class of the other nodes (rooms). Eventually, the 

model accuracy is measured by comparing the predicted 

efficiency class and the actual efficiency class of testing nodes.  
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GraphSAGE is an inductive learning algorithm capable of 

predicting a new node's attributes without requiring a re-training 

procedure. To do so, GraphSAGE learns aggregator functions 

that can induce a new node's attributes, given its features and 

neighborhood. This is called inductive learning, suitable for both 

supervised and unsupervised node classification (Xu et al., 

2018). Therefore, we have chosen GraphSAGE as our graph-

based classification algorithm. We need to classify our rooms into 

two classes as a supervised learning process in our application by 

determining the probability of each class for each room. Thus, 

GraphSAGE can be a suitable GNN method for our use case. We 

applied the GraphSAGE classification task to our BECE-based 

knowledge graph into three main parts as context construction, 

information aggregation, and Learning process by loss function 

described below: 

2.2.1 Context Construction: The algorithm has a parameter 

K that controls the neighborhood depth. If K is 1, only the 

adjacent room are involved in the learning process. If K is 2, the 

rooms at walk depth two are considered. Remark that having k = 

2 means rooms at neighborhood depth two can affect each other 

through the room in the middle. The value of K is determined 

experimentally using multiple neighborhoods. Figure 5a shows an 

example of information sharing in GraphSAGE with a 

neighborhood depth of two for node 3 of the whole knowledge 

graph 

2.2.2 Information Aggregation: Having defined the 

neighborhood, now we need an information-sharing procedure 

between neighbors. Therefore, in the first step, we generate a 

computational graph (Dondi, Mauri and Zoppis, 2018) for each 

room in the graph to calculate new embedding (feature) values 

for the target room. Next, aggregation functions or aggregators 

accept the neighborhood rooms as input and aggregates the 

neighbor's attributes (features) with weights to create a 

neighborhood embedding for the target node. Aggregator 

weights are either learned or fixed depending on the function. To 

learn embeddings with aggregators, we first initialize all room 

features' embeddings to node features as node attributes. In turn, 

for each neighborhood depth until K, we create a node 

embedding with the aggregator function for each node. Different 

aggregation functions are LSTM  aggregator, Pooling aggregator, 

and Mean aggregator (Hamilton, Ying, and Leskovec, 2017). We 

have chosen the Mean aggregator for our calculation because of 

its simplicity in the implementation. Equation 1 demonstrates the 

Mean aggregation function in which  ℎ𝑘−1  shows the feature 

values of the neighbor rooms and  |𝑁(𝑣)|  is the number of the 

neighborhood of room 𝑣 (Xu et al., 2018). 

 

𝐴𝐺𝐺𝑢𝜖𝑁(𝑣) =  
ℎ𝑢

𝑘−1

|𝑁(𝑣)|
,    (1) 

  

It means, each room has a feature vector with a size of 6 * 1 in 

our research, and after aggregation, it generates an embedding 

feature of node 3 with the size of 6 * 1. Also, node 3 has its 

feature values with the size of (6 *1) in Layer-1. After 

concatenation, a feature vector with the size of (12 * 1) is 

generated, which is the neural network's input layer (gray-box 

B in Figure 5b). When each node is processed, we normalize 

the embeddings to have a unit norm. Equation 2 represents the 

aggregation and concatenation of the target node using the 

neighborhood's features and the target node's features. In 

Equation 2, ℎ𝑣
𝑘 denotes, as an embedding features node 𝑣 in 

walk depth K and 𝜎 represents the activation function. 

 

ℎ𝑣
𝑘 ← 𝜎(𝑤. 𝑀𝐸𝐴𝑁({ℎ𝑣

𝑘−1} ∪ {ℎ𝑣
𝑘−1, ∀𝑢 ∈ 𝑁(𝑣)}),   (2) 

We apply the activation function to add nonlinearity to our model. 

In this research, we apply the Sigmoid activation function 

(Shrikumar, Greenside and Kundaje, 2017) because its output is 

between 0 and 1, which is suitable to calculate the probability of 

output classes (inefficient and efficient rooms). The algorithm is 

implemented by python language with PyTorch, NumPy, DGL, 

Panda, and sklearn libraries in the google colab environment. 

Then, the concatenated vector passed to the neural network layer 

(Figure 5b-gray box B) to update the node embedding. As a result, 

the neural network in box B is designed with 12 neurons 

(features), two hidden layers, and two neurons (efficient and 

inefficient) for the output layer.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

            Figure 2. Two neighborhood depth of target room 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Computation graph of Node 3 (neighbor depth - k=2) 

 

2.2.3. Learning process by the loss function: We have applied 

the aggregation steps to generate node embeddings and the 

learning process. Nevertheless, to learn the neural network 

weights, we need a differentiable loss function to calculate the 

distance between the actual value of node class and the predicted 

values. We have applied the Squared Error Loss (SE) function 

(Choromanska et al., 2015) for each room classification (130 

nodes in our datasset). Then, we split the nodes into a training set 

(100 nodes) and a testing set (30 nodes).  

The predicted process takes input features from each computation 

graph and calculates the probability for each room. The distance 

of real and predicted output value is measured by the SE function 

for 100 nodes called loss value. The mean of loss values (Mean 

Squared Error – MSE (loss function)) for 100 nodes is calculated 

for each iteration (epoch). At the end of each epoch, the neural 

network's metrics weight is adjusted by the backpropagation 

process. The learning process is continued iteratively to catch the 

best accuracy on training nodes. 
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3. EXPERIMENTAL RESULTS AND DISCUSSION 

Autodesk office building (Trapelo), which is located in 

Massachuset in the United States, is chosen as a case study 

dataset. The BIM model of this building is a commercial three-

story building with 130 rooms which is downloaded in IFC 

format from the Open IFC Model Repository. This dataset's 

completeness of indoor information (LOD4) and entity-

relationship (topology) motivated us to choose this IFC file as a 

case study. The knowledge graph is generated for this dataset with 

130 nodes and a 6-dimension vector assigned. Then train  

GraphSAGE classification based on training data and measure the 

accuracy of the result for test data. We calculate the classification 

accuracy from 1000 epoch to 5000 and get the best accuracy of 

86.6% in epoch 3500. Therefore, we pick up the weight matrices 

in epoch 3500. It means 26 rooms of 30 in the test dataset are 

assigned to the correct class, and only 4 rooms are wrongly 

classified.  

 

4. CONCLUSION AND FUTURE WORK 

This research adopted GraphSAGE as an inductive learning 

algorithm with a BECE-based classification task. The promising 

result demonstrated that the proposed solution helps the decision-

maker evaluate each room's energy efficiency in buildings with a 

large area. This algorithm can evaluate the energy consumption 

of the rooms in the building, which has not been built yet (design 

level), retrofitting tasks, and helping to redesign with adding new 

rooms in a building or aggregated with the other rooms and 

evaluating the room efficacy. Since the model is trained and 

tested by a single building, we need to investigate the result of 

the algorithm by applying an enriched dataset. Also, this research 

considers the  similar weight value for rooms relationships in the 

learning process. However, in the future, the weighted 

knowledge graph can be employed for classification tasks to 

consider accurate energy transformation between the rooms. 
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