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ABSTRACT: 

 

Wetlands are endangered ecosystems that are required to be systematically monitored. Wetlands have significant contributions to the 

well-being of human-being, fauna, and fungi. They provide vital services, including water storage, carbon sequestration, food 

security, and protecting the shorelines from floods. Remote sensing is preferred over the other conventional earth observation 

methods such as field surveying. It provides the necessary tools for the systematic and standardized method of large-scale wetland 

mapping. On the other hand, new cloud computing technologies for the storage and processing of large-scale remote sensing big data 

such as the Google Earth Engine (GEE) have emerged. As such, for the complex wetland classification in the pilot site of the Avalon, 

Newfoundland, Canada, we compare the results of three tree-based classifiers of the Decision Tree (DT), Random Forest (RF), and 

Extreme Gradient Boosting (XGB) available in the GEE code editor using Sentinel-2 images. Based on the results, the XGB 

classifier with an overall accuracy of 82.58% outperformed the RF (82.52%) and DT (77.62%) classifiers. 

 

1. INTRODUCTION 

Wetlands that cover around 3% to 8% of the earth’s surface 

are among the most valuable yet in danger ecosystems. These 

endangered ecosystems provide significant contributions to 

the well-being of human-being, as well as the natural 

resources (Slagter et al., 2020). Wetlands are regarded as the 

kidney of the earth because bacteria, animals, and plants that 

are living in wetlands filter the water by trapping nutrients 

such as phosphorus, which causes the harmful algae 

blooming in the water bodies (Mahdavi et al., 2018; Tiner, 

2015). Services provided by wetlands include water storage, 

food security, carbon sequestration, shoreline, and flood 

protection (Board, 2005; Davidson, 2016). As such, 

developing and proposing new technologies for the 

systematic and standardized monitoring of these vital 

ecosystems are essential (Jamali et al., 2021a, 2021b). 

For efficient large-scale monitoring of wetlands, remote 

sensing has been suggested over the conventional techniques 

such as field surveying as it is regarded as the leading 

technology for systematic and standardized mapping and 

monitoring of the earth’s surface. Compared to conventional 

Land Use Land Cover (LULC) mapping, wetland 

ecosystems' inherent biological and ecological characteristics 

are among the most complex ecosystems to be mapped. For 

example, they are not categorized by a specific type of 

vegetation or land cover; rather, they are united by the 

amount of water below the vegetation canopy, below, at, or 

near the surface of earth’s ground (Slagter et al., 2020). 

Moreover, due to the complexity of wetlands in terms of 

vegetation composition, position, and shape, satellite sensors' 

capacity for their classification is often insufficient. 

Consequently, different conventional and advanced machine 

learning methods for complex wetland classification are 

developed and proposed (Mahdianpari et al., 2019). 

On the other hand, remote sensing has several intrinsic and 

extrinsic characteristics of big data. The intrinsic 

characteristics are its dynamic state (i.e., the earth’s surface 

changes continuously), multi-scale (e.g., its spectral range, 

time interval, resolution, angle, and polarization), and non-

linear features (i.e., time-series data are often non-linear and 

noisy). The extrinsic characteristics of remote sensing can be 

defined by its multi-source, high-dimensional, and isomer 

characteristics (Tamiminia et al., 2020). As such several 

cloud computing platforms, including the Google Earth 

Engine (GEE) and Sentinel Hub are developed and proposed 

to address the challenges regarding the geo big data of remote 

sensing. Specifically, the GEE provides a free-of-charge 

infrastructure, storage, platform, and software for the 

processing of large-scale remote sensing images. For 

instance, the Data Catalog of the GEE contains massive 

remote sensing data, including Landsat, Sentinel, and 

MODIS series, as well as the high-resolution images of the 

US National Agriculture Imagery Program (NAIP). 

Moreover, the GEE code editor that uses the javascript 

programming language can be used for the processing of the 

data provided by the GEE.  

There are few studies on the comparison of classifiers 

provided by the GEE code editor. As such, we compare the 

performance of three available tree-based classifiers of the 

Decision Tree (DT), Random Forest (RF), and Extreme 

Gradient Boosting (XGB) in the GEE for the classification of 

complex wetlands in the Avalon pilot site. 
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2. METHODS

2.1. STUDY AREA AND REMOTE SENSING DATA 

The pilot site is the Avalon, situated in the very eastern 

portion of Newfoundland, Canada (Figure 1). Wetland 

habitat and other natural ecosystems, including bog, fen, 

marsh, swamp, and shallow water, are present in the Avalon. 

The peatlands (i.e., bog and fen) are the most dominant 

classes in the pilot site. It is worth mentioning that the ground 

truth data were collected in the summers of 2015 to 2017 by a 

group of wetland biologists familiar with the study area. We 

used the GEE for the processing and classification of the 

Sentinel-2 surface reflectance of the pilot site of the Avalon. 

