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ABSTRACT: 

 

Semantic segmentation of point clouds is indispensable for 3D scene understanding. Point clouds have credibility for capturing 

geometry of objects including shape, size, and orientation. Deep learning (DL) has been recognized as the most successful approach 

for image semantic segmentation. Applied to point clouds, performance of the many DL algorithms degrades, because point clouds 

are often sparse and have irregular data format. As a result, point clouds are regularly first transformed into voxel grids or image 

collections. PointNet was the first promising algorithm that feeds point clouds directly into the DL architecture. Although PointNet 

achieved remarkable performance on indoor point clouds, its performance has not been extensively studied in large-scale outdoor point 

clouds. So far, we know, no study on large-scale aerial point clouds investigates the sensitivity of the hyper-parameters used in the 

PointNet. This paper evaluates PointNet’s performance for semantic segmentation through three large-scale Airborne Laser Scanning 

(ALS) point clouds of urban environments. Reported results show that PointNet has potential in large-scale outdoor scene semantic 

segmentation.  A remarkable limitation of PointNet is that it does not consider local structure induced by the metric space made by its 

local neighbors. Experiments exhibit PointNet is expressively sensitive to the hyper-parameters like batch-size, block partition and the 

number of points in a block. For an ALS dataset, we get significant difference between overall accuracies of 67.5% and 72.8%, for the 

block sizes of 5m×5m and 10m×10m, respectively. Results also discover that the performance of PointNet depends on the selection 

of input vectors.  

 

 

1. INTRODUCTION 

Pointwise classification, also known as semantic segmentation is 

a higher-level task in object recognition: detection, classification 

and segmentation. This task, which is crucial for scene 

understanding and 3D data visualization, has many applications, 

which include 3D city modeling (Agoub et al., 2019), building 

information modeling (Romero-Jaren et al., 2021), location-

based services (Li et al., 2019), infrastructure monitoring (Li et 

al., 2021), road inventory (Ma et al., 2020), augmented reality 

(Ko and Lee, 2020), autonomous driving (Gong et al., 2020), and 

urban planning (Guo et al., 2018).  

 

Point clouds have been widely used for semantic segmentation. 

They can be generated by using remote sensing technologies 

such as LiDAR (Light Detection and Ranging), SAR (Synthetic 

Aperture Radar), and as an intermediary product of 

photogrammetry or structure from motion. A major source of 

large-scale outdoor point clouds is Airborne Laser Scanning 

(ALS) using LiDAR systems. Point clouds are usually 

unorganized, sparse, incomplete, noisy, and occluded. They also 

have inconsistent point density, irregular data format, arbitrary 

surface shape, sharp features and contaminated with outliers 

(Nurunnabi et al., 2014, 2015).  Due to the presence of a large 

number of object types; ranging from small scale spatial 

neighborhoods (e.g., wires on utility power poles) to large scale 

spatial neighborhoods (e.g., buildings), and many overlapping 

and closely related complex shape objects; automatic point 

labelling (i.e., semantic segmentation) of each point in ALS point 

clouds is challenging in urban environment. However, point 

clouds can provide a more precise 3D representation than images 

as they have the ability to capture 3D geometric details (e.g., 

shape, size and orientation) of objects. They are also of unified 

structures that can avoid the combinatorial irregularities and 

complexities of meshes, and thus are easier to learn from (Qi et 

al., 2017a). 
 

Many methods have been developed over the years for semantic 

segmentation in relevant research fields such as computer vision 

(Guo et al., 2020; Minaee et al., 2021), photogrammetry 

(Nurunnabi et al., 2016; Yu et al., 2021), and machine learning 

(ML; Chehata et al., 2009; Zhang et al., 2013). In recent years, 

deep learning (DL) has been recognized as the most powerful 

approach in object detection, classification, and segmentation 

(Qi et al., 2017a, b; Thomas et al., 2019; Hu et al., 2020; Boulch, 

2020; Guo et al., 2020; Jing et al., 2021). Convolutional neural 

networks (CNNs) (LeCun et al., 1989) have achieved 

unprecedented success in structured data (e.g., image) analysis 

(Krizhevsky et al., 2012). However, using CNNs for point clouds 

processing is challenging because CNNs typically require 

regular data in order to perform weight sharing. Because of the 

unstructured nature of point clouds, many researchers transform 

such point clouds into regular formats like voxel grids or 

multiple image collections that can loss data information (Qi et 

al., 2017a). They also transform the raw data into useful features, 

and develop feature-based DL methods (Zhang et al., 2018; 

Nurunnabi et al., 2021). Some methods reformulate the CNN 

architecture to consider the unstructured nature of point clouds 

(Boulch, 2020). Recently, Qi et al. (2017a) developed a 
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The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVI-4/W5-2021 
The 6th International Conference on Smart City Applications, 27–29 October 2021, Karabuk University, Virtual Safranbolu, Turkey

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVI-4-W5-2021-397-2021 | © Author(s) 2021. CC BY 4.0 License.

