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ABSTRACT:

Due to increasing human population, the need for quality public transportation has also increased. This study takes stop density, stop
layout, and passenger population of those stops into consideration to offer a better regulated public transportation network design that
can satisfy the increased demand. In this study, the boarding data is provided by the public transportation department of the city of
Antalya, Turkey. Remaining required data was automatically generated using web services and stored in a PostgreSQL database hosted
on a cloud server. After visualizing inputs such as bus routes, stop layout, and passenger density on Google Maps and KeplerGL, with
the use of the K-Means algorithm, data was clustered to find ”hot” (i.e. attraction) areas on a macro scale. A novel means of connecting
hot spots suggested by the outcome of the Genetic Algorithm was developed. To compare the effectiveness of the proposed approach
with the existing network, current bus stops were mapped to the new domain. It was observed that a more efficient system was achieved
by higher route efficiency and lower transfer counts.

1. INTRODUCTION

With changing urban infrastructure, public transport system de-
signs must be updated accordingly. Where urban renewal is con-
cerned, updating the system becomes necessary due to the tech-
nology and population changes that result as an area becomes a
residential area (Özgün et al., 2021b). In such cases, adding and
subtracting can be done by hand in some systems. This situation
may bring the necessity of optimizing the network. Advanced
optimization may be applied to automate this process effectively.

The aim of this paper is improving Antalya’s public transporta-
tion efficiency by redesigning routes. The constraints are route
quantity (directly related with bus quantity) which should be less
than the currently active system, node coverage and transfer ne-
cessity when traveling between two points. In the process of
achieving this goal, KMeans and a genetic algorithm were used.

1.1 Related Work

In context of public transport systems, the transit network design
problem (TNDP) aims to find a set of optimal routes regarding
the costs to the users and the operator. Since the quality of service
highly depends on result of this design, TNPD, which is an NP-
hard problem, has been studied for the last five decades (Yang and
Yangsheng, 2020). While users expect cheap and direct transfers,
comfortable terminals and vehicles, and frequent bus arrivals, the
objectives of the operator is having a system that maximizes profit
(Guihaire and Jin-Kao, 2008). Most of the existing research ex-
clusively prioritizes the objectives of the operator.

In the current literature, it can be seen that the process of transit
planning are referred to by a variety of names even if the problem
itself is not explicitly named (Guihaire and Jin-Kao, 2008).

Depending on the nature of the formalization, studies optimize
various parameters (Magnanti and Wong, 1984). In a recent study
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(Crainic, 2000), authors discuss various state-of-art integer pro-
gramming solutions to transit network design. A branch and cut
algorithm to solve the incapacitated fixed charge network flow
problem was suggested (Ortega and Wolsey, 2003).

In another approach (Mandl, 1980), passengers and vehicles are
assigned to the routes as two different problems and the optimal
path in a graph network is sought. As a constraint, the number of
vehicles is fixed. The next step was to find the optimum routes
and vehicle distribution for those routes, while minimizing the
travel costs for passengers.

Researchers (Aguado, 2008) used a Lagrangian relaxation based
heuristic to solve the fixed charge transportation network design
problem. The author divides the process into three phases:

1. Apply Lagrangian relaxation to get reduced costs of all vari-
ables

2. Run binary search algorithm to obtain the heuristic

3. Branch and Cut

Using an algorithm based on Kuhn-Tucker conditions, Furth (Furth
and Wilson, 1981) devised a method to optimize the allocation of
buses to routes by maximizing the net social benefit. Researchers
(Constantin and Florian, 1995) formulated a mixed integer pro-
gramming model to optimize bus frequency to minimize passen-
ger travel and waiting time. Due the high time-complexity of
brute-force type search algorithms, there are other studies that at-
tempt to optimize the network design using Genetic Algorithms
(Al-Turjman et al., 2016, Al-Turjman et al., 2017). Another study
(Pattnaik et al., 1998) proposed a genetic algorithm to solve tran-
sit routes and frequency optimization problems by minimizing
both the operator costs and travel time of users. Researchers
(Claessens et al., 1998) developed a programming model that
minimizes operating costs subject to services and capacity re-
quirements to solve the optimal rail route problem.
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Cost effective transit planning is usually divided into five ele-
ments (Guihaire and Jin-Kao, 2008, Ceder and Wilson, 1986):
Route design, frequency setting, timetabling, bus scheduling, crew
scheduling (Ozgun et al., 2021a, Başaran et al., 2021). The first
two of these elements are considered as mathematical program-
ming problems which can be solved with simulations and/or heuris-
tic algorithms. However, in practice these are generally solved
with intuition and experience of a local expert (Deng and Yan,
2019).