The median values of Sentinel-2 images from 1st June 2021 

to 1st July 2021 were used. The selected bands and spectral 

indices, including the Normalized Difference Vegetation 

Index (NDVI), Normalized Difference Built-up Index 

(NDBI), and the Modified Normalized Difference Water 

Index (MNDWI), are shown in Table 1. 

Figure 1. The location of the study area of the Avalon (RGB 

composite of Sentinel-2 images). 

Bands Spectral Indices 

B2, B3, B4, B5, B6, B7, B8, B8A, 

B11, B12 
𝑁𝐷𝑉𝐼 =

𝐵8 − 𝐵4

𝐵8 + 𝐵4

𝑁𝐷𝐵𝐼 =
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𝐵11 + 𝐵8

𝑀𝑁𝐷𝑊𝐼

=
𝐵3 − 𝐵11

𝐵3 + 𝐵11

 Table 1. Sentinel-2 bands and spectral indices used in this 

study in the Avalon pilot site. 

The number of training and test pixels is shown in Table 2. It 

is worth mentioning that we used random sampling where 

ground truth data was divided into 50% as training and 50% 

as test data. 

Class Number of Training 

Pixels 

Number of Test 

Pixels 

Bog 3077 3077 

Fen 1637 1637 

Marsh 867 867 

Swamp 1164 1164 

Shallow 

Water 

1351 1351 

Urban 4866 4866 

Deep Water 3369 3369 

Upland 9343 9343 

Table 2. Training and test pixel sample for the pilot site of 

the Avalon. 

It is worth mentioning that, in the GEE code editor, there is 

no need for band resampling that has a different spatial 

resolution. In other words, the band resampling is done by 

the GEE platform without any extra coding.  

2.2. Decision Tree 

DT is a tree-based machine learning algorithm where each 

node represents a feature, each link (branch) represents a 

decision (rule), and each leaf node represents an outcome 

(output class)  (see Figure 2; Li and Tang, 2020). Probability 

analysis is used in this graphical method (Yang et al., 2020). 

A pattern among attributes and values of features is found in 

DT models. For example, a recursive top to bottom rule 

procedure along with a dividing technique is used in DT for 

image classification. Comprehensibility, simplicity from the 

mathematical point of view, and the ability to handle mixed-

type data in regression and classification tasks are the main 

advantages of the DT classifier (Su & Zhang, 2006). Despite 

these benefits, the final solution may not be the optimal 

model, and overfitting may arise when using one tree as the 

predictor (Maxwell et al., 2018).  
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2.3. Random Forest 

To overcome problems associated with a single DT, an 

ensemble tree-based classifier called RF was proposed 

wherein several DTs are used to reach an optimal global 

solution (Breiman, 2001). RF is computationally efficient and 

resistant to the noise in the sample data. In the RF classifier, 

using the input data (vector), each DT is built by random 

vectors that are sampled independently. Additionally, a 

voting procedure is used to find the most popular prediction 

among various DTs for a given vector data. For instance, 

majority voting or average values are used to integrate the 

results of several different DTs to reach an optimal model 

(Jamali, 2021a, 2021b, 2020; Jamali et al., 2021c; Moayedi et 

al., 2020). 

2.4. Extreme Gradient Boosting 

XGB is an advanced ensemble shallow classifier that is 

constructed based on the gradient boosting framework 

(Tianqi and Guestrin, 2016). The XGB algorithm can be 

defined as an improved gradient boosting decision tree 

(GBDT). It is worth highlighting that by introducing the 

regularization term into the objective function, the XGB 

classifier outperforms the GBDT technique in terms of 

avoiding the overfitting issue. Moreover, the XGB algorithm 

has a rather more simplified structure compared to the GBDT 

method. In the objective function of the XGB algorithm, the 

second-order Taylor expansion is applied. In addition, it 

simultaneously uses the first-order and second-order 

derivatives, making the XGB algorithm more accurate and 

faster than its descent gradient technique (Li et al., 2021, 

2020). Based on the previous research, the XGB classifier 

had better performance compared to the other classifiers such 

as RF and DT (Buthelezi et al., 2020; Wei and Hsu, 2020a, 

2020b). 

2.5. Accuracy assessment 

The classification results are evaluated in terms of mean 

overall accuracy (Equation 1). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒)

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠
× 100  (1) 

3. RESULTS AND DISCUSSION

Complex wetlands and non-wetlands of the pilot site of the 

Avalon were classified using three tree-based classifiers of 

the DT, RF, and XGB in the GEE code editor. The XGB 

(82.58%) classifier had the best performance over the other 

two tree-based classifiers of the DT (77.62%) and RF 

(82.52%) in terms of overall accuracy. Moreover, we 

evaluated the performance of the RF and XGB classifiers for 

a different number of trees as well (Figure 2). 

Figure 2. Performance of the Random Forest and Extreme 

Gradient Boosting for different numbers of trees. 

