
DOWNSCALING OF SMAP SOIL MOISTURE PRODUCT BY DATA FUSION WITH 

VIIRS LST/EVI PRODUCT 
 

 

 

Xia Lei 1, Yuxiang Wang 1, Tao Guo 1 

1PIESAT Information Technology Co., Ltd., Beijing, China – (leixia, wangyx, guotao)@piesat.cn 

 

 

 

KEY WORDS: Soil Moisture, Downscaling, SMAP, VIIRS, LST-EVI Triangular Space 

 

 

ABSTRACT: 

 

Soil moisture is an essential variable of environment and climate change, which affects the energy and water exchange between soil 

and atmosphere. The estimation of soil moisture is thus very important in geoscience, while at same time also challenging. Satellite 

remote sensing provides an efficient way for large-scale soil moisture distribution mapping, and microwave remote sensing 

satellites/sensors, such as Soil Moisture and Ocean Salinity (SMOS), Advanced Microwave Scanning Radiometer (AMSR), and Soil 

Moisture Active Passive (SMAP) satellite, are widely used to retrieve soil moisture in a global scale. However, most microwave 

products have relatively coarse resolution (tens of kilometres), which limits their application in regional hydrological simulation and 

disaster prevention. In this study, the SMAP soil moisture product with spatial resolution of 9km is downscaled to 750m by fusing 

with VIIRS optical products. The LST-EVI triangular space pattern provides the physical foundation for the microwave-optical data 

fusion, so that the downscaled soil moisture product not only matches well with the original SMAP product, but also presents more 

detailed distribution patterns compared with the original dataset. The results show a promising prospect to use the triangular method 

to produce finer soil moisture datasets (within 1km) from the coarse soil moisture product.   

 

 

1. INTRODUCTION 

Soil moisture is a key variable of surface and atmospheric 

system, which plays an important role in the process of 

precipitation distribution, infiltration, runoff and latent heat flux, 

etc. (Molero et al., 2016; Mccoll et al., 2017). Estimations of 

large-scale surface soil moisture distribution can be applied to 

flood and drought monitoring, numerical weather forecasting, 

climate risk assessment, and crop growth modelling (Robinson 

et al., 2008; Martinez et al., 2016; Anna et al., 2018).  

 

Microwave remote sensing has been proved to be one of the 

most effective technique for studying the spatial distribution of 

soil moisture on a large scale (Rogier et al., 2014). Active 

microwave (radar) remote sensing has higher spatial resolution 

and stronger penetration, but is always with long revisit period 

and high cost, and also sensitive to surface roughness and 

vegetation biomass, resulting in complex data processing and 

modelling. Therefore, passive microwave remote sensing is still 

the most widely used method for soil moisture distribution 

mapping with the advantages of high temporal resolution and 

low cost. 

 

Global soil moisture products have been developed from 

observations by several passive microwave satellite remote 

sensing sensors worldwide, including Soil Moisture and Ocean 

Salinity (SMOS), Advanced Microwave Scanning Radiometer 

(AMSR-1/2), and Soil Moisture Active Passive (SMAP) 

satellite. Despite of the significant contribution to global 

environment and climate change studies, these products is still 

with relatively coarse footprint (tens of kilometres) due to 

limited SNR of microwave radiometers, which hinders their 

application in regional hydrological simulation and hazards 

(drought/flood) monitoring.  

 

To address this shortage, various downscaling approaches have 

been proposed to generate high-resolution soil moisture maps 

from original coarse soil moisture products (Peng et al., 2017; 

Nasta et al., 2018). The most commonly adopted scheme is to 

combine coarse passive microwave products with finer satellite 

observations by SAR or optical/thermal sensors (Srivastava et 

al., 2013; Rogier et al., 2014). Others use statistical / 

hydrological model-based or geographic relationship-based 

methods for soil moisture downscaling (Mascaro et al., 2010; 

Ranney et al., 2015). Since the latter approaches always need 

adequate ground measurements as input to drive a model or 

establish a relationship, multi-source satellite data fusion is 

much more frequently used in practice (Das et al., 2011; 

Chakrabarti et al., 2015).  