Different authors used different approaches when designing the
Genetic Algorithm’s chromosome. Some used genes in a chro-
mosome as representation of expansion of a link in a network and
denoted by 1 or 0 (Ukkusuri et al., 2007). Other studies represent
every gene as a line. However, they all attempt to optimize the
operational costs. On the other hand there is a major demand by
the riders of the transportation network as they want both direct
lines between the origin and the target stops and also reaching the
target with few transfers as possible. Therefore, in this work we
did not only optimize the operational costs but also consider the
passengers preferences.

2. MATERIALS AND METHOD

A line represents a specific bus label while a route represents ei-
ther the forward or backward routes of a line separately. Gener-
ally every line has two routes for this reason.

The data including line and route information was obtained as ex-
cel files. In order to increase the compatibility between all plat-
forms, files were converted to csv files and logically merged with
consistency checks. After saving, the file was analyzed on a Co-
lab Notebook.

2.1 Sample Line and Route Data

Table 1: Line and Route Relation Samples
Line ID Line Code Route ID Direction

480 CV48 4800 0
480 CV48 4801 1
670 CV67 6701 1
670 CV67 6700 0
... ... ... ...

13090 DC09 130901 1
13090 DC09 130900 0
13100 DC10 131001 1
13100 DC10 131000 0

Route code uniqueness was checked with a python script and it
was assumed that every specific route should have only one match
in the lines list. As a result 609 unique routes were found without
a repetitive route code.

Line and route relation examples can be seen in Table 1. The line
code represents a line’s database id. The line code representation
is what is shown to public as labels on busses and direction id
represents whether it is the forward or return route.

2.2 Data Management

Remaining necessary data was harvested from the API for use
with the provided data.

2.2.1 Exploration of Service API Users of this service can
view routes of a specific line, its departure times and stops.

The methods of using the features offered by the portal and the
authorization method have been debugged by following the HTTP
requests and responses with the tools offered by the browser. In-
formation requests can be sent to the service with the authoriza-
tion code. In this study, the line code information displayed to
the public transportation users and the information that there is a
departure or return route, the endpoint, where the route and stop
locations of that line are taken, was used to collect data. For
example, when we query the bus known with the code VF01, re-
sponse is quite long (2500 lines and remainder). For this reason,
a brief summary of the returned content is shared below:

• Information on whether the transaction was completed suc-
cessfully

• Line code information not shown to users

• The explanation of line code shown to users (VARSAK AL-
TIAYAK - FAKULTE)

• Array of points expressing the route when combined with
each other with sequence information (in geographic coor-
dinate system)

• Departure times depending on the days of the week of the
vehicles running on that line

2.2.2 Database Design Before the data was collected, it was
determined that it would be placed in a database for the following
reasons; to be accessible quickly and easily, to be open to others,
and to increase its sustainability. Accordingly, the database was
designed to comply with the Fourth Normal Form (4NF) rules.
During this design, the fields that are returned from the service’s
API and which are not clear are not used in accordance with the
4NF rules (Kent, 1983).

As a database, PostgreSQL, which is popular among open source
databases, was chosen for its performance, reliability and com-
munity (Andjelic et al., 2008). In the future, PostgreSQL can
respond to these within the scope of a NoSQL structure require-
ment.

The designed structure was converted into models with .NET
Core SDK in C# language and converted into a database with
the Code First technique. Integration of PostgreSQL and Entity
Framework Core, which is the ORM tool used by .NET Core, is
provided with Npgsql provider.

2.2.3 Data Gathering Information requests are sent to the
service with a .NET Core CLI application that includes all com-
binations of line codes and going / return parameters written in
the database previously provided and created, and the returned
responses are parsed.