 
397



 

revolutionary approach, PointNet, that directly feeds point 

clouds into a DL architecture. It has gained remarkable success 

for objects classification, part segmentation and semantic 

segmentation of indoor point clouds. The authors (Qi et al., 

2017a) showed on par or better performance than state-of the-art 

multi-view and volumetric approaches (Su et al., 2015; Qi et al., 

2016). PointNet is simple, computationally efficient, and has 

strong 3D representation ability. Many other successful networks 

relying on PointNet’s basic architecture have since been 

proposed (Qi et al., 2017b; Achlioptas et al., 2018; Sun et al., 

2019). However, people frequently use this algorithm for 

classification and semantic segmentation because of its 

simplicity and fast computational capability. Inappropriately, 

many researchers use PointNet with values for the hyper-

parameters unchanged from the original paper without 

investigating the sensitivity to the hyper-parameters.    

 

This paper evaluates prospects and limitations of PointNet for 

semantic segmentation in large-scale ALS point clouds in urban 

environment (i.e., outdoor). We estimate the sensitivity of the 

hyper-parameters such as: (i) block size, (ii) the number of points 

in a block, and (iii) the batch-size used in the PointNet algorithm. 

Additionally, we study the effects of the different combinations 

of the input vectors, we performed PointNet only with 3D (x, y, 

and z coordinates), 3D adding with their normalized values 

(𝑥𝑛, 𝑦𝑛 , 𝑧𝑛), and the other input vectors like intensity (I), return 

number (RN), scan angle (SA), and color (R, G, B) information.   

 

The remainder of the paper includes a brief discussion on 

PointNet algorithm together with relevant point-based methods 

in Section 2. Experiments in Section 3 demonstrate the 

sensitivity of the PointNet algorithm on required hyper-

parameters, and underlying data nature through three large-scale 

ALS datasets in urban environments followed by a short general 

discussion and concluding remarks in Section 4.    

 

 

2. REVISIT POINTNET AND RELATED DL NETS  

A point cloud is an un-ordered set of vectors, whose basic 

structure can be represented as a set of 3D points {𝑝𝑖 =
(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖)|𝑖 = 1,2, … , 𝑛)}, where x, y, z are the three coordinates 

of the points. Additional characteristics such as color, intensity 

(I), and RN may be available.  

 

PointNet architecture (Fig. 1) processes each point 

independently, learns per-point features using shared multilayer 

perceptrons (MLPs) layers followed by a global max-pooling 

layer. This architecture combines three basic modules: (i) a 

symmetry function, (ii) local and global information 

aggregation, and (iii) a joint alignment network. The max-

pooling is a symmetric function that is used to make a model 

invariant to input permutation. The max-pooling layer 

aggregates information from each point, and extracts global 

shape features. Zaheer et al. (2017) demonstrated that summing 

up all representations and applying nonlinear transformations 

help to achieve permutation invariance. The second module is 

crucial for semantic segmentation. After computing the global 

point cloud feature, this module feeds it back to the per point 

feature by concatenating the global feature with each of the point 

features. This new point feature holds both the local and global 

information, hence the network implies both local geometry and 

global semantics. The function of the third module is to make the 

semantic labelling invariant to certain geometric (e.g., rigid) 

transformation. A solution of semantic labelling invariant to 

geometry is to make an alignment of all inputs to a canonical  

 
 

Figure 1. PointNet architecture, mlp stands for multilayer 

perceptrons, numbers in brackets are layer sizes; m and k are 

the number of classes. Figure curtesy (Qi et al., 2017a). 