 

Compared with the radar backscatter signal recorded by SAR, 

optical and thermal infrared sensors can provide more closely 

related information with ground parameters. For example, 

vegetation index (VI), land surface temperature (LST) and 

surface albedo are all directly related to soil moisture content 

(Piles et al., 2016). With the premise that LST is sensitive to 

soil moisture content as well as vegetation cover, previous 

researches have introduced the “Universal Triangle Space” 

pattern between LST and VI to explore regional soil moisture 

variability (Carlson et al., 1994; Gillies et al., 1997; Sandholt et 

al., 2002; Chauhan et al., 2003), which have been demonstrated 

to have good performances.  

 

NASA’s SMAP satellite mission was launched on January, 

2015, mainly designed for global mapping of soil moisture and 

landscape freeze/thaw state (Colliander et al., 2017). The 

satellite is employed with an L-band radiometer, the best choice 

for soil moisture retrieval using microwave radiometers 

(Schmugge et al., 1986), which is same with SMOS, but 

providing a more accurate soil moisture retrieval due to its 

better antenna design and reduced impact from Radio 

Frequency Interference (RFI) contamination (Chan et al., 2016).  

 

Therefore, this paper attempts to downscale the SMAP 9km 

product to a footprint within 1km by fusing with Suomi NPP 

VIIRS LST/EVI product. Both satellite missions can provide 
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daily products in Level 3, which offers the best compliance for 

multi-source data fusing. Two triangular methods — 

“Temperature-Vegetation Triangle Method (TRIA)” (Kim and 

Hogue, 2012) and “Vegetation Temperature Condition Index 

(VTCI)” method (Peng et al., 2015) are testified and results are 

compared to identify the better downscaling strategy. 

 

 

2. DATA AND METHODOLOGY 

2.1 Datasets 

2.1.1 SMAP dataset: The SMAP data products are delivered 

at four levels: instrument measurements (Level 1), geophysical 

retrievals (swath based, Level 2), daily composite (Level 3), and 

land surface models assimilating SMAP measurements (Level 

4), grided as 36-km, 9-km and 3-km Equal-Area Scalable Earth 

grid ver. 2 (EASE-2) accordingly (Colliander et al., 2017). The 

L3_SM_P_E (SMAP Enhanced L3 Radiometer Global Daily 9 

km EASE-Grid Soil Moisture, Version 4) is downloaded from 

NDISC website (https://nsidc.org/data/smap/smap-data.html). 

An estimate of the soil moisture in the top 5 cm of the soil 

within 50 hours of acquisition is provided by the product. 

Though the SMAP mission makes daily measurements in the 

morning and evening (6 AM/6 PM at local time), only the 

measurements at 6 AM is used. This is because at this time of 

day, the temperature difference between vegetation and soil is 

subtle, as well as the difference of thermal radiation among land 

cover types, which can help to reduce the inversion error of soil 

moisture (Neill et al., 2020).  

 

2.1.2 VIIRS LST/EVI dataset: The Visible Infrared 

Imaging Radiometer Suite (VIIRS) instrument, designed as the 

heritage of the NOAA AVHRR and NASA EOS MODIS, was 

mounted on the S-NPP satellite and launched on October, 2011.  

VIIRS data products are distributed in two primary forms: 

Sensor Data Records (SDRs) (Level 1), and Environmental 

Data Records (EDRs) (Level 2) (Seaman et al., 2015). The 

LST/EVI datasets are released as EDR products (VIIRS Land 

Surface Temperature EDR (VLSTO) and VIIRS Vegetation 

Index EDR (VIVIO)), providing daily estimations of LST/EVI 

in 750m grids, which can be downloaded from NOAA CLASS 

website (https://www.avl.class.noaa.gov/saa/products/welcome).  