Based on the results, the XGB algorithm slightly 

outperformed the RF classifier for the complex wetland 

classification of the pilot site of the Avalon. The best overall 

accuracy for the RF (82.52%) and XGB (82.58%) classifiers 

was obtained where we set the number of trees to 50. The 

XGB classifier had more consistent classification results 

while increasing the number of trees. On the other hand, 

increasing the number of trees had a more significant effect 

on the accuracy of the wetland classification using the RF 

classifier compared to the XGB algorithm. The reason can be 

explained by their different method of ensembling. The RF is 

a bagging method in which each tree is constructed 

independently, and at the end of the training process, trees are 

ensembled, while the XGB classifier is a boosting method 

building one tree at a time. 

While implementing the available tree-based classifiers of the 

DT, RF, and XGB in the GEE code editor, we encountered 

several issues. The scale parameter was an important factor 

for the classification of the complex wetlands of the study 

area of the Avalon. For instance, we could use smaller scale 

parameters for the DT and RF classifiers, while we 

encountered an error of “Computed value is too large.” while 

using the XGB algorithm. The reason can be explained by the 

higher complexity and computation cost of the XGB 

classifier compared to the other algorithms of the DT and RF. 

Another issue was the implementation of the DT classifier, as 

there was not an example or reference provided by the GEE. 

Implementation of the DT classifier is shown in Table 3 as a 

reference for future research. 

var classifier = ee.Classifier.smileCart().train({ 

   features: trainingdata, 

   classProperty: 'Classes', 

   inputProperties: Avalon.bandNames() 

}); 

var treeString = classifier.explain().get('tree'); 

print(treeString) 
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var DT = ee.Classifier.decisionTree(treeString); 

Table 3. Implementation of the DT in the GEE code editor. 

Maps and confusion matrices of the classified landscape of 

the study area of the Avalon using the tree-based classifiers 

of the DT, RF, and XGB implemented in the GEE code 

editor are shown in Figure 3 and Table 4. While the XGB 

classifier had better performance over the RF and DT 

classifier, its computation in the GEE was slow, and we 

needed to use a bigger scale parameter to avoid the error of 

the high computation cost. 

Figure 3. Wetland classification maps of the Avalon pilot site using the Decision Tree (DT), Random Forest (RF), and Extreme 

Gradient Boosting (XGB) in Google Earth Engine. 

DT 

Bog Fen Marsh Swamp Shallow water Urban Deep water Upland 

Bog 2155 708 71 31 27 26 0 59 
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Fen 608 420 166 128 7 46 0 262 

Marsh 71 145 289 65 149 50 0 98 

Swamp 304 192 139 175 4 17 0 333 

Shallow Water 4 3 84 0 1038 0 220 2 

Urban 30 32 10 3 4 4752 0 35 

Deep water 0 0 0 0 98 0 3271 0 

Upland 339 258 361 281 19 257 0 7828 

RF 

Bog Fen Marsh Swamp Shallow water Urban Deep water Upland 

Bog 2722 269 24 3 17 4 0 38 

Fen 819 301 90 114 0 21 0 292 

Marsh 78 130 327 52 126 30 1 123 

Swamp 354 114 90 132 0 1 0 473 

Shallow Water 4 0 83 0 1064 1 197 2 

Urban 16 7 4 0 0 4829 0 10 

Deep water 0 0 0 0 41 0 3328 0 

Upland 307 72 85 77 1 269 0 8532 

XGB 

Bog Fen Marsh Swamp Shallow water Urban Deep water Upland 

Bog 2657 320 26 6 17 8 0 43 

Fen 780 315 77 142 0 26 0 297 

Marsh 66 119 307 60 131 41 1 142 

Swamp 324 127 85 162 0 4 0 462 

Shallow Water 4 0 72 0 1083 3 187 2 

Urban 22 6 6 0 0 4821 0 11 

Deep water 0 0 0 0 26 0 3343 0 

Upland 270 87 90 95 2 285 0 8514 

Table 4. Confusion matrices of the wetland classification using the Decision Tree (DT), Random Forest (RF), and Extreme Gradient 

Boosting (XGB) in Google Earth Engine. 
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4. CONCLUSIONS

Endangered ecosystems of wetlands provide vital services 

such as food security, water filtering, and protecting the 

shorelines from floods are important to be systematically 

monitored. As the leading technology in global earth 

observations, remote sensing provides the essential tools and 

capabilities of the standardized and systematic monitoring 

and classification of complex wetlands. On the other hand, as 

remote sensing has the intrinsic and extrinsic characteristics 

of big data, cloud computing platforms such as the GEE 

provide the essential tools and infrastructure to address big 

remote sensing data challenges. As such, in this study, we 

implemented three tree-based classifiers of the DT, RF, and 

XGB in the GEE code editor. Based on the results, the XGB 

classifier with an overall accuracy of 82.58% slightly 

outperformed the RF algorithm (82.52%) for the complex 

wetland classification of the pilot site of the Avalon. Besides, 

the DT had the least performance with an overall accuracy of 

77.62%. 
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