 

space before feature extraction. Jaderberg et al. (2015) developed 

a spatial transformer network to align 2D images through 

sampling interpretation. As each point in PointNet is transformed 

independently, the input format is easy to apply for the affine 

transformation. A data-dependent spatial transformer network, 

which is a mini network called T-Net; is included in the basic 

net-structure to canonicalize (predict affine transformation 

matrix) the data before processing. This T-Net is directly applied 

to the points’ coordinates, and regresses to a 3×3 matrix. 

Another T-Net on point features is included to align features 

from different input point clouds. This T-Net is the same as the 

first one except that its function is to regress to a 64×64 output 

matrix. Adding T-Nets in the network can improve performance 

of the network (Qi et al., 2017a). The final fully connected layers 

combine these learnt optimal values into the global descriptor 

before being used to predict the points’ labels.  

 

PointNet ignores local spatial relationships in the data that makes 

it computationally efficient, but limits its performance when it 

comes to understand fine-grained patterns and when generalizing 

complex scenes (Qi et al., 2017b). Qi et al. (2017b) developed 

PointNet++, which extracts local features from local 

neighborhoods. Local features are grouped to make larger units, 

and then processed to get higher level features. PointNet is 

chosen in PointNet++ as a local feature learner. Point-based 

networks that have been developed to learn local structure, can 

be categorized into four groups: neighboring feature pooling (Qi 

et al., 2017b; Zhao et al., 2019), kernel-based convolution (Su et 

al., 2018; Thomas et al., 2019), graph-message passing (Wang et 

al., 2019; Kang and li, 2019), and attention-based aggregation 

(Yang et al., 2020; Zhang et al., 2019). These methods produce 

good semantic segmentation results, but most of them are limited 

to small datasets of around 4k points or 1m× 1m blocks with 

4,096 points, and cannot be generalized directly to larger datasets 

(Hu et al., 2020). A handful of methods have been developed to 

process large-scale point clouds (Landrieu and Simonovsky, 

2018; Rethage et al., 2018; Chen et al., 2019; Boulch, 2020; Han 

et al., 2021), but most of them are computationally expensive due 

mainly to their data pre-processing requirements.  

 

 

3. EXPERIMENTS AND EVALUATION  

We conducted several experiments, and investigated various 

issues that influence PointNet for semantic segmentation in 

large-scale point clouds. More specifically, we evaluated the 

effects of point density variation, block size, batch size, the 

number of points in a block, and input vectors through three sets 

of outdoor ALS data including two ISPRS (International Society 

for Photogrammetry and Remote Sensing) benchmark datasets. 

We perform the PointNet algorithm on a computer with an 

NVIDIA GeForce RTX 2080 Super with Max-Q graphics card, 
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64 GB RAM, Intel® Core™ i7-10875H CPU @ 2.30GHz. To 

this end, we evaluate the following performance metrics: 

Intersection over Union (IoU), mean IoU (mIoU), F1-score (F1), 

mean F1 (mF1) and the Overall Accuracy (OA). These evaluation 

metrics are defined as follows:   

 

IoU𝑖 =
𝐶𝑖𝑖

𝐶𝑖𝑖+∑ 𝐶𝑖𝑗+∑ 𝐶𝑘𝑖𝑘≠𝑖𝑗≠𝑖
                          () 

 

F1 − score = 2 ×
𝑃×𝑅

𝑃+𝑅
=  

𝐶𝑖𝑖

𝐶𝑖𝑖+
1

2
(∑ 𝐶𝑖𝑗+∑ 𝐶𝑘𝑖𝑘≠𝑖𝑗≠𝑖 )

        () 

 

OA =  
∑ 𝐶𝑖𝑖

𝑁
𝑖=1

∑ ∑ 𝐶𝑗𝑘
𝑁
𝑘=1

𝑁
𝑗=1

                               () 

 

where 𝐶𝑖𝑖  (true positive, TP) is the number of points from 

ground-truth class i identified as ith class, 𝐶𝑖𝑗 (false negative, 

FN) is the number of points from ground-truth class i but 

wrongly identified as jth class, 𝐶𝑘𝑖 (false positive, FP) is the 

number of points wrongly identified as ground-truth class i, but 

are from kth class, Precision, P = [TP/(TP+FP)] and Recall, R = 

[TP/(TP+FN)]. F1 and OA do not balance different class 

frequencies giving higher impact to larger classes (Hackel et al., 

2017), hence to compensate the influence of different class 

frequencies, additionally, we report IoU and mIoU.  