 

2.2 Test Area 

Three river basins located across a diversity of climatic and 

physiographic regions in China are selected as the test area to 

investigate the potential scalability of the downscaling methods: 

the Daqing River (Tanghe part) in Haihe River Basin with high 

intensity of human activities, the Yiluo River in Yellow River 

Basin as the key flood control region, and the Tangnaihai River 

in Tibetan Plateau with scarce ground observations (Figure 1). 

 

Figure 1. Locations of the three test areas. 

 

2.3 TRIA Method 

According to Kim and Hogue, 2012, microwave-derived soil 

moisture can be connected with high-resolution EVI and LST 

through a regression relationship. In this research, the 

relationship is expressed by a first-order polynomial regression 

formula: 

 

+SMAP EVI LST 
 

= ,                               (1) 

 

where SMAP is the gridded 9 km SMAP soil moisture product, 

α and β are the slope and intercept, and 
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where m and n are the ratios of grid size of low-resolution soil 

moisture product (here is SMAP product) to high-resolution 

optical product (here is VIIRS EVI/LST product), and EVI* and 

LST* are defined as 
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where EVI an LST are the high-resolution optical products (here 

is VIIRS EVI/LST product). The subscripts max and min 

represent the maximum and minimum EVI or LST over the 

study area, respectively.  

 

Finally, the regression coefficients α and β in (1) are utilized to 

estimate the downscaled soil moisture according to 

 
* *+downscaledSMAP EVI LST = 

.                      (6) 

 

2.4 VTCI Method 

Peng et al., 2015 downscaled the coarse microwave-derived soil 

moisture product using the vegetation temperature condition 

index (VTCI): 
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where the subscripts max and min represent the maximum and 

minimum high-resolution LST (here is VIIRS LST product) that 

have the same high-resolution EVI value (here is VIIRS EVI 

product) over the study area. Then the downscaled soil moisture 

is calculated by 
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2.5 Performance Evaluation 

Due to the lack of ground observations in the three test areas at 

the corresponding time, visual comparison between the 

downscaled and the original SMAP soil moisture product is 

made to preliminarily evaluate the performance of two 

downscaling methods. Comparison of histograms of original 

SMAP and downscaled products is furtherly made to 

quantitatively assess the performance of two methods. 

 

 

3. RESULTS AND DISCUSSION 

3.1 Satellite Observations  

Two dates (2019.08.15 and 2020.05.01) are selected when both 

SMAP and VIIRS mission have observations for the same test 

area to ensure full data coverage of all the three test areas 

(Figure 2). Tangnaihai River basin is located at the cross region 

of two scans of VIIRS mission, where the “Bow-tie effect” 

exists (Seaman et al., 2015), resulting in the “pixel-trims” 

within the observations of this area. During the data processing, 

the pixel-trim is repaired using gdal.FillNodata (GDAL/OGR, 

2020).  

 
Figure 2. SMAP soil moisture and VIIRS LST/EVI for the 

three test areas—TNH (short for Tangnaihai River basin), 

YILUO (short for Yiluo River basin), and TH (short for Tanghe 

River basin) on 2019.08.15 and 2020.05.01. 

 

3.2 LST-EVI Triangular Space  

There are typically two kinds of space patterns between LST 

and EVI: the triangular space and the trapezoidal space (Tang et 

al., 2021). Different downscaling methods are applicable for 

different space patterns. Therefore, the LST-EVI relationship 

for the three test areas are examined firstly before the 

downscaling methods are utilized (Figure 3).  

 

Figure 3 indicates the LST-EVI relationship in all three regions 

are in the triangular space. While the TRIA and VTCI methods 

are both applicable for the triangular space, thus can be used for 

soil moisture downscaling in this research. 