2.2.4 Importing Boarding Data The json file was read and
processed into the database including the boarding data provided
by the service provider. During this process, logging has also
been implemented and is not included in the database in order to
observe that some boardings are not from a registered stop or a
registered line code. If the data comes from a known stop of a
known line but its route is not clear, it is included in the Orphan-
Boarding table.
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2.3 Clustering Boarding Data

The centers of regional densities must be identified in order to
propose a new transport. The number of these centers and their
distances from each other and the number of boardings of these
centers are the parameters that play an important role in this de-
termination.

KMeans algorithm was applied to create these regions. The tech-
nique that would create the most successful result was selected
by examining the results.

The elbow method was applied to find the correct cluster number.
In order to do this, the KMeans algorithm was trained with the
same data from 2 clusters to 30 clusters. The inertia value of
each model was plotted based on the corresponding k value. This
method was determined to be inadequate.

In determining the k value of KMeans, a new method was de-
veloped due to the inadequacy of the standard elbow method in
terms of reaching sufficient resolution. This method examines
the distance between the centers of gravity and geometric cen-
ters of clusters. The number of clusters was increased to the
point where the centers of gravity and geometric centers of the
clusters stopped converging significantly. The number of clus-
ters was found when it came to the point where the geometric
and gravity centers did not become closer significantly even if
k increased. Here the weighted center phenomenon comes from
different weights of the elements in a cluster. As a result, 24 clus-
ters obtained as can be seen in Fig 1 with letter characters (A,
B,..).

2.4 Genetic Algorithm

A route connects only two nodes. A public transportation system
needs more than one route to cover a target area. There are 24
nodes and permutations of those nodes with 3, 4 and 5 are shown
below:

• P(24, 3) = 12.144 routes

• P(24, 4) = 255.024 routes

• P(24, 5) = 5.100.480 routes

Selecting efficient routes to achieve full coverage while consid-
ering the negative effect of overlapping paths of selected routes
is computationally expensive due to the large number of possi-
ble route options. Including an efficient route to the solution can
make another efficient route much less efficient because of the
existence of the route that is already included. Since selecting
routes is affected from prior selections, this problem is familiar
with knapsack problem (Chu and Beasley, 1998). For this reason,
a Genetic Algorithm is preferred.

The routes outside of the 10km-30km range were eliminated. Re-
maining routes were examined programmatically to ensure that
each node is found at least once in the problem space.

The chromosome design is represented in Table 2. The route col-
umn lists the remaining 17,145 permutations after elimination. A
chromosome represents a solution and consists of selected routes
in this solution. When creating the first population, the maximum
number of active genes in the chromosomes was limited to 1/3 of
the total number of nodes which is 24.

The new efficiency function, E, is defined as below:

Table 2: Chromosome Design
Route Is selected
ABC 1
ACB 0

... ...
ZYXTA 0
XZYAC 1

E = f(x)×
∑N

i=0 nodeipotential∑N−1
i=0 distance(nodei, nodei+1)

(1)

where:

f(x) =



y, y > 0.8

0.9y, 0.7 < y ≤ 0.8

0.8y, 0.6 < y ≤ 0.7

0.6y, 0.5 < y ≤ 0.6

0.2y, y ≤ 0.5

and
y =

Xeuclidean∑N−1
i=0 distance(nodei, nodei+1)

The node parameter represents the nodes of a specific route. The
formula represents the node potentials to find the route potential.
Then divides it by the total distance which is the sum of the road
lengths between sequential route nodes. Then we multiply by
the directness factor which is calculated by dividing euclidean
distance between the route start node to the route end node (X)
with an easing function (f ) multiplication by total distance.

The fitness function sums up the E score of each active route
within the genome. If there is a repetitive edge use in same direc-
tion between 2 nodes in the route suggestions, there is a 1 point
penalty from the fitness score for each encounter. 10 points are
penalized for each node that is not included in solution due to full
coverage constraint.

A selection function is defined to select the candidates to crossover
from among the population. Each time this function is called, it
randomly selects two parents from the population. During this
random selection, the probability of being selected was defined
in direct proportion to their fitness scores.

The crossover function describes the way the crossover process
between 2 genomes is performed. The minimum active index
and the maximum active indexes were found for 2 genomes and
random numbers were generated in this range. From the point of
this random number generated, the genomes were split in two and
each piece was combined to correspond with the other partner.
Thus, two new genomes were produced. Here, instead of directly
producing value between zero and chromosome number for ran-
dom selection, the process of finding the minimum and maximum
value range is that the ratio of active chromosome number to to-
tal number of genomes is very small. This creates the possibility
that all active genes remain to the right or left of the chosen point
when the range is not determined.