 

3.1 Experiment 1 (Vaihingen data) 

In the first experiment, we consider the ISPRS benchmark open 

access dataset (Niemeyer et al., 2014) used for 3D semantic 

labelling context. This was collected over the city of Vaihingen, 

Germany using a Leica ALS50 system. This dataset is known as 

the Vaihingen dataset. Scanning height for the dataset was 500m 

with field of view 45o. The dataset is split into a training set (Fig. 

3) and a test set (Fig. 4a) consisting of 753,876 and 411,722 

points, respectively. The training set is mostly residential, with 

isolated house and high-rise buildings, and covers 399m×421m 

area. The test set covers an area of 389m×419m within the city 

center, and contains dense and complex buildings. 

 

Vaihingen data have an average point density of 4 points/m2, 

each point has coordinates (x, y, z), I, RN, and the number of 

returns. The points are labelled as power line (PL), low 

vegetation (LV), impervious surface (IS), car, fence, roof, 

facade, shrub and tree. Necessary parameters such as number of 

hidden layers, and optimizers (Adam; Kingma and Ba et al., 

2017) with learning rate of 0.001, and momentum 0.9 are fixed 

as they are defined in the original paper (Qi et al., 2017a). In 

PointNet, block size for the indoor datasets was fixed with 

1m×1m of 4,096 points. Bar diagrams of Fig. 2 show significant 

disparity among the number of points within the groups. To 

balance among the nine classes, using stratified splits, we 

sampled 20% points of the training set as the validation set that 

is needed to assess the performance of the model during training. 

To see the effects of different point densities, we prepared 

training and validation data of three different block sizes: 

5m×5m, 10m×10m, and 15m×15m with an overlap of 1m. 

Overlapping can increase the quantity of data and robustness. We 

then sampled 2,048 points from each block. Each point within 

the blocks is characterized by a 9D vector of x, y, z, I, RN, the 

height-above-ground (zh) and normalized x, y, z values 

(𝑥𝑛, 𝑦𝑛 , 𝑧𝑛). The zh values are computed using the LAStools 

(Isenburg, 2014) software. Batch normalization (Ioffe and 

Szegedy, 2015) is used for all layers with the ReLU (Nair and 

Hinton, 2010) activation function, and dropout layers are only 

used for the last MLP. To see the effects of batch size, we 

evaluated PointNet with batch sizes of 24, 32 and 36 at the time 

of training, and trained the model with 50 epochs. At the end of 

each epoch the model computes the OA for the evaluation 

(validation) set, and finally the best model with the highest OA 

is used to label the test data. We calculated the performance 

metrics: F1, mF1, IoU, mIoU, and OA for the test set. The results 

are shown in Table 1, and Fig. 4b. 

 

3.1.1  Sensitivity with block size: The highest OA (72.8%) with 

mF1=46.0% and mIoU=34.7% is achieved when the block size 

is 10m×10m, sampled 2,048 points from each block, and batch 

size 32.  Although, the results (OA, mF1 and mIoU) of block size 

10m×10m with batch size 32 seem better than the results of the 

block sizes of 5m×5m and 15m×15m with the same batch size, 

the results of all the individual classes do not follow the same 

pattern. For example, for the class car, F1 score of block size 

5m×5m having 2,048 points in a block, and batch size of 32 is 

52.8%, which is higher than the F1 score 39.7% for block size of 

10m×10m having 2,048 points in each block and batch size 32.  

 

3.1.2  Sensitivity with a number of points belong to a class: 

We see that the classes with more training points dominate the 

classification accuracy. Fig. 2 shows that for both the training 

and test datasets the classes LV, IS, roof and tree contain 

expressively more points than other classes like car and fence. 

The classes with more training points are labelled significantly 

more accurate than the classes having a smaller number of points.  

For example, with the block size 10m×10m and batch size 32, 

IS points are labelled more accurately with 87.5% and 77.7% of 

F1 score and IoU, respectively, whereas fence points are 

identified with F1 score of 17.4% and IoU of 9.4%.   

 

 
 

Figure 2. Bar diagrams of the point distribution of the 

Vaihingen training and test datasets. 

 

 
 

Figure 3. Vaihingen training dataset with ground-truth labels in 

different colors.
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Figure 4. (a) Vaihingen test dataset with ground-truth labels, and (b) semantic segmentation results with error (false negative, red). 