 

 
Figure 3. LST-EVI space for the three test areas—TNH (short 

for Tangnaihai River basin), YILUO (short for Yiluo River 

basin), and TH (short for Tanghe River basin).  

 

3.3 Downscaling Results 

3.3.1 TRIA: A polynomial regression relationship is 

established for each test area according to (1) (Figure 4). 

Tanghe observation gives the most significant correlation 

between soil moisture and LST*EVI. The correlation between 

Tangnaihai observation is generally good, despite that some 

outliers appear in the scatter plot (Figure 4(a)) deviating 

severely from the linear relationship line. These outliers tends to 

be related to the repaired “pixel trims” in the VIIRS LST/EVI 

product. Then the SMAP soil moisture is downscaled to a 

footprint of 750m by (6) using the linear relationships 

established in Figure 4, and results are shown in Figure 5. 

 
Figure 4. The polynomial regression relationships established 

for the three test areas—TNH (short for Tangnaihai River basin), 

YILUO (short for Yiluo River basin), and TH (short for Tanghe 

River basin). 
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Figure 5. The comparison of original SMAP soil moisture and 

downscaled soil moisture by TRIA method for the three test 

areas. 

 

3.3.2 VTCI: Following (7)-(9), the SMAP soil moisture is 

also downscaled to a footprint of 750m (Figure 6). 

 
Figure 6. The comparison of original SMAP soil moisture and 

downscaled soil moisture by VTCI method for the three test 

areas. 

 

3.4 Discussion 

Visual comparison of the results of two downscaling methods is 

straightforward. The TRIA method performs much better than 

the VTCI method, not only because of the better conservancy of 

general distribution pattern of soil moisture compared with the 

original SMAP product, and also the better smoothness and 

continuity level showed out by the downscaled product. The 

750m soil moisture maps by TRIA method in Figure 5 reveal 

much more detailed distribution pattern and much finer 

variation texture within all three test areas, which illustrates the 

applicability and scalability of the TRIA method in the 

downscaling of coarse microwave soil moisture product.  

 

Figure 7 shows the histograms of original SMAP soil moisture 

and downscaled soil moisture by TRIA and VTCI method for 

the TNH region. The TRIA method reserves the histogram of 

original SMAP product, while the VTCI method alters the 

original histogram a lot, which quantitatively demonstrates the 

good performance of TRIA method in soil moisture 

downscaling. 

 
Figure 7. The histograms of original SMAP soil moisture and 

downscaled soil moisture by TRIA and VTCI method for the 

TNH region. 

 

 

4. CONCLUSION 

In this study, the SMAP soil moisture product with spatial 

resolution of 9km is downscaled to 750m by fusing with VIIRS 

LST/EVI product. Two triangular methods — temperature-

vegetation triangle method (TRIA) and vegetation temperature 

condition index method (VTCI) are testified and compared. The 

TRIA method shows a promising potential in soil moisture 
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downscaling, for the downscaled soil moisture not only matches 

well with the original SMAP product, but also presents more 

detailed distribution patterns compared with the original dataset. 

Although further evaluation and validation with ground 

observation is still needed, the feasibility to use triangular 

method to combine the low-resolution microwave product with 

high-resolution optical observations for the production of finer 

soil moisture dataset is initially demonstrated.  

 

 

ACKNOWLEDGEMENTS 

This study is supported by the National Key R&D Program of 

China (No. 2018YFE0106500).  

 

REFERENCES 

Anna-Klara, A., Marco, C., Klas, H., Koutsouris, A.J., Crema, 

S., Zahra, K., 2018: Soil moisture remote-sensing applications 

for identification of flood-prone areas along transport 

infrastructure. Environmental Earth Sciences, 77(14), 1-17. 

 

Carlson, T.N., Gillies, R.R., Perry, E.M., 1994: A method to 

make use of thermal infrared temperature and NDVI 

measurements to infer soil water content and fractional 

vegetation cover. Remote Sens. Rev., 52, 45–59. 