The identified mutation function has a %50 probability of log-
ically inverting a random gene. It’s performed this experiment
three times in a row.

The algorithm has been tested with different parameters and the
values have been adjusted. The population member count is ini-
tially set to 30. At first, the algorithm is set to stop after 100
generations if it cannot exceed the desired fitness value. But a
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patience counter was implemented which increases when the so-
lution score is equal to previous and resets when it is greater. This
was a better approach since it stops iterations when no improve-
ment was seen.

2.5 Domain Migration of Current System and Analysis

The routes of the existing system were converted into routes in
the proposed system domain. To do this, every stop in the cur-
rent system was included to the nearest node in the proposed sys-
tem. Converted routes with less than 3 nodes were eliminated
because of external connections outside of the problem bound-
ary. For the forward direction there are 249 lines which consist
of 117 unique converted routes. After the elimination filter was
applied 125 lines were left with 98 unique converted routes. Effi-
ciency, directness and transfer counts of active and the proposed
system were compared. An algorithm was proposed for adding
extra routes to the proposed system in need of decreasing transfer
counts.

3. RESULTS AND COMPARISON

After 75 generations, the max score of the run was reached and
no further improvement was observed on next generations until
patience ran out. The solution route scores ranged from 0.16 to
15.22. Routes with low scores were eliminated until the point
that the full node coverage rule was not broken. Node names and
coverage can be seen in Fig. 1.

Figure 1: Nodes with All Selected Routes

Routes are drawn in different colors in order to distinguish them
from each other. The colors of the routes using common roads
are mixed due to the existence of many routes, the routes cannot
be clearly distinguished from this figure.

Top 5 efficient routes in the solution are shown in Table 3. Board-
ing column represents total boarding potential of nodes in that
route. Duration data was obtained using Google Maps API.

Table 3: First 5 Genetic algorithm generated routes
Route Boarding Length Duration Score Stops
HVWQF 569984 20.18 46.67 15.23 817
XPBWJ 417525 28.70 41.33 12.05 574
XPBWQ 431656 24.48 33.27 11.62 677
LABRJ 301584 21.84 38.45 9.42 718
UHVBQ 402299 29.84 56.13 8.77 671

In this solution, the total number of unique edges is 105 with the
total count of 200. Thus the average edge reuse amount is 1.90.

Top 5 most used edges in routes in the solution are seen in Table
4. These edges connect high potential nodes.

Table 4: Edge Use Count In Routes
Edge Use Count
WQ 12
QB 8
BW 6
QD 5
BQ 5

Route repetition ratio for the currently active system was found
to be 0.216 from the Rr = Rt−Ru

Rt
formula where Rr is route

repetition ratio, Rt is total route count and Ru is unique route
count.

Directness improvement was found to be 10% from the I =
D1−D0

D0
formula where I is improvement, D1 is directness value

of proposed system and D0 is directness value of currently active
system.

The currently active system repeats similar routes and is not ef-
ficient. In Fig. 2 we can see the drastic efficiency drop of ac-
tive system compared to suggested when edge repeat penalty in-
creases. System efficiency corresponds to sum of fitness values
of routes in solution.

Figure 2: Edge Repeat Penalty - Efficiency Relation

Transfer counts were measured for both systems by counting ev-
ery node pair that is not included in any route in the system. Anal-
ysis results shows that the transfer amount in the active system is
42 while it is 112 in proposed system. Which is expected since
the fitness function does not have the information related to the
importance of transfer. Edges that need to transfer to travel shown
in Table 5.

Those from-to edges in the same row in Table 5, connected to
each other with permutations of 5 (3 or 4 if row doesn’t have min-
imum 5 nodes) and selectively appended into the solution to de-
crease transfer count in the proposed system. 915,726 candidate
routes were generated. Route efficiency values were calculated
for every generated route and ordered by efficiency, descending.
These routes were evaluated iteratively. All covered nodes were
kept in a hashset during iteration. If the next route did not have
enough nodes that were not covered, it was discarded.