 

Block size  

(No. of points) 
5m×5m (2,048) 10m×10m (2,048) 15m×15m (2,048) 

10m×10m 

(4,096) 

Batch size 24 32 36 24 32 36 24 32 36 32 

Class\Metrics F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU 

PL 12.4 6.6 4.6  2.4 21.2 11.9 3.0 1.5 15.1 8.2 5.7 2.9 4.4 2.4 0.8 0.4 1.1 0.5 1.6 0.8 

LV 70.3 54.3 74.2 58.9 76.7 62.1 75.5 60.7 74.8 59.7 71.9 56.2 73.4 57.9 73.3 57.9 73.2 57.7 73.9 58.6 

IS 83.9 72.3 82.9 70.7 86.7 76.5 88.5 79.3 87.5 77.7 87.7 78.1 87.9 78.4 86.7 76.5 85.9 75.3 86.3 75.9 

Car 24.8 14.2 52.8 35.9 51.1 34.3 38.1 23.5 39.7 24.8 32.5 19.4 30.0 17.7 29.6 17.3 30.3 17.8 39.3 24.6 

Fence 16.6 9.1 14.4 7.8 19.9 11.1 11.5 6.1 17.4 9.4 11.1 5.9 12.0 6.4 10.3 5.4 15.8 8.6 23.1 13.1 

Roof 69.8 53.6 71.0 55.1 75.0 59.9 73.0 57.4 79.9 66.5 59.6 42.4 65.6 48.8 71.1 55.2 65.3 48.4 72.2 56.5 

Facade 15.1 8.2 14.8 8.0 12.4 6.6 14.0 7.5 14.7 7.9 10.4 5.1 7.5 3.9 5.7 2.9 10.8 5.9 13.3 7.1 

Shurb 26.5 15.3 29.6 17.3 33.6 20.2 22.5 12.7 24.3 13.8 28.2 16.4 28.3 16.7 28.7 16.7 20.7 11.6 17.6 9.7 

Tree 61.3 44.2 63.2 46.2 66.5 49.8 59.2 42.1 61.0 43.9 52.2 35.3 50.9 34.2 53.9 36.9 49.9 33.2 58.9 41.7 

mF1, mIoU 42.3 30.9 45.3 33.6 49.2 36.9 43.3 32.3 46.0 34.7 39.9 29.1 40.0 29.6 39.6 29.9 39.2 28.8 42.9 32.0 

OA 64.4 67.7 70.4 70.0 72.8 64.4 66.6 68.2 65.2 68.1 

 

Table 1. PointNet performance metrics for the Vaihingen test dataset (values are in %). 

 

3.1.3  Sensitivity with batch size: For the batch size of 32, OA 

(and mIoU) for block sizes 5m×5m, 10m×10m and 15m×15m 

are 67.7% (33.6%), 72.8% (34.7%), and 68.2% (29.9%), 

respectively. These results show that specific (larger/smaller) 

block size does not guarantee better results. We also perform the 

algorithm and classified points with 10m×10m blocks having 

4,096 points instead of 2,048 points in each block. Results in the 

last two columns in Table 1 show that more points (4,096) in a 

10m×10m block and batch size of 32 do not produce better 

results than less sample points (2,048) in the same size block of 

10m×10m. Rather, the mF1 (46.0%) and mIoU (34.7%) for 

4,096 samples are decreased to 42.9% and 32.01%, respectively. 

 

To achieve the highest OA of 72.8% the algorithm took time of 

543s and 24s for training and tests, respectively.   

 

3.2 Experiment 2 (DALES data) 

We used another recently introduced ISPRS benchmark ALS 

dataset for the second experiment (Varney et al., 2020). This 

LiDAR dataset was collected using a Riegl Q1560 dual channel 

system with the flying altitude of 1,300 m, over the City of 

Surrey in British Columbia, Canada. This dataset is named 

DALES (Dayton Annotated LiDAR Earth Scan). This dataset 

with labels covers an area of 10km2 that consists of 40 tiles. Each 

tile of 500m2 contains on average 12 million points with a 

resolution around 50 points/m2. The mean error for the vertical 

accuracy is ±8.5 cm. The dataset was denoised by a robust 

statistical method (Nurunnabi et al., 2015). It consists of a variety 

of landscape including office, park, high rise buildings, 

residential buildings, and natural objects. The data points are 

labelled as ground, vegetation (Veg.), car, truck, power line (PL), 

fences, poles, buildings and unclassified (uC). The dataset 

randomly separated into 29/11 tiles of 70/30 % of points for 

training/test sets. We selected eight tiles of 98,181,415 points 

having different objects for training set, one tile of 11,345,691 

points for validation set, and one tile of 13,669,819 points for the 

test set (Fig. 5a).  We performed PointNet in a similar way using 

the same hyper-parameters used in Experiment 1. This time, we 

chose a block size of 10m×10m, and a batch size of 24.  