 

Chakrabarti, S., Bongiovanni, T., Judge, J., Nagarajan, K., 

Principe, J.C., 2015: Downscaling satellite-based soil moisture 

in heterogeneous regions using high-resolution remote sensing 

products and information theory: a synthetic study. IEEE 

Transactions on Geoscience and Remote Sensing, 53(1), 85-101. 

 

Chan, S.K., Bindlish, R., O’Neill, P.E., Njoku, E., Jackson, T., 

Colliander, A., 2016: Assessment of the SMAP passive soil 

moisture product. IEEE Trans. Geosci. Remote Sens., 54(8), 

4994-5007. 

 

Chauhan, N.S., Miller, S., Ardanuy, P., 2003: Spaceborne soil 

moisture estimation at high resolution: A microwave-optical/IR 

synergistic approach. Int. J. Remote Sens., 24(22): 4599-4622. 

 

Colliander, A., Jackson, T.J., Bindlish, R., Chan, S., Das, N., 

Kim, S.B., 2017: Validation of SMAP surface soil moisture 

products with core validation sites. Remote Sens Rev., 191, 215-

231. 

 

Das, N.N., Entekhabi, D., Njoku, E.G., 2011: An algorithm for 

merging SMAP radiometer and radar data for high-resolution 

soil-moisture retrieval. IEEE Transactions on Geoscience and 

Remote Sensing, 49(5), 1504-1512. 

 

GDAL/OGR, 2020. Geospatial Data Abstraction Library 

(GDAL), Version 3.1.3. Open Source Geospatial Foundation. 

gdal.org (1 September 2020). 

 

Gillies, R.R., Carlson, T.N., Cui, J., Kustas, W.P., Humes, K.S., 

1997: A verification of the 'triangle' method for obtaining 

surface soil water content and energy fluxes from remote 

measurements of the Normalized Difference Vegetation Index 

(NDVI) and surface radiant temperature. International Journal 

of Remote Sensing, 18(15), 3145-3166. 

 

Kim, J., Hogue, T.S., 2012: Improving spatial soil moisture 

representation through integration of AMSR-E and MODIS 

products. IEEE Trans. Geosci. Remote Sens., 50(2), 446-460. 

 

Martinez-Fernandez, J., Gonzalez-Zamora, A., Sanchez, N., 

Gumuzzio, A., Herrero-Jiménez, C.M., 2016: Satellite soil 

moisture for agricultural drought monitoring: assessment of the 

SMOS derived soil water deficit index. Remote Sensing of 

Environment, 177, 277-286. 

 

Mascaro, G., Vivoni, E.R., Deidda, R., 2010: Downscaling soil 

moisture in the southern Great Plains through a calibrated 

multifractal model for land surface modeling applications. 

Water Resources Research, 46(8), 863-863. 

 

Mccoll, K.A., Alemohammad, S.H., Akbar, R., Konings, A.G., 

Yueh, S., Entekhabi, D., 2017: The global distribution and 

dynamics of surface soil moisture. Nature Geoscience, 10(2), 

100-104. 

Molero, B., Merlin, O., Malbeteau, Y., Bitar, A., Cabot, F., 

Stefan, V., Kerr, Y., Bacon, S., Cosh, M.H., Bindlish, R., 

Jackson, T.J., 2016: SMOS disaggregated soil moisture product 

at l km resolution: processor overview and first validation 

results. Remote Sensing of Environment, 180, 361-376. 

 

Nasta, P., Penna, D., Brocca, L., Zueccod, G., Romano, N., 

2018: Downscaling near-surface soil moisture from field to plot 

scale: A comparative analysis under different environmental 

conditions. Journal of Hydrology, 557, 97-108. 