Accepting routes that did not have any nodes covered resulted
in 14 new routes: COSRJ, KVWRJ, UTHVW, OVWRJ, POSVJ,
JRDML, NTHVW, EOVWR, XPOVR, JRMLG, HVWFI, DVTNU,
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Table 5: Transfer Necessity
FROM TO NODES

0 A C, N, U
1 B C, N
2 C D, E, F, G, I, J, K, L, M, N, O, R, S, U, X
3 D E, G, J, L, N, T, U, V
4 E F, H, I, J, K, N, O, Q, R, T, U, V, W
5 F G, I, J, K, L, N, P, U
6 G H, I, J, N, O, P, S, T, U, V, X
7 H I, J, P, R, X
8 I J, M, N, P, S, T, U, X
9 J K, M, N, O, T, U

10 K N, P, T, U
11 L N, P, T, U, X
12 M N, U, X
13 N O, P, R, T, U, V, X
14 O P, T, U
15 P T, U
16 R T, U, X
17 S T, U
18 T U, X
19 U W, X

THVWR, THVWF. When those routes were added to the pro-
posed system the total route count increased from 50 to 64 and
transfer count decreased from 112 to 83. Accepting routes that
had maximum 1 covered node resulted in 39 new routes: QK-
TNU, CGLMF, JQKTN, THVSG, XOKSR, POSVJ, JRDML, NTHVW,
UNHKQ, QOTNU, DVTNU, COSRJ, LVTNU, IFQRJ, EOVWR,
XPOVR, UNOKM, JRMLG, JRSXU, JDMLE, HSOPX, UTHVW,
OVWRJ, XOKSD, UNPGL, MKTNU, EGLFD, HVWFI, THVWR,
THVWF, UNTHS, IFQOT, KVWRJ, JDMLG, XSKMR, JRDMI,
XOKMF, NOKMF, MSTNU. When those routes were added to
the proposed system total route count increased from 50 to 89
and transfer count decreased from 112 to 36. Adding the first 25
of these 39 increased from 50 to 75 and transfer count decreased
from 112 to 46. The transfer count of the active system is 42 and
total length of active system is 3428 km. These values can be
seen in Table 6.

Table 6: Transfer and Length Comparison
Proposed System
Transfer Count

Proposed System
Route Count

Proposed System
Total Length

112 50 +0 1296 km
83 50 +14 1651 km
46 50 +25 2047 km
36 50 +39 2440 km

Finally, active system entities were migrated to the new system
domain for comparison. Comparisons were made using differ-
ent aspects such as route amount, transfer amount and efficiency.
Transfer count was adjusted by adding new efficient routes that
eliminates some necessary transfers. Additional side routes can
be appended to the evolutionary solution manually. For better ge-
netic algorithm solutions we must parameterize efficiency func-
tion coefficients and fitness function constants and then execute
hyperparameter optimization to tune the algorithm. Adaptive mu-
tation mechanics may help to escape from local maxima which
leads the algorithm to stop after the patience limit is exceeded.

When a clear result cannot be obtained from the elbow method
during clustering with KMeans, a method that will be successful
on spatial data was proposed in order to find the k value, which
is the maximum number of significant clusters. In this method,
the average distance between the cluster center of all clusters and

the center of gravity of the cluster was calculated. For a set of k
values, this distance was calculated, the sorted chart was drawn,
and the k value at the beginning of the line where the value con-
verge was taken. This can represent the maximum number of
significant classes.

4. CONCLUSION

This study proposes a method to optimize the type of public trans-
port by balancing maximum passenger transport with minimum
distance travel with shared edge restriction between routes. An
efficiency function was defined so that the number of passengers
taken in heuristic sense is rewarded while the distance covered is
penalized. Route directness calculated and used as a parameter in
the efficiency function. This efficiency function was used in the
genetic algorithm’s fitness function to obtain results. Since trans-
fer amount is not considered as a negative effect, it was not in-
cluded in the efficiency function. A new system with new routes
were proposed using a genetic algorithm.

Unlike other studies, we located attraction/population centers via
clustering and connected these centers with routes using a genetic
algorithm. Every gene represents a possible route in a chromo-
some of all network routes. Consequently, this causes the chro-
mosome to be larger than in other studies. However, negative
effects are regulated by the optimization of the fitness function
using cache and heuristics.
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