 

3.2.1  Sensitivity with number of points in a block: To evaluate 

the effects of sampling a different number of points from a block, 

we sampled 1024, 2048 and 4096 points for a block of 

10m×10m. Table 2 reports that the results for 2,048 

(OA=91.1%) and 4,096 (OA=91.5%) points from a block are 

almost similar, but both are significantly better than the result 

(OA=87.0%) for the blocks with 1,024 sample points. Results of 

sampling 4,096 points in a block of 10m×10m are in Fig. 5b that 

show many points are misclassified as FN (red) for all the 

classes. The Fig. 5b indicates a roof within a yellow circle is fully 

misclassified as ground.  
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Figure 5. (a) DALES test dataset with ground-truth point labels, and (b) semantic segmentation results for the test dataset, including 

error (false negative, red). 

No. of points in a block 1,024 2,048 4,096 4,096 4,096 (x, y, z) 

Class\Metric F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU 

uC  0.8   0.4   3.2  1.6   2.5   1.2 - -   0.7   0.4 

Ground   94.6 89.7 95.1   90.7 95.3 91.1 94.6 89.8 92.9 86.8 

Vegetation  83.5 71.6 89.4   80.8 89.5 81.0 89.1 80.4 84.3 72.8 

Car   6.3  3.3 30.1   17.7 46.1 30.0 29.6 17.4 12.1   6.5 

Truck   0.0  0.0  0.0  0.0   0.0   0.0 - -   0.0   0.0 

PL  55.6 38.5 73.1 57.6 69.0 52.7 56.9 39.8  51.1 34.4 

Fence  0.0  0.0   9.1   4.8   7.2   3.7 - -    0.0   0.0 

Poles   0.0  0.0 16.9   9.2 19.1  10.6 - -    1.2   6.1 

Building   81.8   69.2   90.6 82.8    91.1   83.7 88.6 79.6   85.6 74.8 

mF1, mIoU 35.8 30.3 45.3 38.4 46.6 39.3 71.8 61.4 36.4 30.7 

OA 87.0 91.1 91.5 90.8 87.5 

Table 2. PointNet performance metrics for the DALES test dataset (values are in %), ‘-’ indicates no available results for the class, 

because the class was not considered for the analysis. 

 
 

Class Training points Test points 

uC 725,115 26,385 

Ground 49,670,953 5,071,173 

Veg 30,820,218 5,223,011 

Car 784,488 122,904 

Truck 95,266 1,883 

PL 170,811 70,356 

Fence 465,389 46,431 

Pole 96,333 10,734 

Building 15,352,842 3,096,942 

Total 98,181,415 13,669,819 

Table 3. Points distribution for the training and test datasets. 

3.2.2  Sensitivity with a number of points belong to a class: 

The point distributions for the training and test sets are given in 

Table 3. Table 3 shows huge gaps between the number of points 

for some of the classes, e.g., in the training sets, truck and ground 

classes consist of 95,266 and 49,670,953 points, respectively. 

Likewise, the 1st experiment, the results reveal that the accuracy 

of the point classification is subjugated by the classes having 

more training points. For example, for sample size 4,096, Table 

2 (Columns 6, 7) shows the highest accuracy of F1=95.3%, 

IoU=91.1% for the ground class, and missed to classify any point 

accurately from Trucks. We also computed results without the 

groups having a smaller number of points: uC, truck, fence and 

pole. The results are shown in Table 2 (Columns 8, 9), which 

explore that the values of both F1 and IoU for all the classes are 

smaller than earlier when all the classes (points) were 

considered. For example, after removing the classes (uC, truck, 

fence and pole) the values of F1 and IoU for car are 29.6% and 

17.4% that were 46.1% and 30.0%, respectively, where all the 

classes were considered.  