 

Neill, P.O., Bindlish, R., Chan, S., Chaubell, J., Njoku, E., 

Jackson, Tom., 2020: Soil Moisture Active Passive (SMAP) 

Algorithm Theoretical Basis Document (ATBD) Level 2 & 3 

Soil Moisture (Passive) Data Products. 1-100. 

 

Peng, J., Loew, A., Merlin, O., Verhoest, N.E.C., 2017: A 

review of spatial downscaling of satellite remotely sensed soil 

moisture. Reviews of Geophysics, 55(2), 341–366. 

 

Peng, J., Loew, A., Zhang, S., Wang, J., Niesel, J., 2016: Spatial 

downscaling of satellite soil moisture data using a Vegetation 

Temperature Condition Index. IEEE Trans. Geosci. Remote 

Sens., 54(1), 558-566. 

 

Piles, M., Petropoulos, G.P., Sánchez, N., González-Zamora, Á., 

Ireland, G., 2016: Towards improved spatio-temporal resolution 

soil moisture retrievals from the synergy of SMOS and MSG 

SEVIRI spaceborne observations. Remote Sensing of 

Environment, 180, 403-417. 

 

Ranney, K.J., Niemann, J.D., Lehman, B.M., Green, T.R., Jones, 

A.S., 2015: A method to downscale soil moisture to fine 

resolutions using topographic, vegetation, and soil data. 

Advances in Water Resources, 76, 81-96. 

 

Robinson, D.A., Campbell, C.S., Hopmans, J.W., Hornbuckle, 

B.K., Jones, S.B., Knight, R., Ogden, F., Selker, J., Wendroth, 

O., 2008: Soil moisture measurement for ecological and 

hydrological watershed-scale observatories: a review. Vadose 

Zone Journal, 7(1), 358. 

 

Rogier, V.D.V., Salamam M.S., Eweys, O.A., Wen, J., Wang, 

Q., 2014: Soil moisture mapping using combined active/passive 

microwave observations over the east of the Netherlands. IEEE 

Journal of Selected Topics in Applied Earth Observations and 

Remote Sensing, 8(9), 1-18. 

 

Sandholt, I., Rasmussen, K., Andersen, Jens., 2002: A simple 

interpretation of the surface temperature/vegetation index space 

for assessment of surface moisture status. Remote Sensing of 

Environment, 79, 213-224. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVI-4/W5-2021 
The 6th International Conference on Smart City Applications, 27–29 October 2021, Karabuk University, Virtual Safranbolu, Turkey

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVI-4-W5-2021-355-2021 | © Author(s) 2021. CC BY 4.0 License.

 
359



 

 

Schmugge, T., O'Neill, P., Wang, J., 1986: Passive microwave 

soil moisture research. IEEE Trans. Geosci. Remote Sens., 24(1), 

12-22. 

 

Seaman, C., Hillger, D., Kopp, T., Williams, R., Miller, S., 

Lindsey, D., 2015: Visible Infrared Imaging Radiometer Suite 

(VIIRS) Imagery Environmental Data Record (EDR) User’s 

Guide. 1-31 

 

Srivastava, P.K., Han, D., Ramirez, M.R., Islam, Tanvir., 2013: 

Machine learning techniques for downscaling SMOS satellite 

soil moisture using MODIS land surface temperature for 

hydrological application. Water Resources Management, 27(8), 

3127-3144. 

Tang, R.L., Wang, S.L., Jiang, Y.Z., Li, Z.L., Liu, M., Tang, 

B.H., Wu, H., 2021: A review of retrieval of land surface 

evapotranspiration based on remotely sensed surface 

temperature versus vegetation index triangular/trapezoidal 

characteristic space. National Remote Sensing Bulletin, 25(1), 

65-82. 

 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVI-4/W5-2021 
The 6th International Conference on Smart City Applications, 27–29 October 2021, Karabuk University, Virtual Safranbolu, Turkey

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVI-4-W5-2021-355-2021 | © Author(s) 2021. CC BY 4.0 License.

 
360