 

3.2.3  Sensitivity with the input vectors: To see the effects of 

the input vectors, we perform PointNet with 9 input vectors (x, 

y, z, RN, zh, scan angle, 𝑥𝑛, 𝑦𝑛 , and 𝑧𝑛). Unlike the previous 

experiment, we did not consider intensity, because it was not 

available. Moreover, we perform the algorithm only with 3 

inputs vectors (x, y, z). Notable changes occur in the results, 

accuracies drop down significantly for all the classes with 

OA=87.5%, mF1=36.4% and mIoU=30.7%. For example, for the 

ground class, considering only x, y, and z as the input vectors, F1 

and IoU are 92.9% and 86.8%, which are 95.3% and 91.1%, 

when we consider all 9 input vectors, and with all the classes.  

 

3.3 Experiment 3 (Dudelange data) 

As the third experiment, we use the LiDAR survey data of the 

Luxembourg territory that provided by Administration of 

Cadastre and Topography (ACT), covering the city of 

Dudelange. We name it Dudelange data, used in Nurunnabi et al. 

(2021).  These data have open access at 

https://data.public.lu/en/datasets/lidar-2019-releve-3d-du-

territoire-luxembourgeois/. They were collected by using a 

LiDAR based ALS system. Scanning height for the dataset was 

1100 m and side overlap was minimum 60%. They have an 

average resolution of around 15 points/m2 with a horizontal and 

vertical precision of ±3 cm and ±6 cm, respectively. The data 

are designed into 500m×500m tiles, the tiles are grouped 
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together up to nine tiles covering a 1500m×1500m area. Each 

tile contains on average around 5-7 million points.  

 

We selected four tiles of 500m×500m in urban areas consisting 

of 24,481,206 points. Two tiles are selected randomly and 

coupled for the training dataset, and the validation and test 

datasets are selected from the other two tiles. The training, 

validation and test sets consist of 12,866,206, 5,731,462 and 

5,883,538 points, respectively. The Dudelange data are available 

with labels: ground, low vegetation, medium vegetation, high 

vegetation, buildings, water, bridges, high voltage power lines 

and unclassified (uC) points. To get more accurately labelled 

data, we relabelled the datasets into four groups: ground, 

vegetation, buildings and unclassified (all the other different 

objects) again by using the Trimble Business Center (TBC) and 

LAStools software. We perform PointNet as the previous 

experiments using the same hyper-parameters. We chose a block 

size of 10m×10m, and a batch size of 32 in this experiment.  

 

3.3.1  Sensitivity with number of points in a block: We 

sampled 1024, 2,048 and 4,096 points for a block similar to the 

2nd experiment. 1st part (Columns 4 to 9) of the Table 4 shows 

that unlike the result of 2nd experiment, with a block size of 

10m×10m the results for 1,024 (OA=95.9%), 2,048 

(OA=95.5%) and 4,096 (OA=95.8%) points from a block are 

almost similar. Results of sampling 1,024 points in a block are in 

Fig. 7a that show FN (misclassified) points for all the classes as 

red. To see the results in more detail, in Fig. 7b, we plot a specific 

part in the white rectangle in Fig. 7a, where a high-rise building 

and some roofs are highlighted, Fig. 7b shows that many facade 

and roof points are misclassified as non-building points (yellow 

rectangles and cyan ellipses). It shows that the false negative 

points are mostly from the building-facades.  
 

3.3.2  Sensitivity with input vectors: In this experiment, we 

performed PointNet based on two sets of 9 input vectors: A = {x, 

y, z, I, RN, zh,  𝑥𝑛, 𝑦n, 𝑧𝑛} and B = {x, y, z, R, G, B, 𝑥𝑛, 𝑦𝑛, 𝑧𝑛}. We 

see remarkable gap between the results from the two sets (A and 

B) of input vectors. When 1,024 points are sampled from each 

block of size 10m×10m, PointNet achieves 95.9%, 84.6% and 

76.8% of OA, mF1, and mIoU, respectively for the input set A.  

Whereas, for the input set B, when we replace R, G, B as the 

alternative of I, RN and zh, results of OA, F1, and IoU are equal 

to 89.1%, 62.8% and 54.4%, respectively.  Note that, Qi et al. 

(2017a) used the set B as the input vectors in their experiments 

for semantic segmentation.   

 

  
 

Figure 6. (a) Dudelange test dataset in an urban area contains large-medium-small trees, large-small commercial and residential 

buildings, car, etc., (b) test dataset with ground-truth point labels. 
 

  

Figure 7. (a) Semantic segmentation results with errors (false negative, red) for the Dudelange test dataset, and (b) selected area in 

white rectangle in Fig. 7(a) to magnify the detail, many facade points in the yellow rectangles and roof points in the cyan ellipses are 

falsely identified (FN, red) as non-building points. 
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Input vectors A= {x, y, z, I, RN, zh, 𝑥n, 𝑦n, 𝑧n}  B= {x, y, z, R, G, B, 𝑥n, 𝑦n, zn} 

Training points 

count 

Test  

points count 

No. of points in a block 1,024 2,048 4,096 1,024 2,048 4,096 

Class\Metric F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU 

709,901 192,214 uC 54.6 37.6 42.9 27.3 51.5 34.7 2.3 1.2 1.7 0.9 3.0 1.5 

10,765,583 4,050,146 Ground 98.9 97.7 98.6 97.2 98.8 97.6 94.7 90.0 87.9 77.9 94.3 89.2 

4,077,626 721,862 Vegetation 90.4 82.5 89.6 81.1 89.9 81.6 69.8 53.6 70.4 54.3 74.7 59.6 

3,044,558 919,316 Building 94.4 89.4 93.9 88.6 94.1 88.8 84.4 73.0 63.2 46.2 84.9 73.7 

18,597,668 5,883,538 mF1, mIoU 84.6 76.8 81.3 73.6 83.6 75.7 62.8 54.4 55.8 44.8 64.2 56.0 

  OA 95.9 95.5 95.8 89.1 78.4 89.2 

 

Table 4. PointNet performance for the Dudelange test dataset (values are in %). 
 
 

4. GENERAL DISCUSSION AND CONCLUSIONS 

This paper investigated PointNet, the first developed end-to-end 

DL algorithm to directly processes raw point clouds for large-

scale outdoor environment. Experiments show that although the 

architecture is computationally efficient and achieved notable 

success in indoor point clouds, but when it is for large-scale 

outdoor point clouds it was not up to the desired level. From the 

results of three ALS datasets, it is revealed that PointNet is 

vulnerable to (i) point density, (ii) block size, (iii) number of 

points within a block, (iv) batch size, and (v) input point vectors. 

This algorithm performs better for the data with sufficient 

density, e. g., for 10m×10m block with 2,048 points; OA 

(91.1%) for the DALES data with density of 50 points/m2 were 

significantly larger than the OA (72.8%) for the Vaihingen data 

with density of 4 points/m2. It performs well for semantic 

segmentation for the classes with a sufficient number of points, 

but the results are very poor for the classes with a small number 

of points, even sometimes unable to label the points in a class of 

small number of points. Although, Dudelange data have lesser 

point density (15 points/m2) than the DALES data (50 

points/m2), for the input vector set A and 4,096 points in a block 

the values of the performance metrics for the Dudelange data 

(OA=95.8%, mF1=83.6% and mIoU=75.7%) are significantly 

higher than for the DALES data (OA=91.5%, mF1=46.6% and 

mIoU=39.3%). The results explored the cause is that point 

distributions for different classes are almost homogenous for the 

Dudelange data. These results indicate that PointNet provides a 

promising opportunity for semantic segmentation without any 

input data transformation, if enough training data are available 

having a sufficient point density and enough points in a class. 

Users should be careful about fixing hyper-parameters to get the 

best results. Hyper-parameters behave different on diverse 

datasets based on their underlying pattern. Moreover, input 

vectors have significant impact on the results for point labelling. 

We see for the Dudelange data of sample size 1,024 for a 

10m×10m block, OA was 6.8% (95.9%-89.1%) higher when 

input vectors I, RN and zh were used in places of R, G and B.    

 

However, the algorithm needs improvement with a deeper 

knowledge about the underlying characteristics of ALS data to 

get the required level of accuracy. Since, there are big gaps 

between the spatial extent of different sizes of objects in large-

scale ALS point clouds, inclusion of adaptive and/or multi-scale 

neighborhood information into the network as input vectors is 

expected to be beneficial. Additionally, objects geometry should 

be considered for the better results.  Further research is envisaged 

to improve the network to make the method more robust to the 

standard hyper-parameters used in PointNet. Another issue will 

be considered to improve the classification accuracy for the 

classes (e.g., car, poles, and building facades) usually that have 

a smaller number of points, and/or consist of vertical surfaces.   
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